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Fission of light actinides: 232Th(n, f ) and 231Pa(n, f ) reactions
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A model to describe fission on light actinides, which takes into account transmission through a triple-humped
fission barrier with absorption, is proposed. The fission probability derived in the WKB approximation within
an optical model for fission has been incorporated into the statistical model of nuclear reactions. The complex
resonant structure in the first-chance neutron-induced fission cross sections of 232Th and 231Pa nuclei has been
reproduced by the proposed model. Consistent sets of parameters describing the triple-humped fission barriers
of 233Th and 232Pa have been obtained. The results confirm the attribution of the gross resonant structure in the
fission probability of these light actinides to partially damped vibrational states in the second well and undamped
vibrational states in the third well of the corresponding fission barriers.
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I. INTRODUCTION

Scientific interest in the fission of light actinides is mainly
due to the effect known as the “thorium anomaly” [1]. It has
been demonstrated that in the thorium region, second-order
shell effects split the outer fission barrier giving the so-called
triple-humped structure. Triple-humped barriers, allowing the
existence of exotic hyperdeformed class III vibrational states,
could explain the significant structure in the fission cross
section of Th, Pa, and light U isotopes. Many theoretical and
experimental studies have been dedicated to this subject in
the last decades (e.g., Ref. [2–5]). Recently, a triple-humped
barrier was proposed to be used to describe neutron-induced
fission on 238U [6]. Different types of analysis resulted in
different predictions of the fission barrier parameters, but none
of these papers present calculations of the fission cross section
reproducing the resonant structure of the measured data in an
extended energy range. Additional motivation for our work
is the importance of light actinides for the accelerator-driven
system (ADS) and innovative fuel cycle concepts based on
thorium fuel [7]. Knowledge of accurate neutron-induced
fission cross sections is crucially important for the design of
various reactor systems. During recent years, several studies
of neutron-induced reactions on thorium and protactinium
are being discussed in the framework of the on-going IAEA
Coordinated Research Program [7], including those published
by Maslov [8] and Han and Zhang [9], who used the triple-
humped fission barrier. However, uncoupled fission barriers

∗Electronic address: msin@pcnet.ro

were employed, meaning that the resonant structure present in
the experimental data could only be reproduced on average.

The aim of this paper is to propose a fission formalism
based on the optical model for fission [3,10] extended to
include triple-humped barriers. A consistent way to integrate
this formalism, needed for light actinides, within the statistical
model of nuclear reactions will be presented. Its capabilities
to provide information on the fission barrier parameters and to
accurately predict fission cross sections will be tested on the
first-chance neutron-induced fission on even-even 232Th and
odd-even 231Pa targets.

Section II of this paper provides a general description
of the fission model for light actinides and its integration
within the statistical model of nuclear reactions. Expressions
used for fission barrier parametrization, fission coefficients
corresponding to different transmission mechanisms, and
decay probabilities for fission and competing processes are
given. Section III describes the application of the model to
neutron-induced fission on thorium and protactinium up to
about 5 MeV neutron incident energy. Finally, Sec. IV presents
our conclusions.

II. FISSION MODEL FOR LIGHT ACTINIDES

The optical model for fission was developed to describe
the resonant structure of the fission cross section at subbarrier
excitation energies. The structure appears because of resonant
transmission through vibrational states in the second well of
a double-humped fission barrier. In this model, the damping
of the class II vibrational states and their coupling to class I
states (i.e., the absorption of the incident flux in the isomeric
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FIG. 1. Triple-humped fission barrier parametrization.

well) are considered by introducing an imaginary potential in
the deformation range corresponding to the second minimum.
Generalized relations for the decay probabilities accounting
for all the possible transmission mechanisms through the
fission barriers were deduced in Refs. [10–12]. The fission
coefficients entering these relations are determined within the
WKB approximation [13].

The optical model for fission, so far applied to the nuclei
exhibiting a double-humped fission barrier [10,11], is extended
here to light actinides featuring a complex triple-humped
fission barrier. The optical model for fission considers the
possible transmission mechanisms using a complex potential
(Vf = V + iW ) to describe the unidimensional multihumped
fission barrier (Fig. 1). The real part of the barriers associated
with the discrete transition states are parametrized by smoothly
joined parabolas as a function of the deformation β along the
fission path

Vi(β) = Ef i + (−1)i 1
2µh̄2ω2

i (β − βi)
2, (1)

where i runs from 1 to 5 for a three-humped barrier. The
energies Ef i represent maxima of Vi in odd regions (humps)
and minima in even regions (wells), βi are the corresponding
abscissae, the harmonic oscillator frequencies ωi define the
curvature of each parabola, and µ is the inertial mass
parameter, assumed independent of β and approximated by the
semiempirical expression µ ≈ 0.054A5/3 MeV−1 [14], where
A is the mass number.

The discrete transition states are rotational levels built on
vibrational or noncollective bandheads, characterized by a
given set of quantum numbers (angular momentum J, parity π ,
and angular momentum projection on the nuclear symmetry
axis K) with the excitation energies

Ei(KJπ ) = Ef i + εi(Kπ ) + h̄2

2Ii

[J (J + 1) − K(K + 1)

+ s(−1)J+1/2(J + 1/2)δK,1/2], (2)

where εi(Kπ ) are the bandhead energies, h̄2/2I are the
rotational constants, and s is the decoupling parameter for K =
1/2 bands. A parabolic barrier with height Ei(KJπ ) and cur-
vature h̄ωi is associated with each transition state. Relation (2)
is obtained in the strong coupling limit of the particle-rotor

model for odd-mass nuclei and is valid for even-even nuclei as
well, since, in the latter case, K is integer and the Kronecker
delta in the r.h.s. is obviously zero. In the present work, it will
be applied to odd-odd nuclei, too, by neglecting any residual
proton-neutron interaction.

The transition state spectrum has a discrete component up
to a certain energy Eci , above which it is continuous and
described by the level density functions ρi(EJπ ), accounting
for collective enhancements specific to the nuclear shape
symmetry at each saddle point. For the case of a triple-
humped barrier, it is reasonable to assume that with increasing
excitation energy, the shell effects, which cause splitting of
the outer hump, decrease and the outer humps lump into
a single one. Therefore, in the present formalism, triple-
humped barriers are associated only with discrete transition
states. Accordingly, the continuum contribution to the fission
coefficient is calculated considering a double-humped barrier
with the second peak representing a single barrier equivalent
to the two outer humps (Fig. 1). The parameters of the
equivalent barrier are determined imposing equal transm-
ission.

The negative imaginary potential iW is introduced in
the deformation range corresponding to the second well to
simulate damping of the class II vibrational states causing
absorption of the incoming flux in this well. In the present
formalism, the third well is supposed to be shallow enough to
neglect damping of class III vibrational states. The strength
W is assumed to be an energy-dependent function of the
deformation β

W (β) = −α(E)[E − V (β)]. (3)

The α(E) parameter, which controls the strength of the
imaginary part of the fission potential, should be chosen to
fit the width of the resonances in the subbarrier fission cross
section and to be consistent with physical values for the
transmission coefficients at higher energies.

In the following sections, the humps will be denoted with
capital letters A,B,C (i = 1, 3, 5) and the wells with Roman
numerals II (i = 2) and III (i = 4).

A. Fission coefficients for triple-humped barrier

Figure 2 shows the transmission mechanisms through a
triple-humped fission barrier for two excitation energies, one
lower and one higher than the top of the first hump. The
incoming flux can be transmitted directly through the barrier
or absorbed in the isomeric well. The fraction absorbed in
the isomeric well can (i) be reemitted in the fission channel
by direct transmission through the second and third hump,
(ii) return back to a class I state, or (iii) undergo γ transition
to the isomeric state; the isomeric state, in turn, can decay
by delayed (isomeric) fission or by shape transition to class I
states.

Accordingly, the fission coefficient through one discrete
triple-humped barrier is the sum of two terms: the first,
Tdir(EKJπ ), representing direct transmission, and the second,
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FIG. 2. Mechanisms of transmission across the triple-humped
fission barrier.

Tind(EKJπ ), representing the indirect transmission given by
the product of the absorption coefficient Tabs(EKJπ ), and
the branching ratio for indirect prompt and delayed (isomeric)
fission [10,15]

Tf (EKJπ )

= Tdir(EKJπ ) + Tind(EKJπ )

= Tdir(EKJπ ) + Tabs(EKJπ )

× TBC(EKJπ ) + RTγII (EJπ )

TA(EKJπ ) + TBC(EKJπ ) + Tγ II (EJπ )
, (4)

where E is the excitation energy, TA(EKJπ ) is the trans-
mission coefficient through the first peak, TBC(EKJπ ) is
the direct transmission coefficient through the outer peaks,
Tγ II(EJπ ) describes γ decay in the isomeric well, and
R is the branching ratio for fission of the isomeric state.
In the case of the light actinides, R is very small and
can be neglected. Considering that γ decay could make
a sizable contribution only at very low excitation ener-
gies in the isomeric well, Tγ II(EJπ ) will be neglected as
well.

1. WKB relations for fission coefficients

The transmission coefficients entering Eq. (4) are expressed
in first-order WKB approximation in terms of the momentum
integrals for the humps [13,16], that is,

Kj = ±
∣∣∣∣∣
∫ bj

aj

[2µ(E − Vj (β))/h̄2]1/2dβ

∣∣∣∣∣ , j = A,B,C,

(5)

where the + sign is taken when the excitation energy is lower
than the hump under consideration and the − when it is
higher. In the latter case, the intercepts are complex conjugate
(bj = a∗

j ), and the WKB approximation is valid when their
imaginary parts are small, i.e., for energies slightly higher than
the hump. The single-hump transmission coefficients Tj turn
out to be

Tj = 1

1 + exp(2Kj )
, j = A,B,C. (6)

As is known, in the case of a single parabolic barrier,
V (β) = V0 − 1/2µω2β2, formula (6) yields the well-known
Hill-Wheeler transmission coefficient [1]

THW = 1

1 + exp
(
2π V0−E

h̄ω

) , (7)

which is an exact result.
In the intermediate wells, when the intercepts aj and bj are

real, the momentum integrals depending on the real parts of
the potential are approximated as

νj =
∫ bi

ai

[2µ(E − Vi(β))/h̄2]1/2dβ, (8)

where j = 1 for i = II, and j = 2 for i = III; while for the
imaginary potential in the isomeric well, one obtains [15]

δ = −
(

µ

2h̄2

)1/2 ∫ bII

aII

W (β)

(E − V II(β))1/2 dβ. (9)

The general expression for the direct transmission coefficient
of a triple-humped barrier with an imaginary component in the
isomeric well is a simple generalization of that obtained for a
real three-humped barrier in Ref. [17]

Tdir = TATBTC

AT + BT cos(2(ν1 − ν2)) + CT cos(2(ν1 + ν2)) + DT cos(2ν1) + ET cos(2ν2)
, (10)

where

AT = e−2δ(1 − TA)(1 − TB) + e2δ(1 − TB)(1 − TC)

+ e−2δ(1 − TA)(1 − TC) + e2δ,

BT = 2(1 − TA)1/2(1 − TB)(1 − TC)1/2,

CT = 2(1 − TA)1/2(1 − TC)1/2,

DT = 2(1 − TA)1/2(1 − TB)1/2(2 − TC),

ET = 2(1 − TB)1/2(1 − TC)1/2[e−2δ(1 − TA) + e2δ],

(11)

which reduces to the form of Ref. [17] in the δ → 0
limit.

The reflection coefficient Trefl, is conveniently expressed in
terms of the transmission Tdir as

Trefl = Tdir

TATBTC

[AR + BRcos(2(ν1 − ν2))

+CRcos(2(ν1 + ν2)) + DRcos(2ν1) + ERcos(2ν2)],

(12)
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where

AR = e−2δ(2 − TB − TC)

+ e2δ(1 − TA)[(1 − TB)(1 − TC) + 1],

BR = 2(1 − TA)1/2(1 − TB)(1 − TC)1/2 = BT ,

CR = 2(1 − TA)1/2(1 − TC)1/2 = CT ,

DR = 2(1 − TA)1/2(1 − TB)1/2(2 − TC) = DT ,

ER = 2(1 − TB)1/2(1 − TC)1/2[e−2δ + e2δ(1 − TA)].

(13)

Since the fission barrier is complex, there is a nonzero
absorption coefficient

Tabs = 1 − Tdir − Trefl

= Tdir

TBTC

[(2 − TB − TC + TBTC)e2δ

+ (−2 + TB + TC)e−2δ − TBTC

+ 2(1 − TB)1/2(1 − TC)1/2(e2δ − e−2δ)]. (14)

These general relations for the transmission coefficients
through a triple-humped barrier with an imaginary component
in the isomeric well take particular forms in the excitation
energy regions indicated in Fig. 2, as detailed in Appendix A.

2. Addendum on parabolic cylinder functions

It is worthwhile to make a short comment on the use of
the WKB approximation in the transmission and reflection
by a multiple-humped parabolic barrier, which is exactly
solvable, with wave functions expressible in terms of parabolic
cylinder functions [18,19]. The exact form of the transmission
coefficient of a real three-humped fission barrier is given
in Ref. [20], and its generalization to a complex barrier is
straightforward. In the case of a real barrier, however, it
was already proved that the WKB formulas yield a good
approximation to exact results in the nontrivial energy range
below and at the tops of the barrier peaks [21]. Therefore, the
WKB approximation has been adopted in the present work in
order not to burden a complicated set of nuclear reaction codes
like EMPIRE with routines for parabolic cylinder functions of
complex argument, and also to keep a more physical insight on
partial or total damping of vibrational resonances, essentially
governed by the δ parameter of the WKB formulas given
above; the damping effects would be less transparent in a
fully numerical evaluation of transmission and absorption
coefficients.

3. Total fission coefficients

The total fission coefficient for a certain spin and parity
which enters the statistical model of nuclear reactions is
the sum of the contributions of all bands containing levels
with the same spin and parity. In the description of fission
cross sections, one can consider two extreme limits: the first
limit assumes that fission mainly proceeds through discrete
transition states characterized by well-defined values of K and
is known as the “no K mixing” approximation; the second limit
considers that the excitation of internal degrees of freedom in

the second well makes it possible for the nucleus to change its
K value during the time the energy is bound in internal motions,
and this effect is referred to as “full K mixing.” The effect of
these approximations on the fission probability is very small,
but they can affect significantly the angular correlations of the
fission fragments [10]. The appropriate choice for the purpose
of nuclear data evaluation, i.e., computation of the fission
cross section in a broad energy range, is the “full K mixing”
approximation, not only for physical reasons, but also because
it can be applied to any excitation energy. On the other hand,
if the fission cross section is studied simultaneously with the
angular distributions of fission fragments in the narrow energy
window where class III vibrational states can be excited, the
no K-mixing assumption can be made, in order to extract
information on the Kπ quantum number of the class III states
under investigation.

Formally, full K mixing is described by adding the
absorption from different transition states irrespective of the
associated K value into a quantity preserving the spin J and
parity π . The main consequence is that the second term
in Eq. (4), describing the prompt indirect fission (i.e., the
reemission into the fission channel after absorption in the
isomeric well), becomes

Tind(EKJπ ) =
∑

K ′′�J

Tabs(EK ′′Jπ )

× TBC(EKJπ )∑
K ′′�J

[TA(EK ′′Jπ ) + TBC(EK ′′Jπ )]
.

(15)

In this approximation, the total fission coefficient for a
certain discrete state characterized by quantum numbers Jπ

reads

Tf (EJπ ) =
∑
K�J

Tf (EKJπ )

=
∑
K�J

[Tdir(EKJπ ) + Tind(EKJπ )]

= Tdir(EJπ ) + Tabs(EJπ )

× TBC(EJπ )

TA(EJπ ) + TBC(EJπ )
. (16)

The total transmission coefficient through one hump is the
sum of two contributions corresponding to the discrete and
continuous part of the transition state spectrum, that is,

TA(EJπ ) =
∑
K�J

TA(EKJπ )

+
∫ ∞

EcA

ρA(εJπ )dε

1 + exp
[
− 2π

h̄ωA
(E − VA − ε)

] . (17)

The total direct transmission through the outer humps is
the sum of the transmissions through discrete barriers and the
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continuum built above the equivalent barrier such that

TBC(EJπ ) =
∑
K�J

TBC(EKJπ )

+
∫ ∞

Eceq

ρeq(εJπ )dε

1 + exp
[
− 2π

h̄ωeq
(E − Veq − ε)

] . (18)

By increasing the excitation energy, the strength of the
imaginary potential increases, and the entire flux transmitted
through the inner hump is absorbed in the second (isomeric)
well (Tabs → TA), and the direct transmission through the
entire barrier disappears (Tdir → 0). Therefore, the direct
fission occurs only for subbarrier excitation energies and only
through discrete channels, that is,

Tdir(EJπ ) =
∑
K�J

Tdir(EKJπ ), (19)

while the absorption in the isomeric well occurs through all
fission channels.

In the full K-mixing approximation, all the discrete channels
with the same Jπ contribute irrespective of their K value to the
total absorption coefficient. The continuum fission channels
contribute at higher energies, where the class II states are
completely damped and the entire flux transmitted through the
inner barrier is absorbed in the isomeric well; thus,

Tabs(EJπ ) =
∑
K�J

Tabs(EKJπ )

+
∫ ∞

EcA

ρA(εJπ )dε

1 + exp
[
− 2π

h̄ωA
(E − VA − ε)

] . (20)

B. Decay probabilities

Usually the fissioning nucleus is populated mainly in class I
states. From these states, it decays by particle or γ emission or
by direct fission, or it can change shape by a transition to a class
II state (absorption in the isomeric well). The fraction absorbed
in the isomeric well can decay by direct fission through the
outer humps, by transition to the isomeric state, or by another
change of shape (coming back to a class I state). The fraction
returned to the class I state is divided again, and the process
continues indefinitely. The formulas for the decay probabilities
which take into account the infinite series of transitions, hence
guarantee the flux conservation, have been derived in [11,12]
by generalizing the procedure outlined in [1]. The lengthy
derivation is shown in the Appendix B. As a result, we obtain
the total fission probability

Pf = Pdir + Pind = Tdir

Tdir +
∑

d
Td

(
1 − 1

a

)
+ 1

a
, (21)

where

a =
[

1 + b2 + 2b coth

(
TA + TBC

2

)]1/2

, (22)

b =
(
Tdir +

∑
d
Td

)
(TA + TBC)

TabsTBC

. (23)

The general expression (21) is valid for partial damping of
class II vibrational states and can be applied at any excitation
energy below or above the fission barrier. It shows that from
the flux destined to fission by direct transmission across the
barrier, part 1/a is taken out and reemitted into the fission
channel after being absorbed in the isomeric well.

At very low excitation energies, where the class II
vibrational states preserve their individuality, fission proceeds
entirely by direct transmission across the barrier and the second
term Pind = 1/a in Eq. (21) disappears. In the opposite case,
that of complete damping, the entire flux transmitted through
the inner hump is absorbed in the isomeric well, γ decay on
the isomeric state becomes negligible, and the well-known
expression for the decay probabilities is obtained,

Pk = Tk

Tf +
∑

d
Td

k = f, d, (24)

with the fission coefficient Tf given by

Tf = TATBC

TA + TBC

. (25)

The cross sections for fission and for competing channels are
calculated using the relation

σk(E) =
∑
Jπ

σ (EJπ )Pk(EJπ ) k = f, d, (26)

where σ (EJπ ) is the fissioning nucleus formation cross
section, and the decay probabilities Pk(EJπ ) are given by
Eqs. (B16) and (B17) in Appendix B for fission and other
outgoing channels correspondingly.

III. 232Th AND 231Pa NEUTRON-INDUCED FISSION

The capability of the optical model for fission, presented
in the previous section, to accurately describe fission cross
sections and provide fission barrier parameters for light
actinides, was tested on 232Th(n,f ) and 231Pa(n,f ) reactions. A
formalism based on this model has been recently implemented
in the EMPIRE-2.19 nuclear reaction code [22,23]. Using
this code, a full evaluation of neutron-induced reactions on
the 232Th nucleus from 1 keV up to 60 MeV has been
carried out [24] and will be published in a separate paper.
To ensure a reliable fission cross section analysis, a very
good description of all available experimental data was
obtained, as can be seen from Figs. 3–6, corresponding to
the energy range below 6 MeV studied in this work. A similar
evaluation for 231Pa is under way. In these calculations, the
direct interaction cross sections and transmission coefficients
for the incident channel on 232Th and 231Pa were obtained
from the dispersive coupled-channel optical models given in
Refs. [49] and [50], respectively. The coupled-channel ECIS03

code [51,52] incorporated into the EMPIRE-2.19 system [22]
was used for optical model calculations. Preequilibrium
emission is negligible below 6 MeV. Hauser-Feshbach (HF)
[53] and Hofmann-Richert-Tepel-Weidenmüller (HRTW) [54]
versions of the statistical model were used for the compound
nucleus cross section calculations. Both approaches include
decay probabilities deduced in the optical model for fission
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FIG. 3. (Color online) Total cross section for interaction of
neutrons on 232Th. Experimental data were taken from EXFOR
[25–31].

presented here and account for the multiple-particle emission
and the full γ cascade.

Let us focus on the calculation of the first-chance fission
in the two nuclei under study. A complete study would
require the analysis of (i) the fission fragment angular distrib-
utions to extract information about the Kπ bandheads and
(ii) the gross and fine resonant structure of the fission cross
section to extract information about the excitation energies
of the vibrational states, moments of inertia, and decoupling
parameters. For evaluation purposes, treatment of the fission
channel should use a minimum number of input parameters,
but at the same time, it should be sophisticated enough to
describe the experimental data with the accuracy required by
applications. Therefore, we focus on reproducing the gross
vibrational resonant structure of the fission cross section,
without attempting to describe the fine structure related to
rotational levels. Crucial to this type of calculation are, beside
the fission model itself, the set of fission barrier parameters
consisting of (i) heights and widths of the parabolas describing
the fundamental barriers, (ii) discrete transition states at saddle
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FIG. 4. (Color online) Nonelastic cross section of 232Th. Experi-
mental data were taken from EXFOR [32–35].
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FIG. 5. (Color online) Neutron capture cross section of 232Th.
Experimental data were taken from EXFOR [36–47].

points and in intermediate wells, and (iii) level densities
at saddle points. For the present study, these parameters
have been empirically determined from the analysis of the
measured fission cross sections, considering values reported
in the literature and the overall fit of the available experimental
data for competing channels.

A. 232Th(n, f ) reaction

The analysis of the experimental data for 232Th first-chance
fission cross section (Figs. 7 and 8) reveals the following
features:

(i) A resonant structure above the fission threshold indicat-
ing the existence of a third shallow well accommodating
undamped hyperdeformed vibrational states.

(ii) A first change of slope around the neutron incident
energy of 1.1 MeV, suggesting a height of the inner
barrier of 5.9 ± 0.2 MeV (the neutron separation energy
in 233Th is 4.78 MeV).
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d
2 σ

/d
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 d
θ 
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1 2 3 4 5 6 7
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105
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2000 Baba 2.03 MeV
2000 Baba 4.25 MeV
2000 Baba 6.10 MeV

FIG. 6. (Color online) Neutron emission cross sections at 30◦

for 2.03, 4.25, and 6.1 MeV incident neutron energy on 232Th.
Experimental data measured by Baba et al. [48]. 4.25 and 6.1 MeV
plots are scaled by 103 and 106 factors, respectively. Fission neutrons’
contribution is not shown.
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FIG. 7. (Color online) Neutron-induced fission cross section of
232Th from 0.5 to 5.9 MeV. Experimental data were taken from
EXFOR [55–61].

(iii) Wide resonances below 1.1 MeV which could be
associated with partially damped vibrational states in
the second well.

(iv) A fission threshold around the neutron incident energy
of 1.5 MeV, suggesting a height of the outer barriers of
6.3 ±0.2 MeV.

(v) The positions of the resonances assumed to be related to
the class II and class III states and the rising smooth part
between them (from 1.1 to 1.5 MeV) indicating that the
excitation energy ranges of the vibrational states in the
two wells do not overlap (see Appendix A and region IV
in Fig. 2).

The best description of the experimental data was obtained
by using fission barrier parameters in perfect agreement with
these assumptions (see Table I). The inner barrier parameters
(VA = 5.82 MeV, h̄ωA = 1.00 MeV) are supported by some re-
cent calculations [5] and differ from earlier predictions [2,15],
indicating a lower and wider inner hump. The parameters of
the second well were deduced from the position of the wide
resonances at low energies related to the class II vibrational
states. The experimental data are scarce in this energy range,
so we adopted values typical of actinides: VII = 2.12 MeV
for the depth (defined with respect to the ground state) and
h̄ωII = 1.00 MeV for the width. For the heights of the
second and third hump, the values of VB = 6.35 MeV and
VC = 6.45 MeV were adopted. The widths of these humps
(h̄ωB,C = 1.30 MeV) were deduced from the slope of the
fission barrier at excitation energies above the inner barrier.
The parameters of the third well represent a controversial
subject: early calculations predicted a rather shallow well with
a depth of 0.2–0.5 MeV accommodating undamped class III
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FIG. 8. (Color online) Neutron-induced fission cross section of
232Th near the fission threshold. Experimental data were taken from
EXFOR [55–61].

vibrational states, while more recent experimental [62] and
theoretical [63] studies support the idea of a much deeper
well with a depth of up to 3 MeV, which might require
a partial damping. Independently of the depth of the third
well, however, we expect in general that class III resonances
should be less damped than class II resonances, since the
main microscopic source of damping is the coupling to
class I compound states. This coupling is much less likely
in the third well, where the nucleus is reflection asymmetric
and strongly elongated, than in the second well, where the
nucleus is reflection symmetric and less deformed, and thus
closer to the characteristics of the first well. The fact that the
present formalism does not allow for the damping of class III
vibrational states might affect the shape, but not the positions
of the resonances. Our calculations show that a deep third well
gives rise to a resonant structure, especially at energies below
the threshold, while a shallower well produces resonances in
the plateau region. The measured thorium fission cross section
would indicate a shallow third well, although resonances below
1.1 MeV could also be related to partially damped class III
vibrational states in a deeper third well. The best description
of the data was obtained using the depth of around 0.7 MeV
(VIII = 5.65 MeV) and the width h̄ωIII = 1.00 MeV. One can
notice that the bottom of the third well is close to the top of
the first hump, indicating that the positions of the class III
vibrational states correspond to excitation energies for which
the class II vibrational states are almost completely damped.
Therefore, there is no interference among the resonances due
to the states in the two wells, confirming our initial hypothesis.

The parameters of the barriers associated with the discrete
transition states presented in Table II have been deduced from

TABLE I. Parameters of fundamental triple-humped fission barrier (in MeV) for 233Th and 232Pa.

Compound nucleus VA h̄ωA VII h̄ωII VB h̄ωB VIII h̄ωIII VC h̄ωC

233Th 5.82 1.00 2.12 1.00 6.35 1.30 5.65 1.00 6.45 1.30
232Pa 5.92 0.50 1.90 1.00 6.30 1.20 5.40 1.00 6.34 1.10
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TABLE II. Transition bandheads (keV) for 233Th.

Kπ εA εII εB εIII εC Kπ εA εII εB εIII εC

1/2+ 200 100 100 180 200 1/2− 200 300 100 200 300
1/2+ 300 500 500 450 600 1/2− 300 800 400 500 350
1/2+ 400 700 600 750 650 1/2− 500 850 500 800 600
1/2+ 500 900 650 800 700 1/2− 700 900 550 850 650
3/2+ 200 250 300 300 500 3/2− 200 650 300 300 350
3/2+ 300 760 600 550 600 3/2− 300 700 600 600 650
5/2+ 0 0 0 0 0 5/2− 100 180 100 50 0
5/2+ 250 800 500 650 600 5/2− 300 850 600 700 600

fit, considering also the asymmetry of the third well. For the
widths, very similar values to those of the fundamental barrier
have been used, therefore they are not included in the table. The
strength of the imaginary potential in the isomeric well was
chosen to fit the width of the wide resonances at subbarrier
energies (0.8, 1.0 MeV) and to assure a complete damping
close to the top of the inner barrier.

The contribution of the continuum to the fission coefficients
is calculated using an equivalent double-humped fission barrier
(see Sec. II and Fig. 1). The parameters of the equivalent
outer barrier are Veq = 6.64 MeV and h̄ωeq = 0.75 MeV.
For the description of the continuous part of the fission
transition spectra the same level density formalism as for the
normal states was used. It is based on the superfluid model
below the critical excitation and the Fermi gas model above,
and includes deformation-dependent collective effects [22].
The shell correction, pairing, and asymptotic value of the
level density parameter at each saddle have been calculated
following RIPL-2 recommendations [64]. For the studied
nuclei, the impact of the level density parameters on the
description of resonant structure near the fission threshold is
relatively small.

As demonstrated in Figs. 7 and 8, the optical model for
fission with the barrier parameters discussed above provides a
very good description of the available experimental data of the
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FIG. 9. (Color online) Neutron-induced fission cross section of
231Pa from 0.1 to 5 MeV. Experimental data were taken from
references [65–71].

first-chance fission of 232Th. It is worthwhile to mention that
the optical model for fission was also shown to give a good
description of photon-induced fission on 232Th as can be seen
in Fig. 8 of Ref. [23], where preliminary results of the present
work were presented.

B. 231Pa(n, f ) reaction

The measured neutron-induced fission cross section of the
231Pa nucleus has a complicated structure (see Figs. 9 and 10).
Analyzing it we can notice the following features concerning
the fission barrier parameters:

(i) As in the 232Th case, a pronounced resonant structure
above the fission threshold indicates a triple-humped
barrier.

(ii) Unlike the 232Th case, a superposition of wide
(En = 0.185, 0.315 MeV) and sharp (En =
0.155, 0.173, 0.370 MeV) resonances in the subthresh-
old region indicates a coexistence of class II and III
vibrational states in this excitation energy range (see
Appendix A and region III in Fig. 2).

(iii) There is no obvious change of slope, but above 0.4 MeV
neutron incident energy, there are no more wide reso-
nances (presumptively related to the partially damped
class II vibrational states), meaning that the height of
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FIG. 10. (Color online) Neutron-induced fission cross section of
231Pa. Experimental data were taken from references [65–73].
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TABLE III. Transition bandheads (keV) for 232Pa.

Kπ εA εII εB εIII εC Kπ εA εII εB εIII εC

0+ 20 100 80 80 100 0− 20 30 100 70 100
0+ 80 200 180 100 200 0− 100 100 120 100 150
0+ 100 400 200 250 250 0− 120 150 500 200 400
1+ 10 30 50 20 50 1− 100 100 50 50 150
1+ 100 150 80 40 100 1− 70 250 100 90 150
1+ 150 160 100 250 100 1− 100 400 120 200 250
1+ 160 300 170 500 200 1− 130 480 200 500 200
1+ 200 400 200 650 200 1− 300 550 220 700 300
2+ 10 60 30 10 30 2− 0 0 0 0 0
2+ 50 130 80 50 100 2− 40 40 60 50 150
2+ 100 210 100 160 150 2− 90 150 100 120 100
2+ 150 300 150 300 200 2− 200 200 150 320 250
2+ 200 350 300 420 400 2− 220 250 300 370 350
3+ 100 260 400 550 400 3− 200 400 500 520 450
3+ 130 300 450 600 400 3− 300 480 550 580 500
3+ 210 400 500 650 600 3− 400 550 600 700 600

the inner barrier would be 5.9 ± 0.2 MeV (the neutron
separation energy in 232Pa is 5.55 MeV).

(iv) The fission threshold around 0.5 MeV neutron incident
energy suggests heights of the outer barriers of 6.1 ± 0.2
MeV.

(v) The sharp resonances below the threshold, assumed to
be related to class III vibrational states, would indicate
a deeper third well.

Again our calculations are fully consistent with these
assumptions. The best description of the fission cross section
was obtained when using for the fundamental barrier the
parameters in Table I. They are similar to those obtained
for thorium, with two exceptions: the smaller width of
the first hump (h̄ωA = 0.5 MeV) needed to reproduce
the relatively low value of the protoactinium fission cross
section at low energies and, as expected, the lower value
of the third well bottom (VIII = 5.40 MeV) allowing
the description of the sharp resonances at subthreshold
energies.

The parameters of the barriers associated with discrete
transition states presented in Table III have been deduced
to fit the resonances. The calculations show that in the
protactinium case, resonances produced by vibrational states
in the isomeric well are strongly influenced by positions
of corresponding transition states in the third well. This
could explain why the fissioning compound nucleus 232Pa
has such spectacular resonant structure as observed in
Fig. 10, which is partially related to the vibrational states
in the isomeric well, despite the fact that it is doubly odd.
It is known that the neutron-induced fission cross section
of the odd-even targets [e.g., 241Am(n,f ) cross section] is
usually smooth, without any resonant structure. This is related
to the complete damping of the vibrational states in the
isomeric well, explained by the small distance among the
class II vibrational and nonvibrational states compared to their
widths, specific for doubly-odd nuclei. The atypical behavior
of the 231Pa(n,f ) cross section could be explained by the

coexistence of the second and third wells in the fission barrier.
Therefore, the penetrability through the class II vibrational
states is being “triggered” by the class III vibrational states.
Of course, the possibility that all the resonances are related to
class III vibrational states cannot be completely ruled out;
further studies of the fission transition state spectra are
warranted.

The strength of the imaginary potential in the isomeric
well was chosen to fit the width of the wide resonances at
subbarrier energies and to ensure a complete damping close to
the top of the inner barrier. The contribution of the transition
states in continuum to the fission coefficients was calculated
following the same procedure as for 232Th. The parameters
of the equivalent outer barrier used in calculations are Veq =
6.05 MeV, h̄ωeq = 0.50 MeV.

A good agreement of the 231Pa(n,f ) calculated cross section
with the experimental data is demonstrated in Figs. 9 and 10.
Further refinement of the calculation will be possible after the
evaluation of competing particle emission channels is finished.

IV. CONCLUSIONS

A model to describe fission in light actinides, which takes
into account transmission through a triple-humped fission
barrier with absorption, has been developed. This formalism
is capable of interpreting complex structure in the light
actinide fission cross section in a wide energy range. It
can be applied at sub- and overbarrier energies for neutron-
and photon-induced fission. The fission probability derived
in the WKB approximation within optical model for fission
has been incorporated into the statistical model of nuclear
reactions. The complex resonance structure in the first-chance
neutron-induced fission cross sections of 232Th and 231Pa
nuclei has been well reproduced by the proposed model.
Consistent sets of parameters describing the triple-humped
fission barriers of 233Th and 232Pa have been obtained. A
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0.7 (0.9) MeV shallow third well is obtained for thorium
(protactinium) allowing us to neglect damping in this well.
Calculations confirm the attribution of the gross resonant
structure in the fission probability of these light actinides to
a combination of partially damped vibrational states in the
second well and undamped vibrational states in the tertiary
well of the fission barriers.

We are aware that (n,f ) cross sections alone do not permit
the unique determination of the fission barrier parameters of
superdeformed and hyperdeformed states. Additional experi-
mental data, such as angular distributions of fission fragments,
would be useful. It is our intention to analyze them, once they
are available, using a more refined theoretical model, including
direct evaluation of fission barriers [74] as well as theoretical
parametrization of transition states by means of a suitable
collective model of nuclear structure.
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APPENDIX A

The general relations for the direct transmission coefficient
[Eq. (10)] and for the absorption coefficient in the isomeric
well [Eq. (14)] take the following particular forms in the
excitation energy regions indicated in Fig. 2:

(i) Region I corresponds to excitation energies lower than
the isomeric well. The fission coefficient Tf is calculated
by numerical integration as the transmission coefficient
through the whole fission barrier.

(ii) Region II corresponds to excitation energies higher
than the isomeric well and lower than the outer
well. The fission coefficient is calculated as in the
case of a double-humped barrier, whose WKB for-
mulas were first derived in Ref. [16] for a real
barrier and in Ref. [15] for a more general case
of a complex potential in the intermediate well,
that is,

Tdir = TATB

e2δ + 2(1 − TA)1/2(1 − TB)1/2cos(2ν1) + (1 − TA)(1 − TB)e−2δ
, (A1)

Trefl = Tdir

TATB

[e2δ(1 − TA)

+ e−2δ(1 − TB) + 2(1 − TA)1/2(1 − TB)1/2cos(2ν1)],

(A2)

Tabs = 1 − Tdir − Trefl = Tdir
e2δ − (1 − TB)e−2δ − TB

TB

. (A3)

In the present case, TB is replaced with the transmission
through the outer humps TBC , calculated by numerical
integration through the outer barriers B and C.

(iii) Region III corresponds to excitation energies higher
than the outer well and lower than the first hump. In
this energy range, class II and class III states coexist.
The direct and absorption coefficients are calculated
using the relations (10) and (14). This region is key
to the successful description of neutron-induced fission
on 231Pa.

(iv) Region IV appears when the height of the first hump
is lower than the outer well, and the excitation energy
is higher than the height of the first hump. This case
corresponds to a two-humped barrier with full absorption
in the isomeric well (Tabs → TA → 1, Tdir → 0, Trefl →
0) and the transmission through the outer humps TBC ,
calculated numerically. It is worthwhile to point out the
difference between the transmission coefficient through
the barrier T = Trefl + Tdir + Tabs → 1 and the fission
coefficient (4), which at overbarrier energies, where
Tγ II → 0 and the full damping limit is reached, becomes

Tf = TATBC

TA + TBC

(A4)

and tends to 1/2.
(v) Region V is similar to Region IV (Tabs → TA, Tdir → 0)

except that TBC refers to the direct transmission (with-
out absorption) through the second and third humps,
which is

TBC = TBTC

1 + 2[(1 − TB)1/2(1 − TC)1/2cos(2ν2) + (1 − TB)(1 − TC)]
. (A5)
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(vi) Region VI corresponds to excitation energies higher
than the lowest of humps 2 and 3. At these energies,
class III vibrational states become completely damped;
therefore, the direct transmission through the outer
humps disappears TBC → 0, the transmission through
these humps occurring only through states in continuum
[see Eq. (18)]. The limits of the absorption coefficient
in the isomeric well and of the direct transmission
coefficient through the entire well remain: Tabs → TA

and Tdir → 0.

APPENDIX B

To define the decay probabilities of the actinide nuclei with
multihumped fission barriers and an imaginary potential in the
isomeric well, a unitary initial flux populating class I states
was considered (for the sake of simplicity the dependence of
all quantities on EJπ will be not written explicitly). A part
of this flux (N0

d ) decays by competing processes (particle or γ

emission), a part (N0
refl) is reflected, a part (N0

dir) is transmitted
directly through the barrier (undergoes direct fission), and a
part (N0

abs) changes shape by a transition to a class II state
(absorption in the isomeric well):

1 =
∑

d

N0
d + N0

refl + N0
dir + N0

abs. (B1)

These fractions of the initial flux are expressed in terms of the
corresponding transmission coefficients as

N0
i = Ti∑

d
Td + Trefl + Tdir + Tabs

= Ti∑
m
Tm

, (B2)

where i, m = d, refl, dir, abs. The fraction absorbed in the
isomeric well can be transmitted directly through the outer
humps (indirect fission), can decay γ to the isomeric state,
or can rechange shape (coming back to a class I state by
penetrating the inner hump backward). Neglecting the γ decay
to the isomeric state, it reads

N0
abs = N0

A + N0
BC , (B3)

where

N0
j = N0

abs
Tj

TA + TBC

= N0
abs

Tj∑
n
Tn

= Tabs∑
m
Tm

· Tj∑
n
Tn

,

(B4)

where i, m = d, refl, dir, abs; j, n = A,BC. Now we can
iterate, so the fraction returned to class I states is partitioned
again (as was done for the initial flux) into

N0
A + N0

refl =
∑

d

N1
d + N1

refl + N1
dir + N1

abs, (B5)

N1
i = (

N0
A + N0

refl

) Ti∑
m
Tm

=

 Tabs∑

m
Tm

TA∑
n
Tn

+ Trefl∑
m
Tm


 Ti∑

m
Tm

, (B6)

where i, m = d, refl, dir, abs; n = A,BC.

N1
abs = N1

A + N1
BC, (B7)

N1
j = N1

abs
Tj∑

n
Tn

=

 Tabs∑

m
Tm

TA∑
n
Tn

+ Trefl∑
m
Tm


 Tabs∑

m
Tm

Tj∑
n
Tn

, (B8)

where m = d, refl, dir, abs; j, n = A,BC, and the process
continues indefinitely. The total flux fractions decaying in
different channels from the first and second well represent
the sum of infinite series

Ni =
∞∑

k=0

Nk
i = Ti∑

m
Tm

∞∑
k=0


 Tabs∑

m
Tm

TA∑
n
Tn

+ Trefl∑
m
Tm




k

= Ti∑
m
Tm


1 − 1∑

m
Tm


 TabsTA∑

n
Tn

+ Trefl







−1

(B9)

where i, m = d, refl, dir, abs; n = A,BC.

Nj =
∞∑

k=0

Nk
j = Tj∑

n
Tn

Tabs∑
m
Tm

×
∞∑

k=0


 Tabs∑

m
Tm

TA∑
n
Tn

+ Trefl∑
m
Tm




k

= Tj∑
n
Tn

Tabs∑
m
Tm


1 − 1∑

m
Tm


 TabsTA∑

n
Tn

+ Trefl






−1

,

(B10)

where m = d, dir, abs; j, n = A,BC, γII. The quantities
needed for the decay probability calculations are Ndir, NBC ,
and Nd , for which the above formulas become

Ndir = Tdir

Tdir +
∑

d ′Td ′ + TabsTBC/(TA + TBC)
,

NBC = Tabs

Tdir +
∑

d ′Td ′ + TabsTBC/(TA + TBC)

TBC

TA + TBC

,

Nd = Td

Tdir +
∑

d ′Td ′ + TabsTBC/(TA + TBC)
.

The coupling of class I and class II states is considered
according to [10] by multiplying Tabs with the weight function

f (x, �cII,DII) = sinh(2π�cII/DII)

cosh(2π�cII/DII) − cos(2πx/DII)
, (B11)

where x = E − E0 is the difference between the excitation
energy and the centroid excitation energy of the class II level,
DII is the distance between the class II levels in the picket
fence approximation, and �cII represents the decay width of
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the class II levels expressed in terms of the transmission
coefficients through the humps and of the γ decay in the second
well: 2π�cII/DII = TA + TBC.

Averaging over a class II resonance, the following ex-
pressions for the direct and indirect fission probabilities are
obtained:

Pdir = 1

DII

∫ DII/2

−DII/2
Ndirdx = Tdir

Tdir +
∑

d ′Td ′

(
1 − 1

a

)
,

(B12)

Pind = 1

DII

∫ DII/2

−DII/2
NBCdx = 1

a
, (B13)

where

a =
[

1 + b2 + 2b coth

(
TA + TBC

2

)]1/2

, (B14)

b =
(
Tdir +

∑
d ′Td ′

)
(TA + TBC)

TabsTBC

. (B15)

The total fission probability reads

Pf = Pdir + Pind = Tdir

Tdir +
∑

d ′Td ′

(
1 − 1

a

)
+ 1

a
, (B16)

and the total decay probabilities for the competing channels
Pd read

Pd = 1

DII

∫ DII/2

−DII/2
Nddx = Td

Tdir +
∑

d ′Td ′

(
1 − 1

a

)
. (B17)

These relations can be applied in the case of the double-
humped fission barrier by replacing the direct transmission
coefficient through the outer barriers TBC with the transmission
coefficient across the outer barrier TB .
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1 October, 2004, Santa Fé, N. M.; AIP Conf. Proc. 769 (AIP,
New York, 2005), p. 1249.

[24] R. Capote, M. Sin, and A. Trkov (in preparation).
[25] K. Volev, N. Koyumdjieva, A. Brusegan, A. Borella, P. Siegler,

N. Janeva, A. Lukyanov, L. Leal, and P. Schillebeeckx, in
Proceedings of the International Conference on Nuclear Data
for Science and Technology, 27 September–1 October, 2004,
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