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The extended continuum discretized coupled channel (XCDCC) method is developed to treat reactions where
core degrees of freedom play a role. The projectile is treated as a multi-configuration coupled channels system
generated from a valence particle coupled to a deformed core which is allowed to excite. The coupled channels
initial state breaks up into a coupled channels continuum which is discretized into bins, similarly to the original
CDCC method. Core collective degrees of freedom are also included in the interaction of the core and the
target, so that dynamical effects can occur during the reaction. We present results for the breakup of 17C=16C+n

and 11Be=10Be+n on 9Be. Results show that the total cross section increases with core deformation. More
importantly, the relative percentage of the various components of the initial state are modified during the reaction
process through dynamical effects. This implies that comparing spectroscopic factors from structure calculations
with experimental cross sections requires more detailed reaction models that go beyond the single particle model.
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I. INTRODUCTION

Over the last decade, technological developments have
provided the Radioactive Beam community with detailed data
on a large variety of reactions involving nuclei far from
stability [1]. Amongst these are breakup reactions, from which
properties of loosely bound systems can be extracted [2].
Breakup reactions have been used to determine ground state
properties, including binding energies, angular momentum
structure, momentum distributions and spectroscopic factors
(e.g., Refs. [3–9]), as well as for studying excited state
properties and resonant states (e.g., Ref. [10]).

Breakup is not only of interest for studying the structure of
these nuclei, but also for astrophysical reasons. In a Coulomb
dominated process, if we can assume a one step semi-classical
approximation [11], it is possible to factorize the Coulomb
dissociation cross section of P + t → (c + v) + t into a
kinematical factor multiplying the photodissociation cross
section of the projectile c + v → P , which in turn is easily
translated into the capture S-factor at arbitrarily low energies
between the fragment and core [12]. Many applications of
this method have been used in the past [13–15] and new
applications are being developed [16].

In general, we need to improve on the semiclassical models,
but still some approximations need to be made, depending on
the energy regime, the target, and the specific kinematical
conditions of the experimental setup. Recent results show that
nuclear contributions extend far out into regions where naively
one expects they would be negligible, because of the extended
nature of loosely bound wave functions. Coulomb-nuclear
interference is also not negligible, the far-field approximation
of the Coulomb field is inaccurate, and polarization effects
need to be considered (see for example Refs. [17–22]). Even
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when there are no other bound excited states, the breakup
process goes through several continuum states under the
influence of the target. These effects have been referred
to as dynamical effects or continuum-continuum couplings,
and together with other improvements, have helped to solve
apparent discrepancies between different experiments [23,24].

In earlier days, measurements involving drip-line nuclei
detected only one of the fragments (e.g., Ref. [25]). Those
inclusive data contained inelastic breakup and transfer (strip-
ping) as well as elastic breakup (diffraction). In the latter,
the projectile breaks up and both fragments survive after the
process without any excitation of the target. In stripping, one
of the fragments in the projectile gets absorbed and/or the
target gets excited. The improved beam intensities in most
facilities and the new phase of electronics in data acquisition
has allowed efficient coupling of several types of detectors,
such that, nowadays, data are less integrated and often contain
complete kinematics (e.g., Refs. [26,27]). For this reason,
theoretical models need to move toward disentangling the
various processes in their predicted observables. In this work
we will focus on the elastic breakup component.

Generally, breakup reactions have been described within
a three body model, where the projectile is simplified to a
two-body system (P = c + v). The relative motion between
the core and fragment of the projectile is distinguished from,
and then coupled to, the relative motion of the projectile and
the target. In the high energy regime, straight-line trajectory
or adiabatic approximations are often made [28,29]. At lower
energies, semiclassical methods taking a Rutherford orbit for
the projectile’s trajectory are a possible choice [17,18,22].
Over all energy regimes, one of the most successful models
has been the continuum discretized coupled channels (CDCC)
method [30]. It includes the scattering states of the projectile
completely coupled and is fully quantal. In this model, nuclear
and Coulomb are treated on equal footing, thus interference
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effects appear naturally. Also, any relevant multistep process
within the continuum, or from the ground state to the
continuum, are automatically incorporated [21,31].

As successful as it has been, CDCC [30] has several limi-
tations. One of the most serious is the restriction to projectiles
that can be approximated by two bodies in relative motion. The
Kyushu group [32] has been expanding the original CDCC
method to solve problems where the projectile is of a clear
three body nature, such as Borromean systems (6He, 11Li,
14Be, etc.). Their method introduces a Gaussian expansion
with a complex argument [33], essential for computational
efficiency. Results for nuclear and Coulomb breakup have been
recently presented [34,35]. Another limitation is associated
with the non relativistic description, and this approximation
becomes inaccurate at very high energies. Exploratory work
solving the Klein-Gordon equation [36] has shown there to be
non-negligible relativistic effects in the Coulomb dissociation
of 8B for experiments at GSI energies. Finally, the projectile-
target two-body asymptotics, as an approximation of the pure
three-body asymptotics, has also been pointed out as a limiting
factor in certain reactions [37].

The CDCC method has been applied to many recent
examples [23,31,38–41]. For the 8B breakup measured at Notre
Dame where only the 7Be fragment was detected [25], the
theoretical predictions agree very well with the data for the
kinematic region where only elastic breakup is expected [31].
If the same 8B structure model is used for the breakup of
8B at higher energies [42], one needs to artificially adjust the
quadrupole strength of the couplings potentials in the reaction
[43]. This adjustment cannot be understood by a simple
renormalization of the E2 strength in the 7Be-p continuum
[44] and suggests that structure beyond the single particle
p3/2 is required to describe the reaction mechanisms at higher
energies. The elastic and inelastic scattering of protons on 11Be
in inverse kinematics was examined in the inert core single
particle model [45]. They found that serious discrepancies
between the theory and data existed in the 11Be{10Be(0+) + n}
breakup spectrum in the region around resonances built on a
2+ core.

There are several ways to improve the two body single
particle description of the projectile. While the Kyushu group
has focused on the description of breakup of a three-body
projectile, in this work we will discuss a generalization of
the CDCC method for a two-body projectile where the wave
function is no longer single particle. This generalization of
the CDCC method, which we denominate extended CDCC
(XCDCC) [46], includes a coupled channels description of the
projectile’s initial and final states, but also any dynamical core
excitation/deexcitation that may occur in the reaction process.

It is clear that if core excitation/deexcitation happens
during the reaction process, this will have implications for
not only the excited cross sections, but also for measuring
the ground state core distributions. In addition, one expects
that the excitation/deexcitation process will depend strongly
on the type of reaction, namely high versus low energy,
light versus heavy target. Even when there is only a single
valence neutron/proton, the valence nucleon may occupy
several configurations, in some of which the core is excited.
By measuring the gamma rays in coincidence with outgoing

fragments, core states can be identified, and spectroscopic
factors for the overlap of the projectile ground state with
specific core states can be examined [47].

In nuclear dominated knockout reactions on light targets,
typically the method of Ref. [48] is followed. Therein one
calculates the single particle cross section for both diffraction
(elastic breakup) and stripping, in an eikonal model, for
each ground state configuration of the projectile. The single
particle cross sections for each state are then multiplied by the
spectroscopic factor for that configuration, calculated within a
shell model, and the total knockout cross sections is obtained
by adding the single particle contributions incoherently.
Improvements on the eikonal approximation for the breakup
contribution [49,50] have been examined using CDCC. These
models, however, are still single particle and neglect any
interference between configurations, as well as any dynamical
excitation of the core in the reaction. We will examine the
importance of these effects in this paper.

In Coulomb dissociation, by contrast, a more simplistic
approach is typically assumed: that the relative probabilities
do not change during the reaction, and the contribution from
excited core components is negligible [9]. Thus the ratio
of the theoretical cross section, for the ground-state-core
configuration, to the experimental cross section is often
taken to be directly the spectroscopic factor for the ground
state.

Contributions from excited core components in Coulomb
dissociation have previously been estimated [51], by calculat-
ing the contribution from excited core components separately,
and adding them incoherently, following the method of
Ref. [48]. The Coulomb dissociation was calculated using
DWBA and Adiabatic reaction models. In Ref. [51], it was
concluded that the Coulomb dissociation to excited core states
was very small, only a few percent, very much less than in
nuclear breakup. They then suggest that since the cross section
from excited core states has a negligible contribution to the
total Coulomb breakup cross section, one could compare the
single particle theoretical cross section to the experimental
cross section to obtain the spectroscopic factor for the core in
its ground state. One has to consider the many approximations
assumed in the theory. This model neglected any interference
between the configurations and any dynamical (de)excitation
of the core. These effects can be examined with XCDCC, but
Coulomb dominated reactions will be a subject of a future
publication.

One simple way to introduce collective degrees of freedom
to the core is to assume it behaves as a perfect rotor.
Rotor+nucleon coupled channels models for loosely bound
systems have been applied to a number of light nuclei on the
drip-line (e.g., Refs. [52–54]). This type of structure model for
the projectile has been also used in the calculations of reaction
observables [55,56].

In Ref. [55], the coupled wave functions are used to
compute the B(E1) electric excitation function from the
ground state into the continuum. The interference between the
states with the same core spin in a pure Coulomb dissociation
process is then studied within the semiclassical first order
approximation [55]. Interference effects between states with
different core spins were neglected since this model does
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not include inelastic transitions caused by the target. These
interference effects were shown to be important in 17C on
208Pb at 67A MeV.

In Ref. [56], the eikonal approximation is used to calculate
the total cross sections for the breakup of a deformed core
plus nucleon system. Results for 17C breakup on 9Be at
62A MeV show a dramatic increase of the cross section
with the quadrupole deformation parameter. Contrary to the
semiclassical first order approximation, this model includes
dynamical effects, but only total cross sections are obtained. It
can be interpreted as a precursor to the new model presented
here.

There is a wide variety of problems that can be investigated
with XCDCC, and this is the first chapter where the formalism
is given in detail and integrated observables for two cases
are presented, namely 17C and 11Be breakup on 9Be at
≈60A MeV, both measured at MSU [6,7]. We present a
comparison with the data of Ref. [7] in a Rapid Communication
[46]. This paper should be considered the long version of the
rapid communication where the details of the theory are laid
out.

In Sec. II the theoretical development is presented. A
description of the structure models used for the projectiles
is detailed in Sec. III. Numerical details for the examples
considered are given in Sec. IV. Following, in Sec. V, the
results are detailed and discussed. Finally, Sec. VI contains the
conclusions drawn from our study and an outlook for future
work.

II. THEORETICAL DEVELOPMENTS

The breakup of a projectile P consisting of a valence particle
(v) loosely bound to a core (c) on a target t can be modelled as
a three-body scattering problem. The three-body Hamiltonian
for the system has the form

H = TR + Hproj + Vct + Vvt , (1)

where TR represents the kinetic energy operator for the
projectile-target system, Hproj is the internal Hamiltonian of
the projectile and Uct (Uvt ) is the interaction between the
core (valence) particle and the target. The Hamiltonian is
usually written in the Jacobi coordinates (R, r) where R is
the coordinate for the center of mass of the projectile relative
to the center of mass of the target, and r is the coordinate of
the valence particle relative to the center of mass of the core
as shown in Fig. 1.

The full three-body wave function for the system with
definite total spin JT is expanded over the states of the
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FIG. 1. Coordinates for the three-body scattering problem to be
considered.

projectile, both bound and unbound:

�
MT

JT
(R, r, ξ ) =

∑
α

�JT

α (R)
[[

YL(R̂) ⊗ �in
JP

(r, ξ )
]
J

⊗ �Jt
(ξt )

]MT

JT
. (2)

The XCDCC states, labeled by α ≡ {L, JP , J, Jt , i, n}, de-
scribe the projectile state {JP , i, n}, where JP is the total spin
of the projectile, i is the discretization in relative momentum
and n is an additional boundary condition that is required to
describe coupled channels bins and is discussed later. In this
paper we assume the target is structureless, therefore removing
the dependence on (ξt ) in Eq. (2). The projectile-target orbital
angular momentum, L, and the spin of the target Jt all couple
to a total spin of the three-body system JT . We use the notation

〈R̂, r, ξ |α; JT 〉 = [[
YL(R̂) ⊗ �in

JP
(r, ξ )

]
J

⊗ �Jt

]
JT

(3)

to describe the angular momentum and projectile wave
function compactly.

If the interaction between the fragments in the projectile
depends only on r , the projectile Hamiltonian Hproj generates
single particle bound state wave functions, and single particle
continuum states which can later be discretized into continuum
bins. In this work, we wish to include an additional degree of
freedom, ξ , concerning the projectile’s core, and allow the
core states to be coupled together. For simplicity we take a
rotational model for the core [52], but the evaluation of the
coupled channels bins and potential matrix elements are not
specific to the choice of this collective model. We consider
that the core-valence interaction depends on core collective
degrees of freedom ξ :

Hproj = Tr + Vvc(r, ξ ) + hcore(ξ ), (4)

where Tr is the core-valence kinetic energy operator, and
hcore(ξ ) is the intrinsic Hamiltonian for the core. We define
ϕI to be the eigen function of the core corresponding to
eigenenergies εI . Now the projectile ground state contains
contributions from different core states, in a fully coupled
manner:

�0(r, ξ ) =
∑

a

φa(r)
[[

Yl(r̂) ⊗ χs

]
j
⊗ ϕI (ξ )

]
JP

. (5)

We use the subscript 0 on the projectile wave function to
denote the ground state [the supercripts (i, n) in Eq. (3) are
superfluous for bound states]. Here, a given channel a depends
on a set of quantum numbers describing the relative (l) and
total ( j) angular momentum of the valence particle, with fixed
spin s, which couples to the core spin I. We label each channel
which can couple to total spin JP by a ≡ {l, j, I }. We use the
notation

〈r̂, ξ |(ls)j, I ; JP 〉 = [[
Yl(r̂) ⊗ χs

]
j
⊗ ϕI (ξ )

]
JP

(6)

to describe the angular momentum and core wave function
compactly. A previous work [52] gives details of such
rotor+n models.

In addition to the dependence of the internal Hamiltonian
of the projectile on ξ , the core-target interaction Vct (r, ξ ) also
contains the dependence on the degrees of freedom of the
core and therefore, for a breakup process within this model,
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the core-target interaction can excite/deexcite the core during
the reaction process. The coupling matrix elements of this
deformed potential will be discussed in Sec. II B.

A. Construction of projectile coupled channels bins

The projectile’s (c+v) scattering states for a given incoming
kinetic energy Ek are solutions of a coupled channels equation
which can be reduced to the following radial form:

[Ek − εa + εn − Ta]fa:n(r; kan) =
∑
a′

Va:a′ (r)fa′:n(r; ka′n),

(7)

where n stands for the channel with a plane wave component (in
addition to the usual outgoing component), Ek = h̄2k2/2µvc is
the core-valence relative energy, k is the core-valence relative
momentum, and the reduced mass is µvc. The momentum
that appears in the scattering wave, kan, is the asymptotic
momentum available in particular channel an, and is defined
by

k2
an = k2 − 2µvc

h̄2 [εa − εn], (8)

where εa and εn are the energies of the core in channels a and
n, respectively. The kinetic energy operator,

Ta = − h̄2

2µvc

[
d2

dr2
− l(l + 1)

r2

]
, (9)

is defined for the angular momentum l of the core-valence
system in channel a. The coupling potential matrix is

Va:a′ (r) = 〈(ls)j, I ; JP |Vvc(r, ξ )|(l′s)j ′, I ′; JP 〉, (10)

where a ≡ {l, j, I } are the channel quantum numbers.
The open scattering wave functions are obtained by match-

ing to the asymptotic boundary condition

fa:n(r; k) = i
2

[
H−

n (kr)δan − H+
a (kr)SJP

a:n

]
, (11)

at rmatch to obtain the coupled channels square S-matrix, SJP
a:n.

Here H (±)
a (kr) are the Coulomb functions. Inelastic channels

with excited core components will remain closed unless the
relative energy is higher than the core energy or channel n has
an excited core component. If the available energy for channel
(an) is negative, then the wave function fa:n(r; kan) will be
closed with separation energy h̄2k2

an/2µvc.
In principle, coupled channels scattering wave functions

could be used directly to calculate the one-step breakup
process. However, as multistep effects can be extremely
important, we opt to discretize the coupled channels set, into
square integrable bin wave functions. The generalization of
the standard binning procedure [30] to coupled channels bins
is described below.

For each projectile JP state in the continuum, we define
coupled channels bin wave functions that are square integrable,
resulting from a superposition of pure scattering states [cal-
culated from Eq. (7)] within a momentum bin [ki−1, ki]. Each
momentum interval is labeled by i. The coupled channels bin

wave functions are written as

ui
a:n(r) =

√
2

πNi
n

∫ ki

ki−1

dkgn(k)fa:n(r; kan), (12)

where, as before, k is the relative momentum between core and
valence fragments. Here, k0 represents the breakup threshold
between the core and valence particles.

The weight factor of the coupled channels bins, gn(k),
is chosen to be e−iδn(k), where δn(k) is the phase shift of
channel a = n (i.e., the phase obtained from the diagonal of the
S-matrix). In the one channel case, this phase makes the wave
functions real [21]. The coupled channel bins are now complex,
and the full complex wave function is used in the CDCC
equations up to the matching radius rmatch. By choosing the
weight factor as the phase of channel a = n, the wave functions
are approximately real. This is useful when matching to the
asymptotic Coulomb functions [57] in the CDCC equations,
as the long-range Coulomb functions become approximately
real.

The normalization factor is

Ni
n =

∫ ki

ki−1
|gn(k)|2 dk. (13)

Since our weighting has |gn(k)|2 = 1, the normalization is
simply Ni

n = ki − ki−1, and the average energy of bin α is
ε̂α = h̄2(k3

i − k3
i−1)/6µvc(ki − ki−1) [31].

The full bin wave function describing the projectile state
JP , for momentum bin i and plane wave in channel n, is the
sum of the coupled channels bins obtained from Eq. (12):

�in
JP

(r, ξ ) =
∑

a

ui
a:n(r)〈r̂, ξ |(ls)j, I ; JP 〉. (14)

The different plane wave channels form an orthogonal set
and therefore projectile wave functions carry the label n. It is
important to note that since the bin wave functions appear in
the bra in the three-body T-matrix, these plane wave channels
on the scattering wave relate to the outgoing channel of the
breakup fragments.

B. The three-body coupling potentials

The scattering problem for the three body Hamiltonian,
Eq. (1) H� = E�, can be reduced to a set of radial coupled
channels equations in R when using the expansion Eq. (2).
Then the scattering coupled channels equation becomes[
Eα − TL − UJT

α:α(R)
]
�JT

α (R) =
∑
α′ 	=α

U
JT

α:α′ (R)�JT

α′ (R), (15)

where the kinetic energy operator is

TL = − h̄2

2µPt

[
d2

dR2
− L(L + 1)

R2

]
, (16)

and µPt is the reduced mass of the projectile-target system.
The energy of each channel Eα = E − ε̂α is the total energy of
the three-body system minus the average energy of bin α. The
incident center-of-mass energy will be E0, as α = 0 represents
the ground state of the projectile.
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The coupling potentials for the elastic breakup of the
projectile (the process where the target remains in its ground
state) are

U
JT

α:α′ (R) = 〈α; JT |Vct (R, r, ξ ) + Vvt (R, r)|α′; JT 〉, (17)

where α describes the angular momentum as defined in
Eq. (3). The projectile-target interaction potential is the sum
of the core-target (Vct ) and valence-target (Vvt ) potentials, and
contains both nuclear and Coulomb terms. The valence-target
interaction can be treated as before [58], by the theory of
Appendix B. The new physical element is in the core-target
interaction, which now depends on the core degrees of freedom
(ξ ).

The core-target interaction can be expanded in multipoles
of Q,

Vct (R, r, ξ ) =
∑
Q

Q̂2V
Q
ct (rc)

∑
q

CQq(r̂ c)C
∗
Qq(ξ ), (18)

where rc = R − γ r is the core-target coordinate, with γ =
mv/mP as the ratio of the valence mass to the projectile mass,
and CQq(r̂ c) is related to the spherical harmonic,

YQq(r̂ c) = Q̂CQq(r̂ c)/
√

4π, (19)

where we use the notation Q̂ = √
2Q + 1.

Next, the product rQ
c CQq(r̂ c) can be expanded in multipoles

λ for the r and R coordinates, as in [59]

rQ
c CQq(r̂ c) = Q̂3

∑
λµ

√
(2Q)!

(2λ)![2(Q − λ)]!
Rλ(−γ r)Q−λ

×Cλµ(R̂)CQ−λ,q−µ(r̂)

(
Q − λ λ Q

q − µ µ −q

)
. (20)

The multipole Q for the core-target potential V
Q
ct (rc) can be

expanded in multipoles of K,

V
Q
ct (rc)

r
Q
c

=
∑
K

K̂2V
QK
ct (r, R)

∑
k

CKk(R̂)C∗
Kk(r̂), (21)

where the radial potential dependence is given by

V
QK
ct (r, R) = 1

2

∫ +1

−1

V
Q
ct (rc)

r
Q
c

PK (u)du; u = R̂ · r̂. (22)

Combining Eqs. (18), (20), and (21), we find that the
spherical harmonics in R can be coupled to a new multipole

 and, similarly, the spherical harmonics in r can be
coupled to another multipole 
′. The angular momentum
structure gives three spherical harmonics in R̂, r̂, ξ coupling
to form a tripolar spherical harmonic of rank zero. Summing
over the angular momentum projections (q, µ, k), the core-
target potential operator can then be reduced (according to
Appendix A) to

Vct (R, r, ξ ) =
∑
KQλ

V
QK
ct (r, R)Rλ(−γ r)Q−λ

×
√

(2Q)!

(2λ)![2(Q − λ)]!
(−1)QQ̂K̂2

×
∑


′


̂
̂′2
(

K λ 


0 0 0

) (
K Q − λ 
′

0 0 0

)

×
{


′ 
 Q

λ Q − λ K

}
(C
(R̂) · {C
′(r̂) ⊗ CQ(ξ )}
).

(23)

The transition couplings of Eq. (17) are calculated as matrix
elements of Eq. (23), assuming the coupling order defined in
Eq. (2). It is useful to write the transition couplings in terms
of a transition potential which only depends on the overall
projectile initial and final states, J ′

P , i ′, n′ and JP , i, n, and the
transition multipolarity 
. Combining the potential operator
from Eq. (23) and the matrix elements from Appendix A, we
write the core-target three-body couplings as

U
JT

α:α′ (R) = L̂L̂′ĴP Ĵ ′
P (−1)JP +J

∑



(−1)

̂2

(

 L L′

0 0 0

)

×
(

JP J ′
P 


L′ L J

)
F


JP in:J ′
P i ′n′(R). (24)

The form factor is the sum over KQλ multipoles and the
projectile coupled channels (a and a′),

F

JP in:J ′

P i ′n′ (R) =
∑
KQλ

aa′

R
KQλ
ain:a′i ′n′(R)P KQλ:


a:a′ , (25)

where the radial dependence is defined by the integral

R
KQλ
ain:a′i ′n′(R) = K̂

∫ Rm

0
ui

a:n(r)∗V QK
ct (r, R)

×Rλ(−γ r)Q−λui ′
a′:n′ (r)dr. (26)

The remaining angular momentum dependence is summarized
as

P
KQλ:

a:a′ = (−1)j

′+l+l′+s+QQ̂K̂ĵ ĵ ′ l̂ l̂′
√

(2Q)!

(2λ)![2(Q − λ)]!

×
(

K λ 


0 0 0

)
〈I ||CQ(ξ )||I ′〉

∑

′


̂′2

×
(

K Q − λ 
′
0 0 0

) (

′ l l′
0 0 0

) {

′ 
 Q

λ Q − λ K

}

×
{

j j ′ 
′
l′ l s

}


JP J ′
P 


j j ′ 
′
I I ′ Q


 . (27)

The angular momentum coupling in Eq. (27) contains the
matrix element 〈I ||CQ(ξ )||I ′〉, which describes elastic and
inelastic excitations of the core through its scattering by the
target. In this paper we use a rotational model for the core, for
which this matrix element has a simple solution (Appendix C).

This matrix element 〈I ||CQ(ξ )||I ′〉 is left separate in
Eq. (27) since, in general, other models could be used to
induce the inelastic scattering of the core. Given a core-target
interaction with core degrees of freedom, ξ , and multipole
expansion, Q, the inelastic modes can be calculated, and along
with radial coupling potentials [Eq. (10)] for the core-valence
interaction, XCDCC opens the door for other models of the
core which go beyond the collective model.
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The monopole couplings for the core-target interaction
[Q = 0 in Eqs. (24)–(27)] are evaluated in Appendix B. We
see by comparing Eq. (24) and Eq. (B1) that including extra
degrees of freedom for the core does not increase the com-
plexity of the final form factors, since they both depend only
on a multipolarity and the transition J ′

P → JP . Thus the form
factors can be precalculated efficiently. To reduce memory
requirements, the individual components R

KQλ
ain:a′i ′n′(R)P KQλ:


a:a′
can be summed so only the final F


JP in:J ′
P i ′n′(R) stored. A new

version of FRESCO [58] was created for this purpose.
The only increase in the size of the calculation compared

with the single particle calculations, with no core degrees
of freedom, is the increase in the model space due to the
extra quantum number n for the projectile state. This relates to
the plane wave component on the coupled channels solution
of the core-valence wave function. One needs to include all
possible values of n for each of the coupled channels scattering
states. This extra quantum number carries the information
regarding the final state of the core-valence system in the
CDCC equations.

III. STRUCTURE OF 11Be AND 17C IN
THE ROTATIONAL MODEL

We use a rotational model to describe the projectile as a
coupled core-valence system. The rotational model for 17C
is based on the model used in Ref. [54]. We use the same
potential parameters as Ref. [54], given in Table I. We neglect
the spin of the valence particle, because we are interested in
the effect of the core spin, and the effect of the valence particle
spin on the total cross sections is small. This model produces a
17C ground state spin of Jπ

P = 2+. We use a quadrupole mass
deformation of β2 = 0.55, as in Ref. [56]. Modeling the 16C
core with two states {0+, 2+}, with an excitation energy of
E2+ = 1.766 MeV, and including all possible relative angular
momentum up to l = 4, produces four coupled channels
in the ground state: [d ⊗ 0+], [s ⊗ 2+], [d ⊗ 2+], [g ⊗ 2+],
with relative probabilities of 0.175, 0.103, 0.721, 0.001,
respectively. This model predicts the dominant channel to
be [d ⊗ 2+], which is consistent with the large spectroscopic
factor obtained from shell model calculations [6] (this channel
was left out of the model space in the rotational model of
Ref. [54]). The single particle (SP) central potential parameters
are taken from Ref. [56], and are adjusted to fit the ground
state binding energy for each configuration. 16C also has
other bound states around 4 MeV in energy, one of which,
the 4+ at E4+ = 4.142 MeV, could be included within our
rotational model. In some of the calculations, we include this
core state in the projectile continuum although we keep the

TABLE I. 16C+n potential parameters for Eq. (C1).

Model Interaction V RV aV β2

CC 16C{0+, 2+} + n 62.0 3.2 0.65 0.55
SP 16C{2+} + n{d} 52.7 3.2 0.7 –
SP 16C{2+} + n{s} 49.4 3.2 0.7 –
SP 16C{0+} + n{d} 48.5 3.2 0.7 –

TABLE II. 10Be+n potential parameters for Eq. (C1).

Model Interaction Parity V RV aV β2

CC 10Be{0+, 2+} + n + 55.25 2.483 0.65 0.67
CC 10Be{0+, 2+} + n − 47.00 2.483 0.65 0.67
SP 10Be{0+} + n + 55.50 2.736 0.67 –
SP 10Be{0+} + n − 30.48 2.736 0.67 –
SP 10Be{2+} + n + 75.07 2.736 0.67 –
SP 10Be{2+} + n − 39.95 2.736 0.67 –

projectile’s ground state description without the 4+ core state
for consistency. Using a rms matter radius of 2.70 fm [60] for
the 16C core, the rms radius calculated for the deformed 17C
is 2.77 fm. The rms radius for the single particle [d ⊗ 2+]
state is 2.78 fm. The weighted sum for the incoherently
summed single particle projectile states, has a rms radius of
2.79 fm. The experimental determined rms radius is 3.04±
0.11 fm [61].

For 11Be we base our potential parameters on those of
Ref. [52]. These were fitted to give the correct binding energies
of the ground and first excited state, as well as the B(E1)
transition between them, using a parity dependent potential.
Since again we neglect the spin of the neutron, and therefore no
spin-orbit force, we readjust the potential parameters slightly
to fit the binding energies of the bound states. The parameters
used in the calculation are given in Table II, with the model
CC referring to the coupled rotational model for the projectile,
where a deformation β2 = 0.67 is taken from Ref. [52]. This
model produces a 11Be ground state with spin JP = 0+, with
two coupled channels: a s-wave neutron coupled to 0+ core,
and a d-wave neutron coupled to a 2+ core. The relative
probabilities are 0.883 and 0.117 for the [s ⊗ 0+] and [d ⊗ 2+]
states, respectively. The single particle model for the core
consists of a parity dependent potential as used in Ref. [52],
which fits the bound states using a central potential. For the
states with a 2+ core the potential depth is adjusted to fit
the binding energy plus the energy of the 2+ core. Using
a rms matter radius of 2.28 fm [62] for the 10Be core, the
rms radius calculated for the deformed 10Be + n is 2.99 fm.
The rms radius for the single particle 0+ core calculation is
3.08 fm. The weighted sum for the incoherently summed
single particle projectile states has a radius of 3.01 fm. These
compare reasonably well to the rms radius for 11Be of 2.90±
0.05 fm [62]. The radii in our few-body model are a bit small,
but since we do not compare to data, and only compare
to previous work, we keep the same potential model for
consistency.

The bound states in the single particle model are fitted by
adjusting the potential parameters to produce the same binding
energy and overall rms as in the deformed case. By fixing these,
this minimizes the effect of the different structure models for
the projectile, and any difference in the cross section should
be from the effects of the extra reaction channels included in
the XCDCC calculations. Since a parity dependent potential
is used in both cases, the bound states have the same binding
energy and rms, and the main difference between the structure
models will be the position of the resonances. Since we are
looking at integrated observables this should not be significant.

014606-6



EXTENDED CONTINUUM DISCRETIZED COUPLED . . . PHYSICAL REVIEW C 74, 014606 (2006)

   0  0+    2  2+    1  0+    1  2+    3  2+    2  0+    0  2+    2  2+    4  0+    2  2+    4  2+   3  2+   1  2+   3  0+   4  2+

0+ 1− 2+ 3− 4+

E   (MeV)k

l  I π
π

PJ

3

5 5 10 10 5

15 15 15 10

7 7

7 7

2

10 10

10

20

30

FIG. 2. 17C continuum model space. The number of bins and the energy range are given for each outgoing channel (l, I π ) for each spin-parity
combination of the projectile (J π

P ).

IV. NUMERICAL CONSIDERATIONS

In all the calculations the core-valence integrals were per-
formed out to a maximum radius of rmatch = 70 fm, with a step
length of h = 0.05 fm. The momentum integrations for each
bin [Eq. (12)] were calculated with 60 steps. The multipole
transitions were calculated with all possible K,Q and λ

transitions, with the transition multipolarity truncated to 
 � 4.
Partial waves were included up to L = 5000 for 17C breakup
and up to L = 3000 for 11Be breakup. The radial wave func-
tions were matched to the asymptotic Coulomb functions at a
radius of Rasym = 500 fm. The spin of the valence particle was
neglected and therefore the channel labels all have j = l. The
spin of the 9Be target was set to zero as it is a spectator in our
reaction model. The channel labels refer to the total spin and
parity of the projectile (Jπ

P ), the angular momentum of the neu-
tron (l), and the spin of the core fragment (I), in the final state.

The XCDCC model space for the 17C reaction where 16C
is modeled with two states {0+, 2+}, the XCDCC model

space is given in Fig. 2. For the 17C reaction where 16C is
modeled with three states {0+, 2+, 4+}, the XCDCC model
space is given in Fig. 3. The XCDCC model space for 11Be
breakup is given in Fig. 4. The numbers of bins spanning an
energy range for each channel in the final state are given in
each box, with the bins at regular intervals in momentum.
Summaries of the various sizes for the model space are given
in Table III. The first column is the projectile model space:
which core states are included in the calculation. The next
five columns give the number of permutations for each of the
variables; the number of coupled channel states (aJP in), the
number of projectile states (JP in), the number of couplings
between coupled channel states (P KQλ:


a:a′ ), the number of form
factors stored (F


JP in:J ′
P i ′n′ ), and the number of channels in the

CDCC equations (α). The deformed core calculations were
performed on a SGI Altix 3700, while the single particle
calculations were performed on a cluster of AMD Opteron 250
processors.
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FIG. 3. 17C continuum model space. The number of bins and the energy range are given for each outgoing channel (l, I π ) for each spin-parity
combination of the projectile (J π

P ).
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FIG. 4. 11Be continuum model space. The number of bins and the energy range are given for each outgoing channel (l, I π ) for each
spin-parity combination of the projectile (J π

P ).

V. RESULTS

Here we present the results of the calculations. The optical
potential parameters for the fragment-target interactions are
given in Table IV. For both reactions, we perform three
different calculations to understand the relevance of the
different ingredients. First we simulate the CDCC version of
the single particle calculations in Refs. [6,7]. We refer to it as
SPIS: single particle incoherent sum. It corresponds to a sum
over the CDCC single particle cross sections multiplied by the
corresponding relative probability for the projectile generated
in Sec. III. It does not contain any interference between core
states nor core excitation/deexcitation due to the interaction
with the target. Secondly, we perform a calculation where we
do not include dynamic effects with the target, and refer to
it as CCSE: coupled channels static excitation. It contains
the full coupling within the projectile but has only Q = 0 in
the three-body coupling matrix elements. The third case is
the full calculation, which we denote by CCDE for coupled
channels dynamic excitation. In all the above, we perform
the calculations switching on and off continuum-continuum
coupling to determine the importance of these couplings as
done before [21]. In Tables V–VIII, the couplings labeled c-v
and c-T refer to the deformed couplings between the core-
valence and core-target subsystems. The monopole couplings
are always included.

A. 9Be(17C,16C + n) 62 MeV/nucleon

The one-step (no continuum-continuum coupling) breakup
cross sections for 9Be(17C,16C{0+, 2+} + n) are given in
Table V. The single particle cross sections for each of the
configurations used in the CC calculations are 33, 25, and
13 mb for the [d ⊗ 0+], [s ⊗ 2+], and [d ⊗ 2+] states respec-
tively (we neglect the [g ⊗ 2+] state since its contribution is
very small). These are then multiplied by 0.175, 0.103, and
0.721 to obtain the single particle incoherent sum SPIS cross
section of 18 mb. This model is equivalent to that used widely
to analyze knockout data to specific states [47], the difference
being that this is a one-step breakup reaction model which
includes nuclear and Coulomb breakup whereas the eikonal
model includes single-particle-continuum-continuum cou-
plings but nuclear breakup only. We will include continuum-
continuum couplings in our model later. Introducing a coupled
channels description of the projectile (CCSE) provides very
similar cross sections when comparing to the SPIS model.
This suggests little interference between configurations during
the reaction. Including dynamical excitation in the reaction
model (CCDE) enhances the cross section to both core
states, increasing the total breakup cross section to 21 mb
in agreement with the findings of Batham et al. [56]. However
in that work, only cross sections summed over all core states
were given.

TABLE III. Size of calculations for the different model spaces. The first column gives the projectile model, with the core states included.
The next five columns give the number of permutations for various variables that are required. The last four columns give total CPU time, the
number of CPUs, walltime, and memory requirements to store the form factors.

Projectile aJP in JP in P
KQλ:

a:a′ F 


JP in:J ′
P

i′n′ α CPUtime(s) NCPUS Walltime(h:m) Mem(GB)

10Be{0+}+ n – 90 – 7312 258 20568 11 00:35 0.2
10Be{0+, 2+}+ n 572 179 3862133 58951 542 342008 8 13:32 1.2
16C{2+}+ n – 103 – 9788 344 37900 1 10:13 0.2
16C{0+, 2+}+ n 478 144 2886779 41795 473 206048 15 03:59 1.4
16C{0+, 2+, 4+}+ n 1269 244 40036229 118450 546 2991231 16 56:01 2.5
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TABLE IV. Fragment-target optical potential parameters.
The radius parameters are to be multiplied by A1/3

core + A
1/3
target

for the core-target potential and A
1/3
target for the neutron-target potential.

The core-target parameters are used for both 16C and 10Be, and the
neutron-target parameters are only adjusted slightly for the different
energy of the reaction.

Type Interaction V rV aV W rW aW

Central core + target 123.0 0.75 0.8 65.0 0.78 0.8
Deformed core + target 134.1 0.75 0.8 68.15 0.75 0.8
Central neutron + target

(E = 62 MeV)
34.54 1.17 0.75 13.4 1.26 0.58

Central neutron + target
(E = 60 MeV)

33.79 1.17 0.75 12.08 1.26 0.58

We explore the relevance of other states in 16C by first
calculating the inelastic reaction 9Be(16C(2+),16 C∗). We use
a simple rotational model for 16C, and include three states
{0+, 2+, 4+}. We have 16C(2+) in the initial state since
17C has predominantly 16C(2+) in the ground state. The
resulting inelastic cross section to specific core states is σ0+ =
4 mb, σ2+ = 5 mb, and σ4+ = 12 mb. The large number of
projections of the 4+ state and its relatively low energy E4+ =
4.142 Mev, raises suspicion that this 4+ state will hold a
significant contribution to the breakup cross section of 17C.
We recognize that the 2+ excited state in 16C is not described
well in a collective model, but here we use it as a toy model to
compare with previous work [56]. One may also wonder about
contributions from other states in a rotational band, since we
are using the particle-rotor model. We include a 4+ state here
since we start with 16C in a 2+ state. Inelastic excitations
with �I = 4, within our rotational model, are an order of
magnitude smaller than the �I = 2 transitions, thus it should
only be necessary to include the �I = 2 states for the core in
our rotational model.

We therefore recalculate the cross section for 17C breakup
including the 4+ state in the continuum (Table VI). We keep
the same ground state with only {0+, 2+} so that the relative
weights of each ground state configuration are preserved. Since
we have no 4+ in the ground state, the SPIS model is the
same as before. The 4+ state enhances the total breakup cross

TABLE V. 17C one-step (no continuum-continuum couplings)
breakup cross sections leading to 16C{0+, 2+} + n: SPIS is the
single particle incoherent sum model, where neither core-valence nor
core-target excitation couplings are included, CCSE is the coupled
channel static excitation calculations, where core-valence couplings
are included but no core-target, and finally the full calculation CCDE
coupled channel dynamic excitation, where both core-valence or
core-target excitation couplings are included.

Model Couplings σ0+ σ2+ σ

c-v c-T

SPIS × × 6 12 18
CCSE

√ × 5 11 17
CCDE

√ √
7 14 21

TABLE VI. 17C breakup cross sections leading to
16C{0+, 2+, 4+} + n. The abbreviations in the first row are
the same as in Table V. Calculations are repeated with and without
continuum-continuum couplings (labeled here by cont).

Model Couplings σ0+ σ2+ σ4+ σ

c-v c-T Cont

SPIS × × × 6 12 – 18
CCSE

√ × × 6 12 5 22
CCDE

√ √ × 7 15 5 27

SPIS × × √
5 11 – 16

CCDE
√ √ √

4 10 5 19

section in the CCSE model from 17 to 22 mb and in the CCDE
model from 21 to 27 mb. The last two rows in Table VI are
calculations including continuum-continuum couplings. These
couplings suppress the cross section as was seen before in the
single particle case [19,41]. It is a mere coincidence, though,
that the final total cross section of 19 mb compares so well
with the SPIS result.

B. 9Be(11Be,10Be+n) 60 MeV/nucleon

The breakup cross sections for the reaction
9Be(11Be,10Be{0+, 2+} + n) are shown in Table VII.
The single particle cross sections for one-step breakup are
159 mb for the [s ⊗ 0+] state, and 10 mb for the [d ⊗ 2+]
state. Multiplying these single particle cross sections by the
relative probabilities of 0.883 and 0.117, respectively, one
gets a total breakup cross section of 141 mb for the SPIS
model. If we calculate the cross section in the CCSE, the
cross section drops to 135 mb, suggesting some destructive
interference between the configurations. When we include
dynamical excitation (CCDE) the cross section is enhanced at
150 mb. The apparent agreement between the cross section
to the 0+ state (142 mb) in the CCDE model and the single
particle cross section multiplied by the relative probability
(140 mb) is merely a coincidence. It is a result of cancellations
between two different effects, the interference between
different configurations of 11Be and the dynamical excitation
couplings in the core-target potential. We also see that the
SPIS model severely underpredicts the amount of cross

TABLE VII. 11Be nuclear and Coulomb breakup cross sections
for 10Be{0+, 2+} + n The abbreviations in the first row are the same
as in Table V.

Model Couplings σ0+ σ2+ σ

c-v c-T Cont

SPIS × × × 140 1 141
CCSE

√ × × 128 7 135
CCDE

√ √ × 142 8 150

SPIS × × √
109 1 110

CCSE
√ × √

107 8 115
CCDE

√ √ √
109 8 117
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TABLE VIII. 11Be nuclear breakup cross sections for
10Be{0+, 2+} + n. The abbreviations in the first row are the same
as in Table V.

Model Couplings σ0+ σ2+ σ

c-v c-T Cont

SPIS × × √
103 1 104

CCDE
√ √ √

100 7 107

section to the 2+ state. The additional cross section seems to
come from including the couplings between the 10Be and the
neutron rather than from the dynamical excitation couplings
of the core-target interaction. When continuum-continuum
couplings are included there is a general reduction of the
cross sections, but the same qualitative effects of projectile
couplings and dynamical excitation remain.

In the eikonal model of breakup reactions used in the
analysis of knockout data [47], only nuclear breakup is
included. In order to compare with previous calculations
for this reaction [7], where the contributions from Coulomb
breakup and dynamical excitation were roughly estimated, we
rerun our calculations with only nuclear breakup. Result for
the CCDE show that the nuclear cross section to the 0+ state is
10 mb less than the cross section calculated when both nuclear
and Coulomb are included. This appears to agree well with the
estimate of 10 mb given in Ref. [7], however it does not mean
that Coulomb and nuclear should be added incoherently. A
Coulomb breakup only calculation yields 12 mb. The estimated
contribution from dynamical excitation of 0+ core to the 2+
excited state was 11 mb multiplied by the spectroscopic factor
of the 0+ core, equivalent to 0.883 in our rotational model,
which gives 10 mb. We see from Table VII that the increase in
the cross section to the 2+ state, from the SPIS to our CCDE
model is 7 mb. So it turns out that the estimates presented
in Ref. [7] produced total cross sections close to those we
obtain in a more accurate calculation. Again, it is important
to note that in general this will not happen. A comparison of
the knockout data from Ref. [7] within this new model which
incorporates core deformation in a consistent manner is given
in Ref. [46].

VI. SUMMARY AND CONCLUSIONS

In summary, we have extended the CDCC method to
include a coupled channels description of the projectile,
using a deformed core-valence interaction, thus allowing
excited core contributions in the projectile states. We also
include a deformed core-target interaction, allowing the core
to (de)excite during the reaction.

For the reactions considered here, the breakup of 17C and
11Be on a 9Be target at ≈60 MeV/nucleon, the comparison
of the structure calculations with the experimental data will
depend on the reaction model used. By including more of
the important dynamics of the reaction mechanisms, a more
direct comparison of structure and experiment will be possible.
Even though the excited states of 16C are not well described
by collective excitations, we use a toy model of rotational
excitations to the excited 2+ and 4+ states. This is to compare

with previous calculations. In the breakup of 17C we find that
total cross section is significantly increased due to excitation
of the core, which is consistent with previous calculations.
Our calculations here go beyond previous work allowing for a
partial wave decomposition of the final core states. Even when
there is no 4+ core-state in the ground state of 17C, significant
population of the 4+ is predicted in the final breakup states.
Continuum-continuum couplings decrease the cross section.

The particle-rotor model for 11Be describes the nucleus
well, and there is good agreement with the spectroscopic
factors obtained from shell model calculations. When we allow
the 10Be to deform, we see an increase in the total breakup cross
section compared to the weighted incoherent sum of the single
particle cross sections. The cross section to the 2+ state in 10Be
is significantly increased when the core is deformed.

From our calculations we conclude that both the de-
formed couplings between the core and valence particles
and the deformed couplings between the core and target
are important. Although the total breakup cross sections do
not change dramatically, if one wants to calculate partial
cross section to specific final states of the fragments, these
couplings should be included in the reaction model. This
extended CDCC (XCDCC) reaction model can now be used
to describe breakup reactions where significant contributions
from excited core states are needed to describe the projectile
at any point during the reaction process. The usefulness of
XCDCC is varied. Near future applications of XCDCC include
11Be(p, p′)11Be∗,12C(11Be,10Be + n), and the various modes
of 8B breakup. A comparison with breakup data to specific core
states will allow accurate checks of the validity of the structure
model for the projectile and thereby improve the comparison
between structure calculations and experiment. We will also be
able to look at detailed breakup spectra and analyze resonances
built on excited core states, which could not be studied
using previous reaction models. The sensitivity of the reaction
observables to the potential parameters used for the bound
states and the continuum (resonant and nonresonant), will
have to be studied. However, this encompasses a completely
different project. In this paper we focused on the reaction
theory aspect, minimizing the difference between the different
structure theories by fixing the potential parameters using
observables for the projectile.

The generality of the formalism for including core degrees
of freedom in XCDCC shows that one can go beyond the
simple particle-rotor model for the projectile. Given the radial
overlap wave functions between the projectile and the core
states, and the core elastic and inelastic transitions for the core-
target scattering, a more microscopic picture of the reaction
can be obtained, including important dynamical effects which
can have a significant effect on the reaction observables.
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APPENDIX A: DETAILS ON THE THREE-BODY
COUPLING POTENTIALS

Here we give the details of the derivation for Eq. (23).
The expansion in Q, Eq. (18), and λ, Eq. (20), gives us three
spherical harmonics which depend on the R̂, r̂ and ξ degrees of
freedom. The expansion in K, Eq. (21), gives us two spherical
harmonics in R̂ and r̂ , which combine with the spherical
harmonics from the Q expansion to give two new multipole
orders, 
 and 
′, which relate to the projectile-target and
core-valence relative motion, respectively:

CKk(R̂)Cλµ(R̂) =
∑

ω

C
ω(R̂)
̂2(−1)ω

×
(

K λ 


k µ −ω

) (
K λ 


0 0 0

)
, (A1)

CK−k(r̂)CQ−λ,q−µ(r̂) =
∑

′ω′

C
′ω′(r̂)
̂′2(−1)ω
′

×
(
K Q − λ 
′

−k q − µ −ω′

)(
K Q − λ 
′

0 0 0

)
.

(A2)

We then combine the three spherical harmonics, for the
three coordinates, to form a tripolar spherical harmonic with
zero total angular momentum, which is a tensor of rank
zero, since the matrix elements of the potential operator must
conserve total angular momentum:

C
ω(R̂)C
′ω′ (r̂)CQ−q(ξ ) = (−1)

′−Q


̂

(

 
′ Q

ω ω′ −q

)

× (C
(R̂) · {C
′(r̂) ⊗ CQ(ξ )}
).

(A3)

Using these definitions, one can write the potential operator as
Eq. (23).

In order to calculate the matrix elements, we use the
projectile coupling order defined in Eqs. (3) and (6). The matrix
elements of the tripolar spherical harmonic of rank zero is

〈(L[(ls)j, I ; JP ])J, Jt ; JT |(C
(R̂) · {C
′(r̂) ⊗ CQ(ξ )}
)

|(L′[(l′s)j ′, I ′; J ′
P ])J ′, J ′

t ; JT 〉
= δJt ,J

′
t
δJ,J ′δs,s ′ (−1)JP +J+
+j ′+l+l′+s ĴP Ĵ ′

P L̂L̂′ĵ ĵ ′ l̂ l̂′
̂

×
(


 L L′

0 0 0

) (

′ l l′

0 0 0

) {
JP J ′

P 


L′ L J

}

×
{

j j ′ 
′

l′ l s

} 


JP J ′
P 


j j ′ 
′
I I ′ Q


 〈I ||CQ(ξ )||I ′〉. (A4)

By rearranging the summations, one can write the transition
potentials as defined in Eqs. (24)–(27).

The reduced matrix element for the core degree of freedom
is defined using the Bohr and Mottelson definition:

〈I ||CQ(ξ )||I ′〉 = Î 〈I |CQ(ξ )|I ′〉/(I ′K ′
cQq|IKc). (A5)

We have left this matrix element separate since the derivation
of the coupling potential is independent of the choice for the

core inelastic excitation mode. The specific form for the matrix
element within a rotational model is presented in Appendix C.

APPENDIX B: Q = 0 LIMIT

If one sets Q = 0 in the transition potential defined in
Eqs. (24)–(27), this corresponds to the limit that the core
cannot dynamically excite during the reaction, hence the core
spin in the initial state is the same as the core spin in the final
state. In the Q = 0 limit, the coupling potentials are the same
as for single particle breakup as defined in Ref. [58], since

 = K ,

U
JT

α:α′ (R) = L̂L̂′ĴP Ĵ ′
P (−1)JP +J

∑
K

(−1)KK̂2

×
(

K L L′

0 0 0

) {
JP J ′

P K

L′ L J

}
FK

JP in:J ′
P i ′n′ (R), (B1)

where the form factors are the sum over the coupled channels
states of the radial integrals and couplings,

FK
JP in:J ′

P i ′n′(R) =
∑
aa′

RK00
ain:a′i ′n′ (R)P K00:K

a:a′ . (B2)

The radial integrals are

RK00
ain:a′i ′n′(R) = K̂

∫ Rm

0
ui∗

a:n(r)V 0K
ct (r, R)ui ′

a′:n′ (r)dr, (B3)

and the couplings are

P K00:K
a:a′ = δII ′(−1)j

′+l+l′+s+J ′
P +j+I K̂ĵ ĵ ′ l̂ l̂′

×
(

K l l′

0 0 0

){
JP J ′

P K

j ′ j I

} {
j j ′ K

l′ l s

}
. (B4)

One can see from this limit that once the form-factors are
calculated, the coupling potentials have same form as with
core excitation. We associate this limit with a reaction model
where the core cannot dynamically excite due to the interaction
with the target. This limit may still include couplings between
the core and valence particles which can excite/deexcite the
core.

APPENDIX C: ROTATIONAL MODEL FOR THE CORE

In the formalism for XCDCC, we did not assume a model
for the core-valence coupling. Here we evaluate the XCDCC
equations using a rotational model for the core. For the radial
dependence, we use a deformed Woods-Saxon potential

Vvc(r, ξ ) = V

1 + exp [(r − R(ξ ))/aV ]
, (C1)

where the radius depends on the quadrupole deformation:

R(ξ ) = RV (1 + β2Y20(ξ )). (C2)

The core-valence potential are numerically calculated by
expanding in multipoles, as defined in Ref. [58],

Vvc(r, ξ ) =
∑
Q

V Q
vc (r)PQ(ξ ). (C3)
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In the rotational model, the eigenstates of the core, ϕI (ξ ), are
proportional to the rotational matrices,

〈ξ |I 〉 = I√
8π2

DI
Kc0(ξ ). (C4)

The matrix element, for the core degrees of freedom, in the

coupling potentials is then

〈I ||CQ(ξ )||I ′〉 = (−1)I
′+Kc Î Î ′

(
Q I I ′

0 −Kc Kc

)
, (C5)

where Kc is the projection of the core spin, I, on the body-fixed
z-axis.
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