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Bound single-particle states for neutrons from a global spherical optical model
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The bound single-particle states for neutrons are calculated from our previous global spherical optical model
potential containing dispersive terms and a local energy approximation. Reasonably good results are obtained
for the single-particle states as well as for the neutron binding energies. This constitutes a further test of our

potential.
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I. INTRODUCTION

Recently we have built a new global optical model potential
(OMP) [1] including dispersion relations [2] and the local
energy approximation of Perey-Buck [3]. This new global
OMP provides a very good description of the total and
differential elastic cross sections over a very broad energy
domain (1 keV to 200 MeV) for spherical nuclei. Because this
OMP is a dispersive OMP with smooth energy dependencies,
it is possible to extend it to the negative energy region
toward the shell-model potential for £ < 0 (bound states). This
constitutes a further test of our dispersive OMP. Many authors
have succeeded in obtaining bound single-particle states for
neutrons from different dispersive optical models [4] [5] [6]
[7]. In contrast, in this work, those bound states are obtained
from a global dispersive OMP.

The paper is structured as follows. In Sec. II, the functional
forms of the energy dependencies for the real, imaginary, and
spin-orbit potentials are recalled. Some mistakes included in
our previous paper are corrected. Dependencies of the depths
of the real potentials as well as the dispersive contribution are
also shown for positive and negative energies. In Sec. III we
present our results for the bound single-particle states energies
for 28Pb,% Zr, and *°Ca, and comparisons with other optical
model potentials are given in Sec. IV. Finally, our conclusions
are given in Sec. V.

II. OPTICAL MODEL

Our optical model potential can be written as
U(r, E) = [W(E) + iWv(E)] f(r, R, a)
df(r,R,a

— 4alVs(E) + iWs(E)]%

— [Vso(E) + i Wso(E)]
2
X( h ) dfeRa) 0

myc) r dr

where Vy s so and Wy s so are the real and imaginary terms
of the volume-central (V), surface-central (S) and spin-orbit
(SO) potentials. The volume shape f is a Woods-Saxon form
factor.
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The volume, surface and spin-orbit shapes share the same
geometrical parameters (radius R and diffuseness @). Note also
that these parameters are independent of energy. The reduced
radius ro (R = rgA'/?) decreases when the nuclear mass A
increases, whereas the diffuseness parameter increases with
mass.

In the dispersion relations treatment [2], the real V and
imaginary W volume potentials are connected by the following
expressions:

W(E) = Vur.(E) + AW(E), Vs(E) = AVS(E), (2)

where

P [t W(E)

AV(E) = — ——dE’. 3)
mJ). o E—E

As usual, P denotes the principal value of the integral, and

Vi (E) the Hartree-Fock contribution to the mean field.

A. Imaginary potentials

The energy dependence of the volume and of the spin-orbit
imaginary terms is taken to be the form first suggested by
Brown and Rho [8]. For the surface imaginary term, we
use a Brown-Rho shape modified by an exponential falloff.
The parameters of the surface imaginary potential are slightly
different from our previous work [1] and give slightly better
results. The depth Ag of the surface imaginary potential
increases with mass as

As = —17+4+0.018 A (MeV),
whereas the Cs and Bg parameters are constant:

Bs = 13MeV, Cs = 0.025 MeV~!.

B. Real potentials

We use a local energy approximation for the Hartree-Fock
potential adapted from Perey and Buck [3] as explained in
Ref. [1]. However, note that there was a mistake in the y value
in our previous paper. The value of y givenin [1] overestimated
the right value by a factor of 2 [9]. The true nonlocality range
y decreases slowly with mass:

y =0.1165 — 107* A (fm).
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FIG. 1. Energy dependence of the volume (solid curve), surface
(long-dashed curve) and spin-orbit (short-dashed curve) dispersive
contributions for 2% Pb between —50 and 50 MeV.

The real spin-orbit potential is also connected to the
imaginary spin-orbit potential by a dispersion relation and
has the form given in Ref. [1].

C. Energy dependencies

Because all the energy dependences of the imaginary
potential are symmetric about the Fermi energy Ep(Ep =
—[S.(Z, N)+ S,(Z, N + 1)]/2), the dispersive contributions
are skew symmetric with respect to Ep. The energy de-
pendencies of the volume, surface and spin orbit dispersive
contributions for 2®®Pb are represented between —50 and
50 MeV in Fig. 1.

To calculate the total volume real potential (Vy g (E) +
AVy(E)), the volume dispersive contribution AVy(E) is
added to the Hartree-Fock potential V. This term (Vyr.)
is obtained from Eq. (7) of Ref. [1] for positive and negative
energy, so that the local energy approximation of Perey-Buck
is used to calculate the bound-state properties, too. The total
volume real potential and the Hartree-Fock potential are
plotted as solid and dashed curves, respectively, in Fig. 2. For
large negative energies, |Vy g (E) + AVy(E)| is larger than a
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FIG. 2. Depths of volume real potential for 2Pb. The dashed
curve gives the variation of the Hartree-Fock potential, and the solid
line the total volume potential.
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FIG. 3. Depths of spin-orbit real potential for 2%Pb. The solid
curve gives the variation of the total spin-orbit potential, whereas the
dashed curve gives the variation without the dispersion contribution.

simple extrapolation of the volume real potential for negative
energy.

The depth of the real spin-orbit potential is represented
in Fig. 3 with (solid curve) and without (dashed curve)
the dispersion contribution of the imaginary spin-orbit
potential.

III. SINGLE-PARTICLE ENERGIES

Our nonlocal, dispersive, and spherical neutron optical
model is now specified for positive and negative energy.
To calculate the wave functions and the energies of the
bound single-particle neutron states, we solve the Schrodinger
equation for negative energies with the real potential only (in-
cluding, of course, the dispersive contributions deduced from
the imaginary potentials). For each energy, the Schrodinger
equation is solved twice, outward from the origin and inward
from 20 fm, until the matching condition of the two solutions
is fulfilled. The search of the bound states is now included in
the NUCLEON code [1].

At this stage, it is important to note that all the re-
sults for the bound single-particle states will be obtained
from a potential devoted to scattering problems only. As
a matter of fact, the abundant and varied scattering data
from positive energies shape the dispersive potential for
negative energies. For negatives energies, the Hartree-Fock
potential is fixed by the local energy approximation, and
all the imaginary potentials are well defined because they
are assumed to be symmetric about the Fermi energy.
The only doubt resides in the real spin-orbit potential,
which is simply extended to negative energies without any
proof.

Among the spherical nuclei, experimental values of the
neutron single-particle energies are available for 2°Pb,” Zr,
and “°Ca. (The energies of the various single-particle
and hole states for those three nuclei can be found in
Refs. [4], [7], and [6], respectively.) The single-particle and
hole state energies calculated with the real part of our OMP are
shown in Fig. 4 over the heading “M.R.” for 2%Pb,*° Zr, and
40Ca and are compared with the experimental values labeled
“Exp.”. The general description of single-particle and hole

014601-2



BOUND SINGLE-PARTICLE STATES FOR NEUTRONS . ..

0~
3d3/2

et 2g7/2
45 1/2

; 3d 5/2
1j 15/2

e 1i11/2
2g9/2

3p1/2

2f 5/2
3p372

B 11 13/2

26712
1h 92

'
(]
=

S——1h11/2

M.R.
r.s.0. +35%

M.R.

E (MeV)

E (MeV)

Exp.
M.R.

Exp.

PHYSICAL REVIEW C 74, 014601 (2006)

®Ca
' " 1f 5/2
e 1h11/2 e
2d3/2 S 212
. 3512 sl—
) | S ]g 72 _— _2p 3/2
2d 512 —
A0} 172
1292
2p 112
232 -5} 1d3/2
1f 5/2 [E— ey 25172
20 - — 1d52
1f 7/2 Z
=
M.R. =
r.5.0. +35% M.R.  Exp. M.R.
r.8.0. +35%

FIG. 4. Neutron single-particle energies in 2%®Pb, °*Zr, and “°Ca. For each nucleus, the left column displays the values calculated from our
potential, the right column those calculated with the real spin orbit increased by 35%, and the central column the experimental values.

states is reasonably good, since all these results are obtained
without any change to our original OMP. However, a better
agreement is obtained for the 2°Pb, where the root-mean-
square (r.m.s.) deviation between theory and experiment is
400 keV for particle and 700 keV for hole states as given in
Table I. Larger r.m.s. deviations are obtained for **Zr and “°Ca
(cf. Table I). Note that the sequential ordering of the single-
particle levels exhibits many inversions. In order to improve
the agreement between theory and experiment and because
the spin-orbit potential for negative energies is doubtful, this
potential has been modified. The results obtained when the
real spin-orbit (r.s.0.) potential is increased by 35% are also
plotted in Fig. 4 (over the heading “M.R. r.s.0. +35%”), and
the r.m.s. deviation between theory and experiment is shown
in Table I for every nucleus. The results are lightly better for

TABLE I. Root-mean-square deviation between theory and ex-
periment for particle and hole states with the original M.R. potential
and with a 35% increase of the real-spin orbit potential.

Nucleus M.R. M.R.
r.s.0. +35%
Particle Hole Particle Hole
208p 400 keV 700 keV 600 keV 900 keV
N7y 1.7 MeV 1.6 MeV 1.3 MeV 1.3 MeV
40Ca 1.1 MeV 2.3 MeV 1.0 MeV 2.1 MeV

907r and *°Ca and lightly worse for 2! Pb, but the improvement
resides in the sequential ordering of the single-particle levels.

With our shell-model potential, it is easy to obtain the
neutron binding energies S,(A) for spherical nuclei. All
we have to do is to calculate the neutron single-particle
energies for a nucleus of A nucleons and to locate the shell
of the last neutron; the energy of this shell defines the
S, (A) value. From the next upper shell, the neutron binding
energy S,(A 4 1) is obtained. In Fig. 5 comparisons of the
experimental neutron binding energies from Ref. [10] (solid
lines) with those calculated with our shell-model potential
(long-dashed lines) are shown. The calculations are in good
agreement with the data for nuclei between masses 48 and
92 as well as for heavy nuclei. On the other hand, the
agreement between theory and experiment is worse for lighter
nuclei. The short-dashed lines in Fig. 5 represent the neutron
binding energies when the real spin orbit is increased by 35%.
No major improvement is obtained by using this modified
potential.

IV. COMPARISON WITH OTHER OPTICAL MODEL
POTENTIALS

It is interesting to compare our results for the bound-state
domain with those obtained from a global but nondispersive
OMP. Since the Koning-Delaroche OMP [11] is a non-
dispersive OMP and provides good results for scattering

014601-3



B. MORILLON AND P. ROMAIN

SE (MeV)

on

=

~
)
S ]

Al
Cr
Fe

o p—
o
& @ &

PHYSICAL REVIEW C 74, 014601 (2006)

Exp.
M.R.
M.R. r.5.0.+35%

— O [©] o o) Q = oh o o=
‘ M
rNZEZP P EER

FIG. 5. (Color online) For a given nucleus of A nucleons, the lower and upper solid lines show the experimental neutron binding energies
S,(A) and S, (A + 1), respectively. These values are compared with the binding energies calculated by using the original potential (long-dashed
lines) and by using the original potential with the real spin orbit increased by 35% (short-dashed lines).

problems with spherical nuclei, we propose to compare our
results with those from this OMP. A comparison with the Bear
and Hodgson potential [12], devoted to bound single-particle
states, is also attractive because this potential is a simple,
physically realistic potential independent of energy for surface
states.

The Koning-Delaroche OMP has been defined for positive
energy only. We have to extrapolate the real part of the
potential to negative energy in order to calculate the bound
single-particle neutron states. For that, we use the first order of
the tangent equation for £ = 0 of the real volume depth (we
have used the notation of Ref. [11]):

Ve(B) = v [1 =3 (E = E}) + v (Ef = 2EE)
+v; (B —3E7E)].

The Koning-Delaroche spin-orbit potential is used for negative
energy, as we did with our OMP, in order to calculate the bound
states.

The depth of the Bear-Hodgson volume potential is written
for the neutron surface states as

V=V" for —15<E <0

and for the deep states as

V=V"—B(E+15) for E <—15,

e
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FIG. 6. Energy dependence of the depth of the Bear-Hodgson
(solid lines), Koning-Delaroche (long-dashed lines) and Morillon-
Romain (short-dashed lines) real volume potentials for 2°Pb, *°Zr
and “°Ca. For the three potentials, 2%Pb is the highest curve, *°Zr, the
middle curve, and *°Ca the lowest curve.
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FIG. 7. Neutron single-particle energies in 2®Pb, *°Zr, and “°Ca. For each nucleus, the first column displays the values calculated from our
potential (M.R.), the third column shows the results obtained with the Bear-Hodgson potential (B.H.), and the last column are those with the
extrapolated Koning-Delaroche potential (K.D.). The column labeled “Exp.” contains the experimental values.

where the potential V" is equal to

N-—-Z
A

V=V — V1.

Bear and Hodgson adopted the average values V=
—55.7 MeV, V| = —39.3 MeV, and 8 = 0.51 to defined the
real volume potential; the depth for the real spin-orbit potential
is equal to —7 MeV. The form factor parameters were fixed
to the value rv = ry, = 1.236 fm, ay = 0.62 fm, and ay, =
0.65 fm.

Energy dependencies of the depths of the real-volume
potential for three nuclei (?%8Pb, PZr, and “°Ca) are shown
in Fig. 6. The Bear-Hodgson potential is the solid lines, the
extrapolated Koning-Delaroche OMP the long-dashed lines,
and the Morillon-Romain OMP the short-dashed lines. Our
OMP is seen to give little differences between nuclei as well

as small variations from 0 to —50 Meyv, incontrast to Bear-
Hodgson and the extrapolated Koning-Delaroche potentials.
The single-particle and hole states of 208pp 0 7 and 4°Ca
predicted with the Morillon-Romain, the Bear-Hodgson and
the extrapolated Koning-Delaroche OMP (labelled “M.R.”,
“B.H” and “K.D.”, respectively) are compared with exper-
imental values (over the heading “Exp.”) in Fig. 7. The
agreement between the single-particle energies calculated with
the Bear-Hodgson potential and the experimental values is as
good as between our potential and experiment. One surpris-
ing result is that both Bear-Hodgson and Morillon-Romain
potentials give similar results for the neutron surface states,
whereas the energy variation of the real depth is completely
different. However, the results obtained with the extrapolated
Koning-Delaroche potential are far from the experimental
values, and the discrepancy increases for deeper bound states.
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Our global dispersive OMP yields results that are better than
those obtained from a global nondispersive OMP.

V. CONCLUSIONS

In this work, we have studied the transition between the
optical-model and the shell-model potential for our neutron
global OMP. Thanks to the dispersion relation and to the local
energy approximation, the potentials for negative energies
are still defined except for the real spin-orbit term. This
OMP, constrained only by diffusion data, is able to provide
a reasonably good description of bound single-particle states,
even if a modest improvement is obtained with a modified

PHYSICAL REVIEW C 74, 014601 (2006)

real-spin orbit potential. Moreover, we have shown that the
agreement between calculated bound states and experimental
values is better when we use a dispersive OMP.

In the future, we plan to construct a global neutron
and proton OMP. For this purpose, comparisons between
experimental and calculated bound single-particle states for
neutrons and protons will lead to a better OMP.
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