
PHYSICAL REVIEW C 74, 014318 (2006)

Collective multipole excitations based on correlated realistic nucleon-nucleon interactions
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We investigate collective multipole excitations for closed-shell nuclei from 16O to 208Pb by using correlated
realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant
short-range central and tensor correlations are treated explicitly within the unitary correlation operator method
(UCOM), which provides a phase-shift-equivalent correlated interaction VUCOM adapted to simple uncorrelated
Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated
transition operators. Using VUCOM, we solve the Hartree-Fock (HF) problem and employ the single-particle states
as a starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e., the same correlated
nucleon-nucleon interaction is used in calculations of the HF ground state and in the residual RPA interaction.
Consequently, the spurious state associated with the center-of-mass motion is properly removed, and the sum rules
are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole,
and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole
resonance, the resonance energies are in agreement with experiment, hinting at a reasonable compressibility.
However, in the 1− and 2+ channels the resonance energies are overestimated because of missing long-range
correlations and three-body contributions.
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I. INTRODUCTION

One of the great challenges for nuclear theory is the
description of ground state properties and excitation phe-
nomena in finite nuclei, based on realistic nucleon-nucleon
(NN) interactions. A variety of highly accurate realistic NN
potentials are currently available, e.g., Nijmegen [1], CD
Bonn [2], and Argonne V18 [3]. Recently, realistic NN
potentials have been constructed in the framework of chiral
perturbation theory, assuming a chiral symmetry breaking
scale chosen to maintain pions and nucleons as relevant
degrees of freedom [4]. However, a quantitative description
of nuclear structure properties necessitates the inclusion of
additional ingredients besides the two-nucleon interaction.
In particular, it has been noted that relativistic corrections
and three-nucleon (3N) interactions in light nuclear systems
can give sizable contributions [5]. Most of the available 3N
interactions are phenomenological, i.e., their parameters are
adjusted to experimental data in finite nuclei [6–8]. So far,
only the chiral approaches offer a consistent derivation of two-
and three-nucleon forces.

These advances strengthened the interest in ab initio nuclear
structure calculations based on realistic potentials. Recent
studies include different theoretical approaches for the descrip-
tion of ground state properties and low-lying excitation spectra
in finite nuclei, e.g., the Green’s function Monte Carlo method
[9], the no-core shell model [10], and the coupled cluster
method [11]. Because of huge computational requirements,
most of these methods are limited to light nuclei. To access
heavier nuclei, one has to resort to approximate solutions of the
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nuclear many-body problem. A particularly appealing method
is the self-consistent Hartree-Fock (HF) scheme, which has
been very successful in the description of various nuclear
ground state properties. However, those calculations have usu-
ally been based on simple phenomenological interactions such
as Gogny or Skyrme interactions [12,13], whose microscopic
foundation is not well established, since their parameters
are adjusted to the bulk nuclear properties. The use of bare
realistic NN interactions in the HF scheme dramatically fails,
resulting in unbound nuclei [14]. This is a direct consequence
of strong many-body correlations induced by the short-range
repulsion and the tensor part of the realistic potentials. The
dominant short-range correlations cannot be described by
many-body states given by a simple Slater determinant as in
the HF scheme. Therefore, for practical applications of the HF
approximation, the realistic NN interaction has to be converted
into an effective interaction, which is adapted to the many-body
model space under consideration.

This objective can be achieved within the unitary
correlation operator method (UCOM), which describes short-
range central and tensor correlations explicitly by means of
a unitary transformation [15–19]. Other methods employing
unitary transformations have been developed, including the
unitary model operator approach [20–22] and the Lee-Suzuki
transformation [23]. In contrast to these methods, the correla-
tion operators in the UCOM approach are given explicitly, al-
lowing for the derivation of a state-independent operator form
of the correlated interaction and of other relevant correlated
operators. Although different by its construction, the effective
NN interaction from the UCOM method is similar to the
Vlow-k potential obtained by using renormalization group con-
cepts [24]. Both approaches provide a phase-shift-equivalent
low-momentum interaction, which is appropriate for nuclear
structure calculations in simple model spaces [19,25,26].
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The first applications of the correlated interaction in Hartree-
Fock and many-body perturbation theory from 4He to 208Pb
show the potential of this approach [19].

In the present work we study collective excitation phe-
nomena in atomic nuclei by using a correlated interaction
based on the Argonne V18 potential. A particularly convenient
method to investigate low-amplitude excitation phenomena is
the random-phase approximation (RPA). Different versions
of RPA and quasiparticle RPA, based on phenomenological
interactions, have been very successful not only for the
description of giant resonances and low-lying states (e.g.,
Refs. [27–36]), but also in studies of exotic nuclear structure
of collective excitations in nuclei away from the valley of
β-stability [37–45]. In the present study, correlated realistic
NN interactions are employed for the first time to investigate
collective excitations in both light and heavy closed-shell
nuclear systems. This serves as a stringent test of the
UCOM framework and provides direct information about
the physical properties of the underlying correlated realistic
NN interactions.

In Sec. II we introduce the basic formalism of the
random-phase approximation in the framework of the unitary
correlation operator method. In Sec. III we present some
fundamental tests of the validity of the scheme: the separation
of the spurious center-of-mass motion and the accuracy of
the sum rules in comparison with the standard expressions.
Section IV presents the application of the UCOM-RPA
approach for the description of collective excitation phenom-
ena, in particular giant monopole, dipole, and quadrupole
resonances. The role of the range of the tensor correlator and
the impact of missing long-range correlations and three-body
forces is discussed. Finally, in Sec. V we summarize our
findings.

II. RANDOM-PHASE APPROXIMATION BASED ON THE
UNITARY CORRELATION OPERATOR METHOD

We employ correlated NN interactions constructed within
the UCOM approach for the description of small-amplitude
oscillations around the nuclear ground state. In a first step we
solve the HF equations based on the two-body matrix elements
of the correlated realistic NN interaction. In a second step, the
RPA equations are formulated in the HF single-nucleon basis.
Here we outline the basic principles of the UCOM scheme
[15–18] and the HF and RPA formalism.

A. Unitary correlation operator method (UCOM)

The unitary correlation operator method provides an ef-
fective NN interaction that can be directly used in nuclear
structure calculations [17–19]. The central idea of this ap-
proach is the explicit treatment of the interaction-induced
short-range central and tensor correlations. These correlations
are imprinted into an uncorrelated many-body state |�〉
through a state-independent unitary transformation defined by
the unitary correlation operator C, resulting in a correlated

state |�̃〉,
|�̃〉 = C |�〉. (1)

Even for the simplest uncorrelated state, a Slater determinant,
the correlated state |�̃〉 contains the relevant short-range
correlations. Any expansion of |�̃〉 in a basis of Slater
determinants will require a huge number of basis states,
i.e., a large model space. Hence, the unitary transformation
reduces the size of the model space necessary for an adequate
respresentation of the full many-body state.

The correlation operator C is written as a product of
unitary operators C� and Cr , describing tensor and central
correlations, respectively. Both are formulated as exponentials
of a Hermitian generator,

C = C�Cr = exp


−i

∑
i<j

g�,ij


 exp


−i

∑
i<j

gr,ij


 . (2)

The two-body generators gr and g� are constructed following
the physical mechanisms by which the interaction induces
central and tensor correlations. The short-range central cor-
relations, caused by the repulsive core of the interaction,
are introduced by a radial distance-dependent shift pushing
nucleons apart from each other if they are within the range of
the core. Radial shifts are generated by the component of the
relative momentum q = 1

2 [p1 − p2] along the distance vector
r = x1 − x2 of two particles [17],

qr = 1

2

[
q · r

r
+ r

r
· q

]
. (3)

The dependence of the radial shift on the particle distance is
described by a function s(r) in the Hermitian generator,

gr = 1
2 [s(r)qr + qrs(r)]. (4)

The application of Cr in two-body space corresponds to
a norm-conserving coordinate transformation r �→ R−(r) r

r

with respect to the relative coordinate. The radial correlation
function R−(r) and its inverse R+(r) are related to the function
s(r) in the following way [17]:∫ R±(r)

r

dξ

s(ξ )
= ±1. (5)

For a given bare potential, the central correlation functions
R+(r) are determined by an energy minimization in the two-
body system for each (S, T ) channel. In the purely repulsive
channel (S, T ) = (0, 0), an explicit constraint on the range of
the central correlator is used,∫

dr r2[R+(r) − r] = IR+ . (6)

Throughout this work, we use the Argonne V18 potential with
the optimal correlators constructed in Ref. [18]. We adopt the
short-range central correlator with the constraint I

(S=0,T =0)
R+ =

0.1 fm4. We have verified that variations around this value have
negligible effect on the ground state properties and excitation
spectra in 0+, 1−, and 2+ channels, in closed-shell nuclei
across the nuclear chart.

Tensor correlations between two nucleons are generated by
a spatial shift perpendicular to the radial direction. In practice,
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this can be achieved by using the orbital momentum operator

q� = q − r
r

qr = 1

2r2
[ L × r − r × L ], (7)

where L is the relative orbital angular momentum operator.
Radial momentum r

r
qr and orbital momentum q� constitute

a special decomposition of the relative momentum operator q
and generate shifts orthogonal to each other. The dependence
of the shift on the spin orientation is implemented in the
following way in the generator g� [16]:

g� = 3
2ϑ(r)[(σ 1 · q�)(σ 2 · r) + (σ 1 · r)(σ 2 · q�)]. (8)

The two spin operators and the relative coordinate r enter in a
manner similar to the standard tensor operator s12, but one of
the coordinate operators is replaced by the orbital momentum
q�, which generates the transverse shift. The size and radial
dependence are given by a tensor correlation function ϑ(r)
for each of the two S = 1 channels. The parameters of ϑ(r)
are determined from an energy minimization in the two-body
system [18], with an additional restriction on the correlation
volume that constrains the range of the tensor correlator,∫

dr r2ϑ(r) = Iϑ . (9)

As for the central correlators, we adopt the optimal correlation
functions for the Argonne V18 potential determined in
Ref. [18]. Applications within the no-core shell model have
shown that I

(S=1,T =0)
ϑ = 0.09 fm3 leads to the best description

of binding energies in 3H and 4He [18]. This correlator
set [46], which we refer to as the standard correlator in
the following, also provides a good description of binding
energies for heavier nuclei within many-body perturbation
theory [19]. In addition to the standard correlator, we will
employ other values for the constraint on the range of the
tensor correlator, I (S=1,T =0)

ϑ = 0.07, 0.08, 0.09 fm3, in order to
probe its relevance for the description of the global properties
of collective excitation phenomena in atomic nuclei.

B. Correlated operators

Owing to the unitarity of the correlation operator, matrix
elements of an operator A with correlated many-body states
are equal to those evaluated with the correlated operator Ã and
uncorrelated many-body states, i.e.,

〈�̃| A |�̃ ′〉 = 〈�| C†AC |� ′〉 = 〈�| Ã |� ′〉. (10)

The correlated operator contains irreducible contributions
to all particle numbers. Within a cluster expansion of the
correlated operator

Ã = C†AC = Ã[1] + Ã[2] + Ã[3] + · · · , (11)

where Ã[n] denotes the irreducible n-body contribution, we
usually assume a two-body approximation, i.e., three-body and
higher-order terms of the expansion are neglected. In previous
studies it has been verified that higher-order contributions
due to short-range central correlations can be neglected in
the description of nuclear structure properties [17]. However,
this is not the case for the tensor correlations. The tensor

interaction is very long ranged and thus generates long-range
tensor correlations in an isolated two-body system, e.g., the
deuteron. In a many-body system, the long-range tensor
correlations between a pair of nucleons are suppressed by
the presence of other nucleons, leading to a screening of
the tensor correlations at large interparticle distances. In
terms of the cluster expansion this screening appears through
significant higher-order contributions. To avoid large higher-
order contributions we have restricted the range of the tensor
correlation function (cf. Sec. II A), which provides an effective
inclusion of the screening effect [18].

Starting from the uncorrelated Hamiltonian for the A-body
system,

H = T + V =
A∑

i=1

1

2mN

p2
i +

A∑
i>j=1

vij , (12)

consisting of the kinetic energy operator T and a two-body
potential, the formalism of the unitary correlation operator
method is employed to construct the correlated Hamiltonian
in two-body approximation

HC2 = T̃ [1] + T̃ [2] + Ṽ [2] = T + VUCOM, (13)

where the one-body contribution comes only from the un-
correlated kinetic energy T̃ [1] = T . Two-body contributions
arise from the correlated kinetic energy T̃ [2] and the corre-
lated potential Ṽ [2], which together constitute the phase-shift
equivalent correlated interaction VUCOM [18].

The correlated realistic NN interaction VUCOM is a good
starting point for a study of nuclear structure. However, one
should keep in mind that long-range correlations and residual
three-body forces are not yet included. One can account
for long-range correlations by a suitable extension for the
many-body space as discussed in Ref. [19]. The problem
of effective three-body interactions, which are composed of
the genuine three-body force and the three-body terms of
the cluster expansion, remains an objective for future studies.
Therefore, in the present work we focus on the question to
which extent the correlated NN interaction alone is sufficient
for the description of collective excitations in finite nuclei.

C. Hartree-Fock method with correlated realistic
NN interactions

The correlated realistic NN potential VUCOM is suitable
for the use in HF calculations for the ground state of finite
nuclei [19]. We start from a Hamiltonian that consists of
kinetic energy and the VUCOM interaction derived from the
Argonne V18 potential including the Coulomb potential [47].
More details about the UCOM-HF scheme are available in
Ref. [19]. The center-of-mass contributions are subtracted on
the operator level; i.e., we employ the correlated intrinsic
Hamiltonian in a two-body approximation,

H̃int = T − Tc.m. + VUCOM = Tint + VUCOM. (14)

The intrinsic kinetic energy operator reads

Tint = T − Tc.m. = 2

A

1

mN

A∑
i<j

q2
ij , (15)
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FIG. 1. UCOM-HF neutron and proton
single-particle spectrum for 16O, along with
the corresponding HF spectra based on the
low-momentum NN potential Vlow-k [25], phe-
nomenological HF with the SIII Skyrme-type
interaction [46], relativistic mean field theory
with the NL3 effective interaction [47], and
the experimental spectra [46]. The UCOM-HF
calculations are based on the correlated Argonne
V18 interaction with the standard constraints on
the ranges of the central and tensor correlators
(Sec. II A).

where q corresponds to the relative two-body momentum
operator, and we assume equal proton and neutron masses
and thus a reduced mass µ = mN/2. Assuming spherical
symmetry, the HF single-particle states are expanded in a basis
of harmonic oscillator eigenstates,

|νljmmt 〉 =
∑

n

C(νljmmt )
n |nljmmt 〉, (16)

with radial quantum number n, orbital angular momentum
l, total angular momentum j with projection m, and isospin
projection quantum number mt . For closed-shell calculations,
we restrict C

(νljmmt )
n to be independent of m. The HF equation

can be written in matrix form,∑
n̄

h
(ljmt )
nn̄ C

(νljmt )
n̄ = ε(νljmt )C(νljmt )

n , (17)

which is solved self-consistently to determine the expansion
coefficients and single-particle energies. The single-nucleon
Hamiltonian,

h
(ljmt )
nn̄ =

∑
l′,j ′,m′

t

∑
n′,n̄′

H
(ljmt l

′j ′m′
t )

nn′;n̄n̄′ �
(l′j ′m′

t )
n′n̄′ , (18)

is constructed from the m-averaged antisymmetric two-
body matrix elements of the correlated intrinsic Hamiltonian
H̃int (14),

H
(ljmt l

′j ′m′
t )

nn′,n̄n̄′ = 1

(2j + 1)(2j ′ + 1)

∑
m,m′

〈nljmmt, n
′l′j ′m′m′

t |

× H̃int|n̄ljmmt, n̄
′l′j ′m′m′

t 〉, (19)

where �
(l′j ′m′

t )
n′n̄′ corresponds to the one-body density matrix.

The harmonic oscillator basis is typically restricted to 13
major shells, which warrants complete convergence of the
HF results. Calculations with larger basis sizes are possible
but rather time consuming because of the computational
effort for evaluating the two-body matrix elements of the
VUCOM potential. The optimal value of the harmonic oscillator
length a0 = √

h̄/mNω0 is determined from an explicit energy
minimization for different regions in the nuclide chart.

In Figs. 1 and 2 we show the UCOM-HF single-nucleon
spectra near the Fermi level for 16O and 40Ca, respec-
tively. The calculations are based on the correlated Argonne
V18 interaction, using the standard correlator (Sec. II A).
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The calculated energy levels are compared with the HF
spectra obtained with the low-momentum NN potential Vlow-k,
with two standard phenomenological interactions in the
nonrelativistic (Skyrme) [48] and the relativistic (NL3) [49]
framework, and with experimental levels that are evaluated
from the binding energies [48]. For the case of 16O, the UCOM-
HF single-particle spectrum is similar to the one obtained with
the Vlow-k potential. These two approaches, however, result in
somewhat different spectra than the phenomenological models
and those extracted from the experiment. For HF approaches
based on realistic NN interactions, the spectra appear spread
too wide in energy. The results for 40Ca are similar, but the
UCOM-HF spectra for neutrons and protons are slightly more
compressed in comparison with the Vlow-k case.

The origin for this behavior is in the missing long-range
correlations, higher-order terms of the cluster expansion, and
genuine three-body interactions. One way to account the long-
range correlations for the binding energies and radii beyond
the simple mean-field approach is within the framework of the
many-body perturbation theory (MBPT). When employed in
the UCOM scheme, the second-order MBPT recovers quite
a significant part of the missing binding energy in UCOM-
HF [19]. An alternative approach to account for the long-
range correlations in the ground state would be the inclusion of
the correlations due to low-lying excited states and collective
excitations within an RPA framework [50,51].

D. Outline of the UCOM random-phase approximation

In the limit of small-amplitude oscillations of the nuclear
density around the ground state, collective excitation phenom-
ena can be studied within the random-phase approximation
(RPA). We address the question, to which extent the UCOM-
HF single-nucleon basis and the residual interaction based
on the correlated realistic NN interaction are sufficient for a
description of highly collective excitation phenomena, such as
giant resonances. Since details about the derivation of RPA
equations are available in textbooks [27,52], we review the
basic principles only briefly. The UCOM-HF single-particle
states are used for the construction of the particle-hole (ph)
configuration space for the RPA scheme. Assuming a spherical
nuclear system, the coupling to good angular momentum is
employed. The collective excited states of multipolarity J are
generated by the quasiboson operator,

Q+
ν,JM |0〉 = |ν〉, (20)

where the RPA vacuum |0〉 is defined by the condition,

Qν,JM |0〉 = 0. (21)

The quasiboson operator reads

Q+
ν,JM =

∑
ph

[
X

ν,JM
ph AJM

ph
+ − Y

ν,JM
ph (−1)J−MA

J ,−M
ph

]
,

(22)

where the sum runs over the ph states of the HF single-nucleon
basis, and

AJM
ph

+ =
∑
mpmh

〈jpmp, jhmh|JM〉(−1)jh−mha+
jpmp

ajh,mh
(23)

corresponds to the ph creation operator. One of the standard
approaches to derive RPA is the equation of motion method,
using the quasiboson approximation [27], with the RPA
vacuum approximated by the HF ground state, i.e., |0〉 ≈
|HF〉. The resulting set of coupled equations for the amplitudes
X

ν,JM
ph and Y

ν,JM
ph and the RPA eigenvalues ων is given by(

AJ BJ

BJ ∗ AJ ∗

) (
Xν,JM

Y ν,JM

)
= ων

(
1 0
0 −1

) (
Xν,JM

Y ν,JM

)
. (24)

The RPA matrices for the given configuration space of the
single-nucleon UCOM-HF basis are obtained from

AJ
php′h′ = 〈HF| [[AJM

ph , H̃int
]
, AJM

p′h′
+] |HF〉

(25)
BJ

php′h′ = −〈HF| [[AJM
ph , H̃int

]
, (−1)J−MA

J ,−M
p′h′

] |HF〉,
where the Hamiltonian H̃int includes the intrinsic kinetic
energy (15) together with the correlated potential VUCOM,
in a way consistent with the Hartree-Fock equations. In the
present study we assume that the RPA vacuum is rather
well approximated by the HF ground state. In principle,
however, one would need to build excitations on the RPA
vacuum and iteratively solve the extended RPA equations [53].
A preliminary study within an extended RPA framework
indicates that the proper implementation of the RPA vacuum
causes only small corrections in the excitation spectra. In
particular, the centroid energies of the strength distributions
systematically decrease by approximately 1 MeV in the
isovector channel, while the excitation energies of isoscalar
modes are affected even less and increase by less than 1 MeV.
More details will be provided in a forthcoming publication.

E. Transition operators

The response for electric multipole transitions is given by
the reduced transition probability [52],

BT (EJ , Ji → Jf ) = 1

2Ji + 1

∣∣〈f |∣∣QT
J
∣∣|i〉∣∣2

, (26)

where QT
J corresponds to the electric multipole transition

operators. The isoscalar monopole operator is defined as

QT =0
00 =

A∑
i=1

x2
i Y00(x̂i), (27)

where xi = |xi |. The multipole (J > 0) isoscalar (T = 0) and
isovector (T = 1) operators are given by

QT =0
JM = e

A∑
i=1

xJ
i YJM(x̂i) (28)

and

QT =1
JM = e

A∑
i=1

τ (i)
z xJ

i YJM(x̂i), (29)
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respectively. In the UCOM framework, the operators of all
observables need to be transformed in a consistent way.
Therefore the same unitary transformation that is used for
the nuclear Hamiltonian has to be employed for the multipole
operators entering into transition matrix elements. The effect
of using correlated transition operators will be examined in
the cases of monopole and quadrupole transitions. Since the
unitary correlation operators act on the relative coordinates,
we rewrite the monopole and quadrupole transition operator
in a two-body form with separated relative and center-of-mass
(c.m.) contributions (cf. Ref. [54]),

QT =0
00 =

A∑
i

x2
i Y00(x̂i)

= 1

2(A − 1)

A∑
i>j

[
r2
ij Y00(r̂ij ) + 4X2

ij Y00(X̂ij )
]
, (30)

QT =0
2M = e

A∑
i

x2
i Y2M(x̂i)

= e

2(A − 1)

A∑
i>j

[
r2
ij Y2M(r̂ij ) + 4X2

ij Y2M(X̂ij )
]
, (31)

where rij = xi − xj are the relative and Xij = (xi + xj )/2 the
c.m. coordinates of a nucleon pair.

The correlated multipole operator is constructed in an
analogous way as the correlated operators of the realistic NN
interaction [18]. In two-body approximation we obtain

Q̃C2 = Q̃[1] + Q̃[2] = Q + Q̃[2], (32)

where Q̃[1] = Q corresponds to the bare one-body transition
operator, and the two-body part of the correlated operator
reads

[
Q̃T =0

00

][2] = 1

2(A − 1)

A∑
i>j

{
c†

[
r2
ij Y00(r̂ij )

]
c − r2

ij Y00(r̂ij )
}

(33)

for the isoscalar monopole transition operator and

[
Q̃T =0

2M
][2] = 1

2(A − 1)

A∑
i>j

{
c†

[
r2
ij Y2M(r̂ij )

]
c − r2

ij Y2M(r̂ij )
}

(34)

for the isoscalar quadrupole transition operator. Therefore, in
addition to the usual transition matrix elements for the bare
multipole operator,

〈ν|QT
JM |0〉 = 1

Ĵ
∑

ph

{
X

ν,J
ph 〈p||Q||h〉 + (−1)jp−jh+J

×Y
ν,J
ph 〈h||Q||p〉}, (35)

we also have to include contributions from the correlated two-
body part,

〈ν| [Q̃T
JM

][2] |0〉 =
∑

phh′J1J2

(−1)jp+jh′
√

1 + δhh′

{
jp jh J
J2 J1 jh′

}

× Ĵ1Ĵ2

Ĵ
{
(−1)J+J2X

ν,J
ph 〈(jpjh′)J1‖

× [
Q̃T

J
][2]‖(jhjh′)J2〉 + (−1)J1Y

ν,J
ph

×〈(jhjh′)J2‖
[
Q̃T

J
][2]‖(jpjh′)J1〉

}
, (36)

for each RPA eigensolution (ων,X
ν, Y ν), using the standard

notation Ĵ = √
2J + 1. The resulting transition strength

function, including both the one- and the two-body contri-
bution of the correlated transition operator, is given by

BT (EJ , Ji → Jf ) = BT
J (ων)

= 1

2Ji+1
|〈ν‖QT

J ‖0〉+〈ν‖[Q̃T
J
][2]‖0〉|2.

(37)

To evaluate the two-body matrix elements of the transition
operator, we use the relative spin-orbit coupled states of the
form |n(LS)JM T MT 〉, with a generic radial quantum number
n, relative orbital angular momentum L, spin S, total angular
momentum J, and isospin T. In the following, the projection
quantum numbers M and MT are suppressed. For the two-body
parts of the correlated monopole (33) and quadrupole operator
(34) we have to evaluate general matrix elements of the form
〈n(LS)JT | c†r c†�f (r)YJM(r̂)c�cr |n′(L′S)J ′T 〉, where c� and
cr indicate the central and tensor correlation operators in two-
body space.

As for the correlated Hamiltonian, it is convenient to
apply the tensor correlator to the two-body states and the
central correlator to the operator [18]. To this end we
formally interchange the central and the tensor correlation
operators by using the identity c�cr = crc

†
r c�cr = cr c̃�. For

the transformed tensor correlator, we get

c̃� = c†r c�cr = exp[−ig̃�] (38)

with

g̃� = 3
2ϑ(R+(r)) [(σ 1 · q�)(σ 2 · r) + (σ 1 · r)(σ 2 · q�)]. (39)

The tensor correlation operator acts like the identity operator
on the LS-coupled two-body states with L = J [18], while for
L = J ± 1 it gives

c̃� |n(J ∓ 1, 1)JT 〉 = cos θ̃J (r) |n(J ∓ 1, 1)JT 〉
± sin θ̃J (r) |n(J ± 1, 1)JT 〉, (40)

where

θ̃J (r) = 3
√

J (J + 1)ϑ(R+(r)). (41)

Using Eq. (40), we can easily derive explicit ex-
pressions for the correlated two-body matrix elements

〈n(LS)JT | c̃†�c
†
rf (r)YJM(r̂)cr c̃� |n′(L′S)J ′T 〉 of monop-

ole and quadrupole transition operators. For L = J and L′ =
J ′ the tensor correlator is inactive, and the correlated matrix

014318-6
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element assumes the simple form

〈n(JS)JT |c†r c†�f (r)YJM(r̂) c�cr |n′(J ′S)J ′T 〉
=

∫
dr u


n,J (r)un′,J ′ (r) f̃ (r) 〈(JS)JT | YJM(r̂) |(J ′S)J ′T 〉,
(42)

where f̃ (r) = f (R+(r)) is the transformed radial dependence
of the multipole operator and un,L(r) is the relative radial wave
function. For L = J ∓ 1, L′ = J ′ ∓ 1, and S = 1 the tensor
correlator, following Eq. (40) transforms the bra and the ket
state of the matrix element into a superposition of two states.
This leads to a combination of four terms for the correlated
matrix element

〈n(J ∓1, 1)JT |c†r c†�f (r)YJM(r̂) c�cr |n′(J ′∓1, 1)J ′T 〉
=

∫
dr u


n,J∓1(r)un′,J ′∓1(r) f̃ (r)[〈(J ∓1, 1)JT | YJM(r̂)

× |(J ′∓1, 1)J ′T 〉 cos θ̃J (r) cos θ̃J ′ (r) + 〈(J ±1, 1)JT |
×YJM(r̂) |(J ′±1, 1)J ′T 〉 sin θ̃J (r) sin θ̃J ′ (r)

± 〈(J ∓1, 1)JT | YJM(r̂) |(J ′±1, 1)J ′T 〉 cos θ̃J (r)

× sin θ̃J ′ (r) ± 〈(J ∓1, 1)JT | YJM(r̂) |(J ′±1, 1)J ′T 〉
× sin θ̃J (r) cos θ̃J ′ (r)]. (43)

An analogous expression is obtained for L = J ∓ 1 and
L′ = J ′ ± 1. For L = J ± 1 and L′ = J ′, the tensor correlator
affects only the bra state, and we get the simpler form

〈n(J ±1, 1)JT |c†r c†�f (r)YJM(r̂) c�cr |n′(J ′, 1)J ′T 〉
=

∫
dru


n,J±1(r)un′,J ′1(r) f̃ (r)[〈(J ±1, 1)JT | YJM(r̂)

× |(J ′, 1)J ′T 〉 cos θ̃J (r) ∓ 〈(J ∓1, 1)JT | YJM(r̂)

× |(J ′, 1)J ′T 〉 sin θ̃J (r)]. (44)

At this point we remark that the present UCOM-RPA
scheme is self-consistent in two respects. First, the same
correlated realistic NN interaction VUCOM is used in the
HF equations that determine the single-particle basis and
in the RPA equations as a residual interaction. Hence, the
effective NN interaction, which determines the ground state
properties, also determines the small amplitude motion around
the nuclear ground state. This ensures that RPA amplitudes do
not contain spurious components associated with the center-
of-mass translational motion, which will be shown explicitly in
Sec. III. Second, the unitary transformation used to construct
the effective interaction VUCOM is also applied to the transition
operators. Hence the effect of short-range central and tensor
correlations is included consistently in all relevant observables.

III. TESTS OF THE UCOM-RPA IMPLEMENTATION

To ensure that the UCOM-RPA scheme is properly im-
plemented and to probe its self-consistency, we perform
several stringent tests. In particular, in studies of the multipole
response of closed-shell nuclei across the nuclear chart, the
following conditions need to be fulfilled: (a) the spurious
excitation corresponding to a translation of a nucleus de-

couples as a zero-energy excitation mode, (b) the transition
strength should exhaust the sum rules, and (c) the excitation
energies of giant resonances and low-lying states converge to
stable solutions independent of the energy cutoff parameter. As
will be demonstrated in this section, the present UCOM-RPA
scheme is fully consistent with these conditions.

A. Spurious solutions of the UCOM-RPA equations

Whenever the generator of a continuous symmetry for a
general two-body Hamiltonian does not commute with the
original single-particle density, it produces a spurious zero-
energy solution of the RPA equations [52]. It corresponds to a
mode that is not related to an intrinsic excitation of the system,
but in fact to a collective motion without restoring force.
In our particular case, a spurious dipole mode is associated
with translation, i.e., the center-of-mass motion. Ideally, if the
RPA scheme is built on the self-consistent wave functions
and single-particle energies, the spurious excitation should
decouple from the physical states at exactly zero energy. In
practical calculations, however, due to the truncation of the ph
configuration space and inconsistencies between the ground
state and RPA equations, the spurious state is separated at
energies larger than zero. In this case the physical states may
be more or less mixed with the spurious response, leading
to seriously overestimated strength distributions, especially
in the low-energy region [33]. Violations of self-consistency
in the Hartree-Fock-based RPA may also cause a spurious
enhancement of the isoscalar monopole mode energy for spin
unsaturated systems [55].

The truncation of the actual RPA configuration space may
strongly affect the separation of spurious states. The size of the
ph space is determined by a cutoff parameter Eph-MAX, which
corresponds to the maximal allowed energy for ph excitations.
In Fig. 3 we display the energy of the spurious state ESS as
a function of the energy cutoff Eph-MAX for 16O and 208Pb.
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FIG. 3. Number of ph configurations in the UCOM-RPA (right-
hand scale) and the energy of the spurious center-of-mass state (left-
hand scale) as a function of the cutoff for the maximal energy of the
ph transitions. Two sample nuclei are considered, 16O and 208Pb. The
correlated Argonne V18 interaction is employed, using the standard
correlators (Sec. II A).
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The isoscalar dipole operator is employed,

QT =0
1M = e

A∑
i=1

x3
i Y1M(x̂i), (45)

which leads to both 1h̄ω and 3h̄ω ph excitations. In the
same graphs we also present the corresponding number of
ph configurations, Nph that enter into the RPA equations.
We employ the correlated Argonne V18 interaction with the
standard correlators, as discussed in Sec. II A. As the number
of ph configurations increases, the spurious state converges
toward zero excitation energy for both nuclei. This necessitates
relatively large spaces with 80 and 330 configurations for
16O and 208Pb, respectively. The accuracy of our method is
exemplified by the energies of the spurious states : 0.01 MeV
for 16O, and 0.05 MeV for 208Pb, which appear to be lower than
in recently developed fully self-consistent (Q)RPA models
based on phenomenological nuclear interactions [38,39].

Next, we employ effective dipole transition operators,

QT =0
1M = e

A∑
i=1

(
x3

i − 5

3
〈x2〉0xi

)
Y1M(x̂i), (46)

QT =1
1M = e

A∑
i=1

(
τ (i)
z − N − Z

2A

)
xiY1M(x̂i), (47)

which explicitly contain the center-of-mass correction terms
on the operator level [56]. The high accuracy of the UCOM-
RPA method is illustrated in Fig. 4 for 48Ca, where we
compare the isoscalar dipole transition strength distribution
for the uncorrected operator (45) and the operator with the
center-of-mass correction term (46). The two spectra are
almost identical, and the major difference is only in the strong
transition of the spurious state at 0.005 MeV, obtained for
the operator without a center-of-mass correction. When the
correction term is included, the spurious state is completely
removed, whereas transitions corresponding to actual dipole
vibrations are practically unaffected. This means that the phys-
ical excited states are free of spurious contaminations, owing
to the full self-consistency of our method. In Fig. 4 one can also
observe a double hump structure that is characteristic for the
isoscalar giant dipole resonance (ISGDR). It is composed of a
high-energy part corresponding to a compression mode and a
low-energy part, which might be of a different nature [57].

B. Sum rules of the multipole strength in the UCOM-RPA
scheme

The sum rules of various collective excitation modes are
of particular interest, since their values represent a useful test
for the RPA [52]. In the present study we examine the energy-
weighted sum rule (EWSR) [38] for the isoscalar monopole,

S(E0) = 2h̄2e2

m

(
N

〈
x2

n

〉 + Z
〈
x2

p

〉)
, (48)

and isoscalar quadrupole excitations,

S(E2) = 25h̄2e2

4πm

(
N

〈
x2

n

〉 + Z
〈
x2

p

〉)
. (49)
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FIG. 4. UCOM-RPA isoscalar dipole transition spectra for 48Ca,
obtained by employing the isoscalar dipole operator without (thin
solid line) and with (wide gray line) the correction term for the spu-
rious center-of-mass motion (Argonne V18, I

(S=1,T =0)
ϑ = 0.09 fm3).

In Fig. 5 we plot the cumulative energy-weighted sum
of the transition strength for the given excitation energy
E < 50 MeV in the closed-shell nuclei 16O, 48Ca, 90Zr,
and 208Pb. The upper and lower panels display the summed
energy-weighted strength for the isoscalar monopole and
quadrupole cases, respectively. One can observe that beyond
40 MeV the sums converge to their final values, which
are in good agreement with the EWSR from Eqs. (48)
and (49). We have also confirmed that UCOM-RPA essentially
exhausts the EWSR with maximal discrepancies of ±3%
in other closed-shell nuclei. Accordingly, we conclude that
the completeness properties and consistency are accurately
fulfilled in the UCOM-RPA approach.

In the following, we will average the discrete UCOM-RPA
strength distributions with a Lorentzian function and therefore
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FIG. 5. Cumulative sum of the UCOM-RPA energy-weighted
strength for the isoscalar monopole (upper panel) and the quadrupole
response (lower panel), in comparison with the energy-weighted sum
rules (48), (49) (horizontal dotted lines) for 16O, 48Ca, 90Zr, and 208Pb
(Argonne V18, I

(S=1,T =0)
ϑ = 0.09 fm3).
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(lower panel) strength distributions for 16O, calculated with the
bare and correlated transition operators. The correlated Argonne
V18 interaction is used, with the constraints I

(S=1,T =0)
ϑ = 0.09,

0.2 fm3 for the range of the tensor correlator (Nmax = 8 for the
harmonic oscillator basis).

obtain the continuous strength function,

RT
J (E) =

∑
ν

BT
J (ων)

1

π

�/2

(E − ων)2 + (�/2)2
. (50)

The width of the Lorentzian distribution is fixed to the arbitrary
value � = 2 MeV. The Lorentzian function (50) is defined
in a way to fulfill the condition that the sum of the energy-
weighted response is equal for the discrete distribution and the
continuous strength function,

ST
J =

∑
ν

EνB
T
J (ων) =

∫
dEERT

J (E). (51)

C. The role of correlated multipole transition operators

The UCOM-RPA observables describing collective excita-
tion phenomena are evaluated by a consistent application of the
same unitary transformation as for the nuclear Hamiltonian. In
this section, we test the relevance of the correlated transition
operators for the multipole strength distributions.

In Fig. 6 the isoscalar monopole and quadrupole responses
in 16O are displayed for the two cases: (i) with the bare
multipole operators (27), (28), and (35), and (ii) with the
correlated multipole operators constructed by the unitary trans-
formation, Eq. (37). The two transition strength distributions
are essentially identical. To probe the relevance of the tensor
correlations for the quadrupole response (in the monopole
case, only the central correlations are active), we construct
a new tensor correlator with a long range, constrained by
I

(S=1,T =0)
ϑ = 0.2 fm3. However, even in this extreme case, the

correlated quadrupole response resembles the one obtained
with the bare operator (Fig. 6). In order to understand quantita-
tively the contributions of the correlated quadrupole operators
with various ranges of the tensor correlation functions, in
Fig. 7 we plot the ratio of the transition matrix elements for
the two-body term of the correlated operator against the one
with the bare operator for each RPA eigenvalue, i.e.,

η =
∣∣∣∣ 〈ν||Q̃[2]||0〉

〈ν||Q||0〉
∣∣∣∣. (52)

For the tensor correlator with the constraint I
(S=1,T =0)
ϑ =

0.09 fm3, corrections to the bare operator are rather small. On

the other hand, in the case of tensor correlator with longer range
(I (S=1,T =0)

ϑ = 0.2 fm3), we notice more pronounced relative
contributions from the two-body terms. However, their small
absolute values result in negligible corrections of the overall
transition spectra. It is interesting to note that this observation
is in agreement with the study of effective operators in the
no-core shell model within the 2h̄� model space, where the
B(E2) values are very similar for the bare and the effective
operator that includes the two-body contributions [54].

Because of the high computational effort involved in
evaluating the nondiagonal two-body matrix elements for the
multipole operators, we used a smaller oscillator basis here
(Nmax = 8). We have verified that the effect of two-body terms
of the correlated operators on the transition spectra is very
small, regardless of the size of the basis.

IV. MULTIPOLE EXCITATIONS IN THE UCOM-RPA
FRAMEWORK

Among collective modes of excitations, giant resonances
have been a very active topic of nuclear physics in the past
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FIG. 7. Absolute value of the ratio of the transition matrix
elements for the two-body terms of correlated operator against
those of the bare operator. The tensor correlators are constrained
by I

(S=1,T =0)
ϑ = 0.09 fm3 and I

(S=1,T =0)
ϑ = 0.2 fm3 (Argonne V18,

Nmax = 8).
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few decades, both theoretically [27–33,35] and experimentally
[58,59]. Collective modes are of particular importance for
theoretical models, because their underlying dynamics provide
direct information about different effective nuclear interactions
and methods employed to solve the nuclear many-body
problem. In the following, using the UCOM-RPA scheme,
we evaluate the excitation energies and transition strengths of
giant multipole resonances and probe their sensitivity on the
properties of the correlation functions.

A. Giant monopole resonances

The isoscalar giant monopole resonance (ISGMR) is
a spherically symmetric oscillation or compression of the
nucleus, i.e., a breathing mode where neutrons and protons
move in phase. The ISGMR excitation energy is related to the
compressibility of nuclear matter Knm, which defines basic
properties of nuclei, supernovae explosions, neutron stars, and
heavy-ion collisions [60]. Therefore, it is rather important to
provide information about ISGMR from various models based
on different effective interactions.

The UCOM-RPA calculated ISGMR strength distributions
are displayed in Fig. 8 for a series of closed-shell nuclei
from 16O to 208Pb. Both the HF single-nucleon basis and
the RPA transition strength are calculated with the correlated
Argonne V18 interaction, using the standard ranges of the
central and tensor correlation functions. For comparison, the
unperturbed HF response in the 0+ channel is also shown. One
can notice that the unperturbed spectra are widely spread in
the energy region ≈20–70 MeV as a direct consequence of the
relatively low level density of the UCOM-HF single-particle
spectra (Figs. 1 and 2). However, when we include the RPA
residual interaction, which is attractive in the isoscalar channel,
most of the unperturbed strength is pushed to lower energies,
generating the collective ISGMR mode. For lighter nuclei
16O, 40Ca, and 48Ca, the ISGMR is fragmented into two or
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FIG. 8. UCOM-RPA transition strength distributions of the
ISGMR (solid curve), in comparison with the unperturbed HF spectra
(dashed line). The correlated Argonne V18 interaction is used,
with the standard constraint (I (S=1,T =0)

ϑ = 0.09 fm3) on the range
of the tensor correlators. The experimental data [61–64], results
from the nonrelativistic (Drożdż et al.) [65], and the relativistic RPA
(DD-ME2) [66,67] are denoted by arrows.

three peaks, whereas for 90Zr, 132Sn, and 208Pb the ISGMR
mode is strongly collective, resulting essentially in a single
peak. The calculated ISGMR strength distributions shown
in Fig. 8 are also compared with the available experimental
data from (α, α′) [61–63] and (3He,3He) scattering [64], and
with results from the nonrelativistic RPA [65] and relativistic
RPA [66] based on a new interaction with density-dependent
meson-nucleon couplings (DD-ME2) [67]. The UCOM-RPA
excitation energies are in general very close to the values from
the other studies. In nuclei where the breathing mode is well
established (90Zr, 208Pb), the centroid energies for the standard
correlator are slightly overestimated. The small discrepancies
(≈1–3 MeV) obtained for the standard correlator could
originate from the missing long-range correlations beyond
the simple mean-field level, the missing genuine three-body
interaction, and the two-body approximation in the UCOM
method, as discussed in Sec. II A.

Next, we address the question of to which extent the
UCOM-RPA transition spectra are sensitive to the ranges of
the correlators used in the unitary transformation to construct
the correlated interaction. In Fig. 9 the calculated ISGMR
strength distributions are displayed for the correlated Argonne
V18 interaction with different constraints on the range of the
tensor correlator, I

(S=1,T =0)
ϑ = 0.07, 0.08, 0.09 fm3. One can

observe that decreasing of this range systematically pushes
the transition strength toward lower energies. In particular, by
decreasing the range of the tensor correlator, i.e., its constraint
from I

(S=1,T =0)
ϑ = 0.09 fm3 towards 0.07 fm3, the excitation

energy of ISGMR lowers by ≈4 MeV. By lowering the range of
the tensor correlation functions, the density of single-particle
spectra increases, and the agreement of the ISGMR excitation
energies with experimental data is improved.

B. Giant dipole resonances

The isovector giant dipole resonances (IVGDR) have
recently been studied very extensively, in parallel with the
renewed interest in the low-lying dipole strength in nuclei
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away from the valley of stability [68–74]. Here we employ
the UCOM-RPA to evaluate the IVGDR strength distributions
in nuclei 16O, 40Ca, and 48Ca, using the correlated Argonne
V18 interaction with different constraints on the ranges of the
tensor part of the correlator, I (S=1,T =0)

ϑ = 0.07, 0.08, 0.09 fm3

(Fig. 10). In lighter nuclear systems, UCOM-RPA provides
a collective character of IVGDR, which is distributed over
several dominant peaks. We have also extended our study
of IVGDR to heavier nuclear systems 90Zr, 132Sn, and
208Pb (Fig. 11). The calculated dipole response is compared
with experimental data [73,75–77] and with the theoretical
excitation energies from the relativistic RPA [66] based on
DD-ME2 interaction [67]. In all nuclei under consideration,
the resulting IVGDR strength distributions display rather wide
resonance-like structures. The decrease in the range of the
tensor correlator, i.e., its constraint I

(S=1,T =0)
ϑ = 0.09 fm3

toward 0.07 fm3, results in lower IVGDR peak energies by
≈2–3 MeV.

The calculated IVGDR strength distributions systemati-
cally result in higher excitation energies than the values from
other studies. For the short-range correlator (I (S=1,T =0)

ϑ =
0.07 fm3), the calculated transition strength appears to be in fair
agreement with experimental data only for 16O. However, for
other nuclear systems, in comparison with experimental data
and other theoretical studies, the UCOM-RPA overestimates
the IVGDR centroid energies by ≈3–7 MeV. This difference
can serve as a direct measure of the missing correlations
and three-body contributions in the UCOM-RPA scheme.
Inclusion of the three-body interaction and long-range cor-
relations beyond the simple RPA method would probably
to a large extent resolve this discrepancies with the other
studies. Therefore the 1− channel is particularly convenient for
probing the effects of the missing correlations and three-body
contributions.
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FIG. 10. UCOM-RPA strength distributions for the IVGDR in
16O, 40Ca, and 48Ca. The calculations are based on the correlated
Argonne V18 interaction, using different constraints on the tensor
correlator range (I (S=1,T =0)

ϑ = 0.07, 0.08, 0.09 fm3). The experimen-
tal [75] and theoretical IVGDR energies from the relativistic RPA
(DD-ME2) [66,67] are denoted by arrows.
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C. Giant quadrupole resonances

Giant quadrupole resonances comprise 2h̄ω ph configu-
rations coupled by the residual interaction [58]. In addition
to the resonance-like structure corresponding to the isoscalar
giant quadrupole resonance (ISGQR), in the isoscalar channel
the interaction also generates pronounced 0h̄ω low-lying
quadrupole states, which have been the subject of various
recent theoretical studies [37,78–81]. The low-lying 2+ states
provide valuable information about the properties of the
effective interaction [82,83].

The isoscalar and isovector quadrupole transition strength
distributions are displayed in Fig. 12 for representative cases of
medium-mass (48Ca) and heavy nuclei (208Pb). The UCOM-
RPA calculations are based on the correlated Argonne V18
interaction with the standard ranges of central and tensor
correlation functions. The unperturbed HF response is also
shown, representing a broad distribution of the strength in the
region ≈2–90 MeV, which directly reflects the properties of
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FIG. 12. ISGQR and IVGQR strength distributions for 48Ca and
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ϑ = 0.09 fm3).
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the UCOM-HF single-particle spectra (Sec. II D). When the
residual interaction is included in RPA, the correlated realistic
NN potential generates pronounced low-lying quadrupole
excitations in the isoscalar channel and strongly collective
states at higher energies corresponding to the ISGQR. For 48Ca
the ISGQR is fragmented into two main peaks in the region
≈22–30 MeV, whereas for the case of 208Pb a single highly
collective peak is generated at 20.1 MeV. In comparison with
the unperturbed spectra, the transition strength in the isoscalar
channel is systematically pushed towards lower energies. On
the other hand, in the isovector channel, which is repulsive, the
strength distributions are in general moved toward the energies
above the unperturbed response, resulting in broad structures
of the transition strength.

In Fig. 13, we show the UCOM-RPA isoscalar quadrupole
transition strength distributions for 40Ca, 90Zr, and 208Pb.
The correlated Argonne V18 interaction is employed, with
various constraints on the range of the tensor correlator,
I

(S=1,T =0)
ϑ = 0.07, 0.08, 0.09 fm3. The calculated ISGQR

strength distributions are also compared with the experimental
data [84], and the relativistic RPA calculations [66] with the
density-dependent DD-ME2 interaction [67]. In all cases the
residual interaction constructed from the correlated realistic
NN interaction is attractive in the isoscalar channel, generating
strongly collective peaks corresponding to ISGQR. In addition,
in the case of 90Zr, and 208Pb, UCOM-RPA also results
in the pronounced low-lying quadrupole states. The energy
of the low-lying quadrupole state in 90Zr is slightly higher
than the experimental value (2.18 MeV [85]), and for 208Pb
it is rather well described (4.08 MeV [86]). However, the
correlated realistic NN interaction is not sufficient for a
quantitative description of the ISGQR excitation energy. Even
the short-ranged tensor correlator (I (S=1,T =0)

ϑ = 0.07 fm3)
overestimates the experimental values by approximately.
8 MeV. By decreasing the range of the tensor correlator, the
quadrupole response is systematically pushed toward lower
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FIG. 13. UCOM-RPA strength distributions for the ISGQR in
40Ca, 90Zr, and 208Pb. The correlated Argonne V18 interaction is
used, with different ranges of the tensor correlator (I (S=1,T =0)

ϑ =
0.07, 0.08, 0.09 fm3). The experimental ISGQR excitation energies
[84], the low-lying states [85,86], and the relativistic RPA energies
[66,67] are denoted by arrows.

energies. In comparison with the IVGDR, the quadrupole
response has a similar dependence on the range of the
tensor correlator. For 40Ca and the tensor correlator ranges
determined by I

(S=1,T =0)
ϑ = 0.07, 0.08, 0.09 fm3, the ISGQR

centroid energies read as 25.1, 26.2, and 27.1 MeV, respec-
tively. In the cases of heavier nuclei, these differences are
smaller: for 208Pb, the centroid energy lowers by 1.2 MeV
when going from the correlator with I

(S=1,T =0)
ϑ = 0.09 fm3

toward I
(S=1,T =0)
ϑ = 0.07 fm3. From a comparative study of

low-lying excitations and giant resonances, we can test the
sensitivity of different parts of the quadrupole transition
spectra on the ranges of the tensor correlator (Fig. 13).
Whereas the low-energy 0h̄ω excitations depend only weakly
on I

(S=1,T =0)
ϑ , the ISGQR appears to be more sensitive on

variations of the tensor correlator range.
From our results on the ISGMR, IVGDR, and ISGQR

nuclear response we can conclude on the properties of the
correlated NN interactions, used here as effective interactions
in the RPA calculations. The agreement achieved between the
calculated and experimental properties of the ISGMR indicates
that the correlated NN interaction corresponds to realistic
values of the nuclear matter (NM) incompressibility. It has
been demonstrated in the past that, within the relativistic and
nonrelativistic RPA, the energies of the dipole and quadrupole
resonances, on the one hand, and the value of the effective mass
corresponding to the effective interaction used, on the other, are
correlated [87,88]. In particular, the relativistic RPA without
density-dependent interaction terms, based on the ground state
with a small effective mass and relatively high compression
modulus, resulted in systematically overestimated energies of
giant resonances [87]. The discrepancies between UCOM-
RPA calculations and experimental data for multipole giant
resonances, as well as the low density of single-nucleon
UCOM-HF states, suggest that the respective effective mass
is too small. These observations are consistent with an
exploratory UCOM-HF calculation in NM.

V. SUMMARY

In the present study, the correlated interaction VUCOM

based on the Argonne V18 potential is employed in fully
self-consistent RPA calculations across the nuclear chart. The
short-range central and tensor correlations induced by the NN
interaction are treated within the unitary correlation operator
method. The precision and self-consistency of the present
UCOM-RPA approach are tested in the cases of separation
of the spurious center-of-mass motion and in recovering the
sum rules. It is illustrated that this method provides a highly
accurate separation of spurious components from the physical
spectra, and the sum rules are exhausted up to ±3%. A
consistent implementation of correlated transition multipole
operators, even for long-range tensor correlators, results in a
response similar to the bare operators.

The Hartree-Fock plus UCOM-RPA framework is em-
ployed in studies of giant resonances both in light and heavier
closed-shell nuclei. The sensitivity of global properties of giant
resonances on the range parameters of the tensor correlators
are systematically studied. The excitation energies of giant
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resonances slowly decrease as the range of the tensor correlator
is reduced from the standard value I

(S=1,T =0)
ϑ = 0.09 fm3

toward 0.07 fm3.
In comparison with the experimental data, the UCOM-RPA

scheme with the standard correlator results in a slightly
higher resonance energy of the breathing mode (≈1–3 MeV),
whereas it overestimates the excitation energies of IVGDR
and ISGQR by ≈3–8 MeV. Decreasing the range of the
tensor correlator, which improves the description of ISGMR,
is not sufficient to reproduce experimental data on excitations
with higher multipolarities (IVGDR, ISGQR). The increased
excitation energies of giant resonances are related to the rather
wide HF single-particle spectra, which are used as a basis
for the RPA configuration space, i.e., the small value of the
effective mass. Tensor correlations with shorter range increase
the single-particle level density, improve the description of
nuclear radii, and result in a systematic shift of the giant
resonances toward lower energies.

The correlated realistic interactions are sufficient to gener-
ate collective excitation modes, but for an accurate description
of experimental data on peak excitation energies and transi-
tion strengths the UCOM-RPA approach should be further
extended. In particular, this would include the long-range
correlations beyond the simple RPA model, i.e., more complex
configurations, e.g., the second RPA with coupling of ph
with 2p2h configurations. The present scheme could also
be improved by including the self-consistent coupling to
two-particle-hole phonons within the framework of the dressed
RPA [89]. This approach is advantageous, since it accounts
for both the effects of nuclear fragmentation and the RPA
correlations due to two-phonon fluctuations in the ground
state.

Apart from long-range correlations, three-nucleon forces
might play an important role for the quantitative description

of single-particle spectra and the collective response. Here we
have used correlated two-nucleon interactions, which are able
to describe binding energies in no-core shell-model or many-
body perturbation theory without any supplementary three
nucleon force. This is possible owing to a cancellation between
the attractive genuine three-nucleon force, which accompanies
the bare Argonne V18 potential, and the repulsive induced
three-body force resulting from the unitary transformation
of the Hamiltonian. This cancellation works surprisingly well
for the binding energies over a large mass range. However,
this does not hold for other observables, e.g., the charge radii.
Preliminary results using a phenomenological three-nucleon
force in the Hartree-Fock framework indicate that radii and
single-particle spectra can be improved significantly. As a
consequence an improvement of the calculated excitation
energies of giant resonances with respect to the experimental
data can be expected.

The inclusion of the missing correlations and residual
three-body interactions in the UCOM-RPA scheme, which
should improve the description of low-lying excitations and
giant resonances on a quantitative level, will be the subject of
our future work. In addition, the UCOM-RPA correlations due
to low-lying states and collective excitations may also provide
the long-range correlations that are necessary to improve the
HF ground state.
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