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We define the new description of the electromagnetic current to hold the current conservation in the momentum-
dependent Dirac fields from the Ward identity. To describe the momentum dependence we solve the relativistic
Hartree-Fock approximation by using the one-pion exchange. In addition we discuss on contribution from the
one-pion exchange current and the core polarization. It is shown that the one-pion exchange current can reduce
the convection current in the isovector case, whose value has been too large because of the small effective mass
in the usual relativistic Hartree approximation.
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I. INTRODUCTION

The past decades have seen many successes in the rel-
ativistic treatment of the nuclear many-body problem. The
relativistic framework has big advantages in several aspects
[1,2]: a useful Dirac phenomenology for the description of
nucleon-nucleus scattering [3,4], the natural incorporation of
the spin-orbit force [1] and the saturation properties of nuclear
matter in the microscopic treatment with the Dirac Brueckner
Hartree-Fock (DBHF) approach [5].

These results conclude that there are large attractive scalar
and repulsive vector fields and that the nucleon effective mass
is very small in the medium. However, this small effective mass
leads to small Fermi velocity, which makes some troubles in
the nuclear properties: too-large magnetic moment [6] and
too-large excitation energy of the isoscalar giant quadrupole
resonance (ISGQR) state [7]. As for the isoscalar magnetic
moment, this enhancement is canceled by the ring-diagram
contribution [8]; this relation is completely realized by the
gauge invariance [9]. As for the isovector one, however, this
contribution does not plays a significant role because the
symmetry force is not sufficiently large.

In this subject most of people believed that the momentum
dependence of the Dirac fields is negligible in the low-energy
region, particularly below the Fermi level. A momentum
dependence of the Schrödinger equivalent potential automati-
cally emerges as a consequence of the Lorentz transformation
properties of the vector fields without any explicit momentum
dependence of the scalar and vector fields. In fact, only very
small momentum dependence has appeared in the relativistic
Hartree-Fock (RHF) calculation [10,11].

In the high-energy region, however, the vector fields must
become very small to explain the optical potential of the
proton-nucleus elastic scattering [3,12] and the transverse flow
in the heavy-ion collisions [13]. The momentum-dependent
part is not actually small though it has not been clearly seen
in the low energy phenomena. Furthermore, S. Typel [14]
introduce the nonlocal parts and succeeded in improving
nuclear properties.

In the previous article [15] we showed that the momentum
dependence of the Dirac fields is very sensitive to the Fermi

velocity though it hardly affects the nuclear equation of state.
In that work we introduced the one-pion exchange force,
which produces the dominant contribution of the momentum
dependence and suppresses the Fermi velocity, and explain the
ISGQR energy.

We can easily imagine that the one-pion exchange force
largely produce the momentum dependence because the
interaction range is largest. Because the momentum-dependent
fields break the current conservation, we have to define the new
current caused by the vertex correction.

In this article, thus, we investigate the nuclear current using
the momentum-dependent Dirac fields. For this purpose we
define a new current to hold the current conservation in the
momentum-dependent Dirac fields and discuss its effect on
the the nuclear static current. In this work we focus only on
the convection current that is sensitive to the Fermi velocity
omitting the spin current.

In the next section we explain our formalism to make
a conserved current under the momentum-dependent self-
energies. In Sec. III we show our numerical results for the
static current in our formulation. Then we summarize our work
in Sec. IV.

II. FORMALISM

A. Nucleon propagator

Now we describe the propagator of nucleon with momen-
tum p in the isospin space as follows:

S(p) =
[
Sp(p) 0

0 Sn(p)

]
. (1)

Here we assume the spin isospin-saturated nuclear matter, and
define the proton and neutron propagator as

SN (p) = Sp(p) = Sn(p). (2)

The nucleon propagator in the self-energy � is given by

S−1
N (p) = /p − M − �(p), (3)
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where �(p) has a Lorentz scalar part Us and a Lorentz vector
part Uµ(p) as

�(p) = −Us(p) + γ µUµ(p). (4)

For future convenience we define the effective mass and the
kinetic momentum as

M∗(p) = M − Us(p),
(5)

�µ(p) = pµ − Uµ(p).

The single-particle energy with momentum p is obtained as

ε( p) = p0|on-mass-shell

=
√

�2( p) + M∗2 + U0( p). (6)

Then the detailed form of the nucleon propagator Eq. (3) is
represented by

SN (p) = SF (p) + SD(p) (7)

with

SF (p) = [�/ (p) + M∗(p)]
1

�2 − M∗2 + iδ
(8)

SD(p) = 2iπ [�/ (p) + M∗(p)]n( p)θ (p0)δ[V (p)], (9)

where n( p) is the momentum distribution and

V (p) ≡ 1
2 [�2(p) − M∗2(p)]. (10)

B. Momentum-dependent self-energies

We can easily suppose that it is the one-pion exchange
force that produces the major momentum dependence because
the interaction range is largest. In this work, thus, we intr-
oduce the momentum dependence to the Dirac fields arising
from the one-pion exchange, and discuss how the Fock parts
affects the nuclear current.

Along this line we define a Lagrangian density in the system
as

L = ψ(i∂/ − M)ψ + 1
2∂µφa∂

µφa − 1
2m2

πφaφa − Ũ [σ ]

+ 1
2m2

ωωµωµ + ρµaρ
µ
a + i

fπ

mπ

ψγ5γ
µτaψ∂µφa

+ gσ ψ̄ψσ − gωψ̄γµψωµ − CIV
v

2M2
{ψ̄γµτψ}2, (11)

where ψ, φ, σ, ω, and ρ are the nucleon, pion, σ -meson, ω-
meson, ρ-meson fields, respectively, and the suffix a indicates
the isospin component. In the above expression we use the
pseudovector (PV) coupling form as an interaction between
nucleon and pion. The self-energy potential of the σ field
Ũ [σ ] is given as Ref. [13,16].

Ũ [σ ] =
1
2m2

σ σ 2 + 1
3Bσσ 3 + 1

4Cσσ 4

1 + 1
2Aσσ 2

. (12)

The symbols mπ,mσ , and mω are the masses of π, σ , and
ω mesons, respectively. In addition, we also introduce the
isovector nucleon-nucleon interaction into the Lagrangian (11)
so as to discuss on the isovector current later.

Next we calculate the nucleon self-energies. The nu-
cleon self-energies are separated into the local part and the
momentum-dependent part as Uα(p) = UL

α + UF
α (p), where

α = s, µ. The σ - and ω-meson exchange parts produce only
very small momentum dependence of nucleon self-energies
[10,11] as their masses are large. In fact, the relativistic
Hartree (RH) and RHF approximations yield no different
results in nuclear matter properties after fitting parameters of
σ - and ω-exchanges [10]. However, the one-pion exchange
force is a long-range one and makes a large momentum
dependence although it does not contribute to the local part
in the spin-saturated system. Subsequently we make the local
part by RH of the σ - and ω-meson exchanges, and the
momentum-dependent part by RHF of the pion exchange, and
thus we omit the kinetic-energy part of mesons except pion
in Eq. (11). This method is shown in Ref. [12] to keep the
self-consistency within the RHF framework.

In this model the local part of the self-energies are given as

UL
s = gσ 〈σ 〉 (13)

UL
µ = δ0µ

gω
2

m2
ω

ρH , (14)

where 〈σ 〉 is the scalar mean field obtained as

∂

∂〈σ 〉 Ũ [〈σ 〉] = gσρs. (15)

In the above equations the scalar density ρs and the vector
Hartree density ρH are given by

ρs = 4
∫

d3 p
(2π )3

n( p)
M∗

α(p)

�̃0(p)
, (16)

ρH = 4
∫

d3 p
(2π )3

n( p)
�0(p)

�̃0(p)
, (17)

where n( p) is the momentum distribution and �̃µ(p) is defined
by

�̃µ(p) = 1

2

∂

∂pµ
[�2(p) − M∗2(p)]. (18)

As a next step we define the momentum-dependent part of
the self-energies as the Fock term arising from the one-pion
exchange, which is given as

�F (p) ≡ UF
s (p) − γ µUF

µ

= if 2
π

m2
π

∑
a

∫
d4k

(2π )4
( /p − /k)γ5τaS(k)τaγ5

× ( /p − /k)�π (p − k)

= 1 + τ3

2

if 2
π

m2
π

∫
d4k

(2π )4
( /p − /k)γ5[Sp(k) + 2Sn(k)]

× γ5( /p − /k)�π (p − k)

+ 1 − τ3

2

if 2
π

m2
π

∫
d4k

(2π )4
( /p − /k)γ5[2Sp(k) + Sn(k)]

× γ5( /p − /k)�π (p − k)

= 1 + τ3

2
�

(p)
F (p) + 1 − τ3

2
�

(n)
F (p), (19)
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where the superscripts (p) and (n) indicate the self-energies
for proton and neutron, respectively, and �π (q) is the pion
propagator defined as

�π (q) = 1

q2 − m2
π

. (20)

As mentioned, only the isospin symmetric system is consid-
ered here. Hence, the proton and neutron propagators are equal
to each other, Sp = Sn = SN . Taking the density-dependent
part SD instead of the full propagator SN , we can obtain the
scalar and vector parts as

UF
s (p) = 3f 2

π

2m2
π

∫
d3k

(2π )3
n(k)

M∗(k)

�̃0(k)
(p − k)2�π (p − k),

(21)

UF
µ (p) = U (1)

µ (p) + U (2)
µ (p) (22)

with

U (1)
µ (p) = − 3f 2

π

2m2
π

∫
d3k

(2π )3
n(k)

�µ(k)

�̃0(k)
(p − k)2�π (p − k),

(23)

U (2)
µ (p) = −3f 2

π

m2
π

∫
d3k

(2π )3
n(k)

× �(k) · (p − k)

�̃0(k)
(pµ − kµ)�π (p − k). (24)

The tensor-coupling part of the vector self-energy, U (2)
µ , is

very small if the self-energy is independent of momentum [10].
By substituting the RH results, indeed, we numerically check
that its contribution is less than 0.1 % of U (1)

µ . Then we can
neglect this term in this work.

Furthermore, the Fock parts do not become zero at the
infinite limit of the momentum | p|. One usually disregards
these contributions by introducing the cutoff parameter. In
this work, instead of that, we subtract these contributions
from the momentum-dependent parts (these contributions
can be renormalized into the Hartree parts): Uα → Uα − Uα

(p → ∞).
Thus we obtain the momentum-dependent parts of the self-

energies as

UF
s (p) = 3f 2

π

2

∫
d3k

(2π )3
n(k)

M∗(k)

�̃0(k)
�π (p − k), (25)

UF
µ (p) = −3f 2

π

2

∫
d3k

(2π )3
n(k)

�µ(k)

�̃0(k)
�π (p − k). (26)

C. One-body current operator

If the self-energy has a momentum dependence, the
current operator must be also changed to satisfy the current
conservation. We then define the current vertex �µ(p + q, p)
as

�µ(p + q, p) = 1 + τ3

2
γ µ + �µ(p + q, p). (27)

The Ward-Takahashi (WT) identity gives the following relation
about the current vertex

S(p + q)qµ�µS(p) = −S(p + q) + S(p). (28)

This expression is rewritten as

qµ�µ = S−1(p + q) − S−1(p). (29)

Substituting Eq. (3) into Eq. (29), the density-dependent vertex
correction �µ is obtained as

qµ�µ(p + q, p) = −�(p + q) + �(p). (30)

In general the vertex correction is very complicated, and
its exact expression cannot be easily derived in the RHF
framework. However, this vertex correction can be obtained
in the zero-momentum limit q → 0. Here we assume that the
current operator in the zero-momentum limit q → 0 has a
contribution only from the proton as

lim
q→0

�µ(p + q, p) ≡ �µ(p) = 1 + τ3

2
�̃µ(p), (31)

where �̃µ is the static proton current operator. In this case the
current operator, �µ, and the vertex correction, �µ, become

Sp(p)�̃µ(p)Sp(p) = −1 + τ3

2

∂

∂pµ

Sp(p), (32)

�µ(p) = lim
q→0

�µ(p + q, p) = −1 + τ3

2

∂

∂pµ
�(p)(p). (33)

As for isovector meson exchanges, the current operator
includes a diagram of the photon that connects with the
exchange meson (the mesonic current) and those of the photon
that contacts with the meson-nucleon vertex (the contact
current). Generally the electromagnetic current is contributed
not only from the proton current but also from the neutron
current. In the following we confirm the above assumption of
the vertex correction at q → 0 limit (33).

When we use the one-pion exchange force, the electromag-
netic interaction Lagrangian density is written as

Lem(x) = Lv
em(x) + Lm

em(x) + Lc
em(x) (34)

with

Lv
em = −eψ̄(x)γµ

1 + τ3

2
ψ, (35)

Lm
em = −ie[φ1(x)∂µφ2(x) − φ2(x)∂µφ1(x)], (36)

Lc
em = − iefπ

m2
π

[ψ̃(x)γµγ5τ1ψ(x)φ2(x)

− ψ̃(x)γµγ5τ2ψ(x)φ1(x)]. (37)

Then the vertex corrections can be separated into three parts
as

�µ(p + q, p) = �m
µ (p + q, p) + �c

µ(p + q, p)

+�v
µ(p + q, p), (38)

where the first and second terms correspond to pionic and
contact currents derived from Eqs. (36) and (37), respectively,
and the third term is the vertex correction in a narrow sense.
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The pionic current, �m, where the photon connects with
the pion exchanged between nucleons, is given as

�m
µ = −

∫
d4k

(2π )4

(
ifπ

mπ

)
( /p − /k + /q)γ5τiS(k)τjγ5( /p − /k)

×
(

ifπ

mπ

)
(δ1iδ2j − δ2iδ1j )i�π (p − k − q)(−i)

× (2p − 2k − q)µi�(p − k)

= −2if 2
π

m2
π

∫
d4k

(2π )4
( /p − /k + /q)γ5

×
[

1 + τ3

2
Sn(k) − 1 − τ3

2
Sp(k)

]
γ5( /p − /k)

×�π (p − k + q)(2p − 2k + q)µ�π (p − k). (39)

The contact current, �c, is obtained as

�c
µ = −

∫
d4k

(2π )4

[(
ifπ

mπ

)
( /p − /k + /q)γ5τiS(k)

(
ifπ

mπ

)
× τjγ5γµ�π (p − k + q)

+
(

ifπ

mπ

)
γµγ5τjS(p)τi

(
ifπ

mπ

)
× ( /p − /k)i�π (p − k + q)

]
(δ1iδ2j − δ2iδ1j )

= −2if 2
π

m2
π

∫
d4k

(2π )4

{
( /p − /k + /q)γ5

[
1 + τ3

2
Sn(k)

− 1 − τ3

2
Sp(k)

]
γ5γµ�π (p − k + q)

+ γ5γµ

[
1 + τ3

2
Sn(k) − 1 − τ3

2
Sp(k)

]
× γ5( /p − /k)�π (p − k)

}
. (40)

Then the sum of the above two terms, Eqs. (39) and (40),
becomes

�m
µ + �c

µ = 2if 2
π

m2
π

∫
d4k

(2π )4

{
( /p − /k + /q)γ5

×
[

1 + τ3

2
Sn(k) − 1 − τ3

2
Sp(k)

]
γ5( /p − /k)

×�π (p − k + q)(2p − 2k + q)µ�π (p − k)

− ( /p − /k + /q)γ5

[
1 + τ3

2
Sn(k) − 1 − τ3

2
Sp(k)

]
× γ5γµ�π (p − k + q) − γ5γµ

[
1 + τ3

2
Sn(k)

− 1 − τ3

2
Sp(k)

]
γ5( /p − /k)�π (p − k)

}
. (41)

By taking the zero-momentum transfer limit, we can obtain
the contribution from the pionic and contact current as

�m
µ (p) + �c

µ(p) ≡ lim
q→0

[
�m

µ (p + q, p) + �c
µ(p + q, p)

]
= −2if 2

π

m2
π

∂

∂pµ

∫
d4k

(2π )4
( /p − /k)γ5

×
[

1 + τ3

2
Sn(k) − 1 − τ3

2
Sp(k)

]
× γ5( /p − /k)�π (p − k)

= −3 + τ3

3

∂

∂pµ
�

(p)
F (p)

+ 3 − τ3

3

∂

∂pµ
�

(n)
F (p). (42)

Next we consider the contribution form the vertex correc-
tion in the narrow sense, �v

µ. It is given as

�v
µ(p + q, p) = − if 2

π

m2
π

∑
a

∫
d4k

(2π )4
( /p − /k)γ5τaS(k + q)

×�µS(k)τaγ5( /p − /k)�(p − k). (43)

The q → 0 limit of it becomes

�v
µ(p) ≡ lim

q→0
�v

µ(p + q, p)

= − if 2
π

m2
π

3 − τ3

2

×
∫

d4k

(2π )4
/kγ5Sp(p − k)�̃µSp(p − k)γ5 /k�π (k)

= if 2
π

m2
π

3 − τ3

2

∂

∂pµ

∫
d4k

(2π )4
/kγ5Sp(p − k)γ5 /k�(k)

= 3 − τ3

6

∂

∂pµ
�

(p)
F (p) − 3 − τ3

3

∂

∂pµ
�

(n)
F (p). (44)

Finally, the the vertex correction is given as the summation
of the above three contributions, which becomes

�µ(p) = �v
µ(p) + �m

µ (p) + �c
µ(p)

= − (1 + τ3)

2

∂

∂pµ
�F (p). (45)

This equation imply that the ansatz shown in Eq. (31) is
consistent in the present calculation.

In the above we first introduce the ansatz [Eq. (31)] for
the isospin dependence of the current operator, and we then
show its consistency in the whole expressions. The vertex
corrections given in Eq. (45) can be exactly derived in the
perturbative way, namely using the RH propagator as S(p)
and the current operator as �̃µ = γµ.

In this work we restrict our discussion on the convection
current, not on the spin current. The spin current is contributed
from the anomalous current, which is proportional to σµνq

ν

and disappear in the zero-momentum transfer limit.
Using the above vertex correction, the current of the whole

system is given as

jµ =
∫

d4p

(2π )4
Tr

{
1 + τ3

2

[
γµ − ∂�(p)

∂pµ

]
S(p)

}

=
∫

d4p

(2π )3
n(p)( p)

[
�µ(p) − �ν(p)

∂Uν(p)

∂pµ
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+M∗(p)
∂Us

∂pµ

]
δ[V (p)]

=
∫

d3p

(2π )3
n(p)( p)

�̃µ(p)

�̃0(p)

∣∣∣∣
p0=ε( p)

, (46)

n(p) is the Fermi distribution function for proton, and �̃µ is
defined by

�̃µ(p) ≡ ∂

∂pµ
V (p)

= 1

2

∂

∂pµ
[�2(p) − M∗2(p)]. (47)

Let us consider a one-particle state on the Fermi surface.
If the Dirac field is fixed to be those at the ground state, the
space current contributed from this nucleon can be written as

j = �̃(p)

�̃0(p)
|| p|=pF

= D pε( p)|| p|=pF
, (48)

where the total derivative Dp is defined on the on-mass-shell
condition: p0 = ε( p). The above equation is equivalent to that
derived by the semiclassical way [12].

In the nonrelativistic framework the effective mass is
defined by

M∗
L =

[
2

d

d p2
ε( p)

]−1

|| p|=pF
, (49)

which is the so-called Landau mass. As a result, the above
spatial current is

j = pF

M∗
L

. (50)

In our case including the momentum-dependent Dirac fields,
the value of the Landau mass M∗

L cannot be uniquely
determined from the relativistic effective mass M∗, whereas
in the Hartree approximation the Landau mass becomes
M∗

L = �0( pF ) =
√
p2

F + M∗2.
This current is correct only when the Dirac fields, Us and

Uµ, do not vary from those at the ground state. In actual case,
however, the one particle on the Fermi surface interacts with
nucleons in Fermi sea and cause another current, which is
called the core-polarization current. This current appears even
in the RH approximation and must be taken into account to
satisfy the Ward-Takahashi identity completely [8,9]. In the
next subsection we discuss this effect in our approach.

D. Core-polarization current

The current operator given in the previous subsection
is correct only if the Dirac fields, Us and Uµ, are fixed
independently of the configuration. In actual these fields
are self-energies and vary with the configuration. To satisfy
the WT identity, we need to introduce a contribution from
the ring diagram by using the random-phase approximation
(RPA) [8,9], whereas our vertex correction corresponds to a
contribution from the exchange diagram in RPA. This ring-
diagram contribution plays a role to cancel the enhancement of
the isoscalar current because of the small Dirac effective mass

M∗. However, it is not so easy to solve the full RPA, including
the ring and exchange diagrams, by keeping the consistency
between the current operator and the RHF self-energies.

However, the ring diagram contribution in the particle-hole
basis is equivalent to the core polarization in the zero-
momentum transfer limit q → 0 [17–19]. Indeed this effect
cancels contribution of the effective mass in the isoscalar
case in the nonrelativistic framework [20]. In this subsection,
then, we explain our method to introduce the core-polarization
current in our framework.

Here we should consider a system where one valence
nucleon populates a state on the Fermi surface of the saturated
nuclear matter. In this system the momentum distribution can
be described as

n( p, τ ) = n0( p) + 1
4�n( p, τ ), (51)

where n0( p) = θ (pF − | p|) shows the usual Fermi distribu-
tion with the Fermi momentum pF and �n( p) ∝ δ(| p| − pF )
indicates the valence nucleon part. The suffix τ indicates the
isospin for the valence nucleon,

The valence nucleon varies the self-energies of nucleons
below Fermi surface from that at the saturated matter as

Uα(p) → Uα(p) + �Uα(p). (52)

In addition the function V (p) is also varied as

V (p) = V0(p) + �V (p) (53)

with

�V (p) = −�µ�Uµ + M∗�Us. (54)

The currents density is described with the following
expression.

j
µ
tot = −

∑
τ=±1

∫
d4p

(2π )3
f (p, τ )

∂V (p)

∂pµ
, (55)

where f (p, τ ) is the four-dimensional momentum distribution
for nucleon with isospin τ , which is given as

f (p, τ ) = n( p, τ )δ(p0 − ε p) (56)

= 1

�̃0(p)
n( p, τ )δ[V (p)]θ (p0). (57)

The variation along Eqs. (51)–(54) leads to the above four-
dimensional momentum distribution f (p, τ ) as

f (p, τ ) = f0(p, τ ) + �f (p, τ ) (58)

with

f0(p, τ ) = n0( p)δ[V0(p)]θ (p0), (59)

�f ( p, τ ) = �n( p, τ )δ[V0(p)]θ (p0) + n0( p)

×
{

∂δ[V (p)]

∂V

}
V =V0

�V (p, τ )θ (p0). (60)

The first term comes from the valence nucleon, and the second
one from the core polarization.
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The total current density is given as

j
µ
tot =

∫
d4p

(2π )3
f (p)δ[V (p)]

∂V (p)

∂pµ

(61)

= δ
µ

0 ρB + j
µ

val + jµ
cor. (62)

The first term is the current density of the saturated matter, and
the second current density j

µ

val shows the contribution from the
valence nucleon as

j
µ

val =
∫

d4p

(2π )3
�n( p)δ(p0 − ε p)

�̃µ(p)

�̃0(p)
. (63)

The third current density j
µ
cor is so called the core-polarization

current, which is caused by the variation of the self-energies
of nucleons in Fermi sea and given by

jµ
cor = −2

∑
τ=±1

∫
d4p

(2π )3
n0( p, τ )

(
∂�V (p)

∂pµ

δ[V0(p)]

+ ∂V0(p)

∂pµ

{
∂δ[V (p)]

∂V

}
V =V0

�V (p)

)
(64)

= −2
∑
τ=±1

∫
d4p

(2π )3
n0( p, τ )

∂

∂pµ
{�V (p)δ[V0(p)]}. (65)

Here it should be noted that the time component of the
core-polarization current density does not change the nucleon
density:

j 0
cor = −2

∑
τ=±1

∫
d4p

(2π )3
n0( p, τ )

∂

∂p0
{�V (p)δ[V0(p)]} = 0.

(66)

Now we define the z axis as the direction of the current at
the matter. First we calculate the isoscalar current density by
taking the valence nucleon part of the momentum distribution
to be

�n( p, τ ) = (2π )3

�
δ( p − a) (67)

with

a = pF ẑ, (68)

where � is the volume of the system, which should be finally
taken to be infinite. The core-polarization current becomes

j 3
cor = −4

∫
d4p

(2π )3
θ (pF − | p|) ∂

∂pz

{�V (p)δ[V0(p)]} (69)

= −4
∫

d4p

(2π )3
δ(pF − | p|) pz

pF

{�V (p)δ[V0(p)]} (70)

= − 1

2π3

∫
d�pp2

F cos θ p
�V (p)

�̃0(p)
. (71)

Then we separate it to several parts as

j 3
cor = j 3

cor(H ) + j 3
cor(F ) (72)

with

j 3
cor(H ) = − 1

2π3

∫
d�pp2

F cos θ p
−�µ�UH

µ + M∗�UH
s

�̃0(p)
(73)

j 3
cor(F ) = − 1

2π3

∫
d�pp2

F cos θ p
−�µ�UF

µ + M∗�UF
s

�̃0(p)
,

(74)

where �UH
µ(s) and �UF

µ(s) are shown to be contributions
of �Uµ(s) from Hartree and Fock parts of self-energies,
respectively.

It is not so easy to solve the above equation exactly in the
RHF case though it is possible in the RH case. However, we
have known that the actual momentum dependence is very
small, at least below the Fermi momentum. Then we can
suppose that a perturbative way is possible with the respect
to the momentum dependence.

Before explaining the actual method, first, we explain the
relativistic Hartree (RH) case. There the self-energies are
momentum independent, and the valence current becomes

j 3
var = 1

�

pF

E∗
F

. (75)

In this case the core-polarization current is calculated in the
following way:

j 3
cor = − 1

2π3

∫
d�pp2

F cos θ p
�z�UH

z

E∗
F

= − 4

3π2

p3
F

E∗
F

�UH
z . (76)

In the RH calculation

�UH
z = g2

v

m2
v

∫
d3p

(2π )3
n( p)

pz

E∗
p

= g2
v

m2
v

j 3. (77)

Substituting Eq. (77) into Eq. (76), we can get

j 3 = 1

�

pF

E∗
F

−
{

g2
v

m2
v

4

3π2

p3
F

E∗
F

}
j 3

= 1

�

pF

E∗
F

(
1 + g2

v

m2
v

ρB

1

E∗
F

)−1

. (78)

This renormalized current given in the above equation is
exactly same as that in the RPA [8]. In the RH case the Fermi
energy is obtained as

εF = E∗
F + g2

v

m2
v

ρB (79)

and then

j 3 = 1

�

pF

εF

. (80)

In the low-density region below about the saturation, εF ≈ M ,
so that we can see that the core polarization plays a role to
cancel the effect of the effective mass in the valence current.
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In the RHF case the contribution from the Hartree part
is large, and we cannot use the perturbative way. Because
momentum dependence of the self-energies is not so large,
however, the difference between �̃0 and �0 is small and then
the Hartree part of the total current j 3(H ) can be approximately
gotten with the following equation.

j 3(H ) ≈
∫

d3p

(2π )3
n( p)

�z(p)

�̃0(p)

≈
∫

d3p

(2π )3
n( p)

�z(p)

�0(p)

≈ j 3
var(H ) − �Uz

∫
d3p

(2π )3
n0( p)

[
∂

∂Uz

�z(p)

�0(p)

]
�Uz=0

≈ j 3
var(H ) − �Uz

∫
d3p

(2π )3
n0( p)

1

�0(p)

[
1 − �2

z(p)

�2
0(p)

]
,

(81)

where j 3
var(H ) is the valence part of the Hartree current as

j 3
var(H ) ≈ 1

�

�z(pF )

�̃0(pF )
. (82)

The space component of the vector self-energy, which is
caused only by the Fock contribution in the saturation matter,
is very small, and then �Uz is thought to be contributed from
the Hartree parts as

�Uz ≈ �UH
z = g2

v

m2
v

j 3(H ). (83)

Then the Hartree contribution of the core-polarization current
is approximately given as

j 3
cor(H ) = j 3(H ) − j 3

var(H ) ≈ −V H
C (IS)

1 + V H
C (IS)

j 3
var(H ) (84)

with

V H
C (IS) = g2

v

m2
v

∫
d3p

(2π )3
n0( p)

1

�̃0

[
1 − �2

z(p)

�2
0(p)

]
. (85)

As for the Fock part, the momentum dependence of self-
energies are not so large, and its contribution is not so big in
the total current. Instead of getting it exactly, thus, we can use
the perturbative way for the Fock part of the core-polarization
current. Along this line the variation of the self-energies are
taken to be only the contribution from the valence nucleon as

�UF
s (p) ≈ 3f 2

π

2

∫
d3k

(2π )3
�n(k)

M∗(k)

�̃0(k)
�π (p − k), (86)

�UF
µ (p) ≈ −3f 2

π

2

∫
d3k

(2π )3
�n(k)

�µ(k)

�̃0(k)
�π (p − k). (87)

Then we substitute them into the Eq. (74) and obtain

j 3
cor(F ) = 3f 2

π

4π3
τ3

∫
d�pp2

F cos θ p

× �2
0(pF ) − �2

v(pF ) + M∗2(pF )

�̃2
0(pF )

�(0; p − a).

(88)

Next we consider the isovector current. In the similar way
we can calculate the isovector current by taking the variation
part of the momentum distribution as

�n( p, τ ) = (2π )3

�
δ( p − a). (89)

In this work the nuclear system is taken to be the isospin
symmetric saturated matter plus valence nucleon. Thus, the
isovector properties can be treated in the perturbative way.
In this case, the Dirac fields of the valence nucleon isoscalar
one and those of the nucleon in Fermi sea have a very small
isovector part coming from the valence nucleon.

As for the Hartree part we substitute the following V H
C (IV)

instead of V H
C (IS) into Eq. (84):

V H
C (IV) = CIV

v

M2

∫
d3p

(2π )3
n0( p)

1

�̃0

[
1 − �2

z(p)

�2
0(p)

]
. (90)

As for the Fock part, furthermore, the variations of the self-
energies become

�UF
s (p) ≈ τ3

f 2
π

2

∫
d3k

(2π )3
�n(k)

M∗(k)

�̃0(k)
�π (p − k), (91)

�UF
µ (p) ≈ −τ3

f 2
π

2

∫
d3k

(2π )3
�n(k)

�µ(k)

�̃0(k)
�π (p − k). (92)

Then the Fock contribution of the isovector core polarization
current is obtained as

j 3
cor(F ) = f 2

π

4π3
τ3

∫
d�pp2

F cos θ p

× �2
0(pF ) − �2

v(pF ) + M∗2(pF )

�̃2
0(pF )

�(0; p − a).

(93)

In the next section we calculate the actual current using
the above formulation. Because we cannot solve the RPA with
the ring and exchange diagrams, we need to introduce some
approximations explained in this subsection. First, to examine
the approximations, we compare the isoscalar total current, j 3

tot
to the normal current, j 3

0 = pF /εF , because the two current
must agree with each other in exact calculations [9]. Next, we
discuss the isovector current.

III. RESULTS

In this section we show results calculated with the above
formulation. In this calculation we use the parameters (PF1)
[15] for the σ and ω exchanges to reproduce the satura-
tion properties of nuclear matter: the binding energy BE =
16 MeV, the incompressibility K = 200 MeV, and the effective
mass M∗/M = 0.7 at the saturation density ρ0 = 0.17 fm−3.
For comparison we give results with momentum-independent
self-energies obtained by the parameter set PM1 [16] that
gives the same saturation properties. As for the isovector
nucleon-nucleon interaction, CIV

v , we take the value of PM1.
These values are written in Table I.

In Fig. 1 we draw the momentum dependence of the scalar
self-energy Us(p) and that of the time component of the
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TABLE I. Parameter sets in this article. In all cases have used
mπ = 138 MeV, mσ = 550 MeV, mω = 783 MeV, and Cσ = 0.

gσ gω Bσ Aσ fπ CIV
v

PF1 9.699 9.880 27.61 6.134 1.008 20.32
PM1 9.408 9.993 23.52 5.651 0.0 20.32

vector self-energy U0(p). It can be seen that the variation of
the momentum-dependent self-energies is only 2.5% at most
below Fermi level.

In Fig. 2 we show the density-dependence of the Dirac
self-energies Us and U0 on the Fermi surface (a) and the
Landau mass (b) with the parameter sets, PF1 and PM1.
Though two results of Us and U0 almost agree with each other,
we can see a rather large difference in the Landau mass: the
value at ρB = ρ0 is M∗

L/M = 0.85 in PF1, which is consistent
with the value expected by the analysis of ISGQR as shown
previously [15]. On the contrary, the momentum-independent
calculation (PM1) gives M∗

L/M = 0.74, which overestimates
the excitation energy of ISGQR.

Hence it is shown that the very small momentum depen-
dence in the nucleon self-energies enhances the Fermi velocity
about 15%, and gives a significant difference in the Landau
mass. Furthermore, we can also see an interesting behavior
of M∗

L in PF1, namely that its value agrees with the bare
mass at ρB ≈ 0.5ρ0 and becomes larger with the decrease of
the density. Effects of small Dirac effective mass are largely
canceled at low density by the momentum dependence caused
by the one-pion exchange.

In Fig. 3 we show the density dependence of the isoscalar
current density. In the upper panel [Fig. 3(a)] the solid and
chain-dotted lines indicate the total current and the valence
current, respectively. For comparison the current for the RH
approximation are also drawn there with the dashed line. From

280

290

U
s 
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)

Dirac Potential

PF1

PM1

(a)

0 200 400 600 800

210

220

p (MeV/c)

U
0 

(M
eV

)

(b)
pF

FIG. 1. Momentum dependence of the scalar (a) and vector (b)
self-energies. The solid and dashed lines indicate the results with
PF1 and PM1, respectively. The dotted line denotes the position of
the Fermi momentum at ρB = ρ0.

0.0

0.2

0.4

U
/M

PF1

PM1

 (a) 

 Us

 U0
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0.6

0.8

1.0
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M
* L/

M

 (b) 

FIG. 2. Density dependence of the Dirac self-energies Us and U0

on the Fermi surface (a) and the Landau mass (b). The solid and
dashed lines indicate the results for PF1 and PM1, respectively, and
the full square in (b) denotes the value expected empirically from
ISGQR.

that we can know that the Fock contribution suppresses the RH
current, and the core polarization further suppresses it.

0.0

0.1

0.2

0.3

0.4

0.5

j3
(fm

−3
)

Isoscalar Current Density

j 3
RH

j 3
val

j 3
tot

(a)

0.0 0.5 1.0 1.5

0.0

0.2

0.4

ρB /ρ0

j3
(fm

−3
) j 3

val

j 3
cor(H)
j 3
cor(F)

(b)

FIG. 3. Density dependence of the isoscalar nuclear current (a)
and parts of the core-polarization current (b). The dot-dotted, dashed,
and solid lines represent the RH current, the valence current, and the
total current, respectively. The long-dashed and dotted lines denote
contributions in the core polarization current from the Hartree part
and Fock part, respectively.
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FIG. 4. Density dependence of the isovector nuclear current (a)
and parts of the core-polarization current (b).

In the lower panel [Fig. 3(b)] we show the contribution from
the core polarization. The long dashed and dotted lines indicate
the core-polarization current contributed from the Hartree and
Fock parts, respectively. The Hartree contribution reduces the
current, whereas the Fock contribution enhances it.

In Fig. 4 we show the isovector currents; the meaning
of each line is the same as that in Fig. 3. We notice that
the Fock contribution suppresses also the isovector current.
However, the core polarization hardly affects the total isovector
current.

The most direct observable for the nuclear static current
must be the magnetic moment; the nuclear medium effect is
examined as the discrepancy from the Schmidt value. Thus we
should compare our results to the normal current, which is a
current with no medium effect and given as

j 3
0 = vF = pF

εF

. (94)

Here we define the following quantity as

�j 3
r = j 3

tot − j 3
0

j 3
o

. (95)

In Fig. 5 we show the density dependence of �j 3
r . The

Ward-Takahashi identity requires that the total isoscalar cur-
rent agrees with the normal current, �j 3

r = 0, at all densities
[9]. Indeed the total isoscalar current almost agrees with the
normal current, within a few percentages of error. Particularly
the disagreement, �j 3

r , is less than 0.02 below the saturation
density, ρB/ρ0 � 1.

Here we give comments on the relation between the
core-polarization calculation and our approach. It was shown
in Ref. [18] that the core-polarization contribution becomes
equivalent to that of the ring diagram only if the Lorentz

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.1

0.0

0.1

0.2

ρB /ρ0

(j
3 to
t
− 

j3 0
)/j

3 0

Current Density

ISOSCALAR

ISOVECTOR

FIG. 5. The density dependence of the difference between the
normal current and the total current in our model, normalized by the
normal current. The solid and dashed lines represent the isoscalar and
isovector currents, respectively.

covariance and the first law of the thermodynamics are
satisfied. Although the usual RHF approach does not satisfy
this criterion [21], Weber et al. have given the energy-
momentum tensor satisfying the Lorentz covariance and the
thermodynamical consistency in a semiclassical way [12].
Our current given in this article is completely equivalent to
theirs. However, the formalism of Weber et al. has not been
derived with the field theoretical way. In addition, we use
some approximations to derive our expression for the core-
polarization contribution. Thus we cannot perfectly certify our
approach in the analytical way. However, we already know that
the isoscalar current in full calculations must agree with the
normal current. The discrepancy in our approach is only about
2% at the saturation density and less in lower density as shown
above. Therefore we can confirm that our approach contain no
serious problem at lease in numerical results.

The total isovector current is 10% less than the normal
current in the density region around ρB = ρ0/4 (Fig. 5). This
result is consistent with the experimental fact that the isovector
magnetic moment is 10% less than the Schmidt value; here we
should note that the magnetic moment indicates the medium
effect in surface region. However, our calculation is performed
for the infinite matter and does not include the contribution
from the spin current. Therefore the present result does not
directly correspond to the experimental observables. Never-
theless our results suggest the importance of the momentum
dependence of the self-energies in studies of the magnetic
moment.

Here we should give a further comment. Bentz et al. have
shown in Ref. [22] that the Landau mass is reduced by the
one-pion exchange, which is opposite to ours. Their result is
consistent with the nonrelativistic analysis on the magnetic
moment with the exchange current [23], in which it was
shown that the exchange current enhances the convection
part and reduces the spin part, and as a combined effect
the isovector magnetic moment is reduced. Bentz et al. [22]
used pseudoscalar (PS) coupling, and the sign of UMD

µ was
taken to be opposite to ours. The full HF calculation with
PS coupling makes too large a contribution to the Dirac
self-energies [4], whereas Bentz et al. calculated the Fock
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term with a perturbative method. Thus a calculation with PV
coupling must be more reliable than that with PS coupling.

In addition the large discrepancy between the PS and PV
coupling methods comes from relativistic effects in the one-
pion exchange. Because the pion mass is smaller than the
nucleon Fermi energy, relativistic effects must be larger in the
one-pion exchange. Miyazawa treated the one-pion exchange
in the nonrelativistic way [23]. Thus it is not strange that our
results qualitatively disagree with Miyazawa’s.

IV. CONCLUDING REMARKS

In this article we have studied the static current in the
system with one valence nucleon on the Fermi surface of the
saturated nuclear matter. We employ the RHF framework with
the momentum-dependent self-energies. It was shown that this
current is determined by the Landau mass M∗

L independently
of the effective mass M∗.

As shown in the Ref. [15], the very small momentum depen-
dence in the nucleon self-energies enhances the Fermi velocity,
even if this momentum dependence is negligibly small for
the nuclear equation of state. In the present calculation the
Fermi velocity is enhanced 15% by the momentum dependence
caused by the one-pion exchange. Moreover, We succeed in
reducing the isovector current in low-density region; the value
of the current is almost equivalent to the current without
effective mass at ρB ≈ 0.5ρ0, and 10% suppressed around
ρB ≈ 0.25ρ0. The latter result is consistent with the result that
the observed isovector magnetic moment is 10% smaller than
the Schmidt value. However, the quantitative conclusion has
not been so clear.

As seen in this article the momentum-dependent parts,
which are nonlocal in the finite nuclei, are very effective in
observables related with Fermi velocity even if these parts are
small. In future we need to discuss effects of the nonlocal parts
of Dirac fields to study nuclear structure and reactions.

The typical value of effective mass is empirically known
as M∗

N/MN = 0.55 − 0.7 [3,5,24–27]. If we use other param-
eter sets that yield smaller effective masses than ours, the
momentum-dependent part created by the one-pion exchange
do not have a sufficient effect to explain the Fermi velocity
expected from experimental analysis. Exchange forces of other
mesons, σ, ω, η, and δ, also contribute to suppressing the Fermi
velocity if we choose the PV coupling for π and η nucleon
coupling.

In this work we focus on the momentum dependence of the
Dirac self-energies, and use the most simple expressions of the
mean-field part in the RMF approach. Then we do not take into
account some important aspects of this approach. Particularly
it has been pointed out that the chiral symmetry plays a very
important role in constructing models in the RMF theory [2,
28]. When comparing calculational results with experimental
ones, we need to improve our model including these effects.
In addition we ignore antinucleon degrees of freedom [20,29].
They are matters of future work.

In this work we calculate and discuss only the convection
current, but not spin current. The spin current includes the
contribution from terms proportional to qµ, but it is not easy to

get the vertex correction at finite momentum transfer. Without
this work, however, we cannot make a final conclusion about
the nuclear electromagnetic current in the RMF approach. In
the future we would also like to try it and to discuss effects
of this current in high-momentum transfer phenomena such as
quasielastic electron scattering [30].

APPENDIX: ONE-BODY CURRENT OPERATOR

To satisfy the current conservation, the current operator �µ

and the density-dependent vertex correction �µ must have the
following relations:

qµS(p + q)�µ(p + q, p)S(p) = S(p + q) − S(p), (A1)

qµ�µ(p + q, p) = −�F (p + q) + �F (p). (A2)

Within the one-boson exchange force, the Fock part of the
self-energy is generally written in the following way:

�F (p) = i
∑

a

Ca

∫
d4k

(2π )4
γ aS(k)γa�

(a)(p − k)

+ i
∑

b

C̃a

∫
d4k

(2π )4
[( /p − /k), γ b]

× S(k)[γb, ( /p − /k)]�(b)(p − k), (A3)

where γa(b) is the γ matrix with the suffix a(b) indicating the
scalar, pseudoscalar, vector, axial-vector, and tensor, and �(a)

is the propagator of meson with the quantum number indicated
with the suffix a.

Substituting Eq. (A3) into Eq. (A2), we get

qµ�µ(p + q, p) = −�F (p + q) + �F (p)

= −i
∑

a

Ca

∫
d4k

(2π )4
γ aS(k)γa

× [�(a)(p − k + q) − �(a)(p − k)]

− i
∑

b

C̃b

∫
d4k

(2π )4
{[( /p − /k + /q), γ b]

× S(k)[γb, ( /p − /k + /q)]�(b)(p − k + q)

− [( /p − /k), γ b]S(k)

× [γb, ( /p − /k)]�(b)(p − k)}. (A4)

When we omit the vertex form factor of the meson-nucleon
coupling, the meson propagator is given as

�a(k) = 1

k2 − m2
a

, (A5)

and

�(a)(k + q) − �(a)(k) = −�(a)(k + q)q(2k + q)�(a)(k).

(A6)
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Then the above equation can be rewritten as the following
expression:

qµ�µ = −i
∑

a

Ca

∫
d4k

(2π )4
γ aS(k)γa[�(a)(p − k + q)

× (2p − 2k + q)µ�(a)(p − k)] − i
∑

b

C̃b

×
∫

d4k

(2π )4
{[γ b, ( /p − /k + /q)]S(k)[γb, ( /p − /k)]

×�(b)(p − k + q)(2p − 2k + q)µ�(b)(p − k)

− [( /p − /k + /q), γ b]S(k)[γb, γµ]�(b)(p − k + q)

− [γµ, γ b]S(k)[γb, ( /p − /k)]�(b)(p − k)}. (A7)

From the above equation we can get the following vertex
correction, which we call �(1).

�(1)
µ = i

∑
a

Ca

∫
d4k

(2π )4
γ aS(k)γa

×{�(a)(p − k + q)(2p − 2k + q)µ�(a)(p − k)}

+ i
∑

b

Cb

∫
d4k

(2π )4
{[(/p − /k + /q),γ b]S(k)[γb, ( /p − /k)]

×�(b)(p − k + q)(2p − 2k + q)µ�(b)(p − k)

− [( /p − /k + /q), γ b]S(k)[γb, γµ]�(b)(p − k + q)

− [γ b, γµ]S(k)[γb, ( /p − /k)]�(b)(p − k)}. (A8)

However, Eq. (A3) can be rewritten as

�F (p) = i
∑

a

Ca

∫
d4k

(2π )4
γ aS(p − k)γa�

(a)(k)

+ i
∑

b

C̃b

∫
d4k

(2π )4
[ /k, γ b]S(p − k)[γb, /k]�(b)(k).

(A9)

Equation (A9) is obtained only by a variable transformation
(k → p − k) from Eq. (A3).

Substituting Eq. (A9) into Eq. (A2), we obtain the follow-
ing:

qµ�µ(p + q, p) = −�(p + q) + �(p)

= i
∑

a

Ca

∫
d4k

(2π )4
γ a{S(p − k + q)

− S(p − k)}γa�
(b)(k)

+ i
∑

b

C̃b

∫
d4k

(2π )4
[ /k, γ b][S(p − k + q)

− S(p − k)][γb, /k]�(b)(k). (A10)

Using Eq. (A1) the above equation reduces to the following
expression:

qµ�µ = iqµ
∑

a

Ca

∫
d4k

(2π )4
γ aS(k + q)�µS(k)γa�

(a)(p − k)

+ iqµ
∑

b

C̃b

∫
d4k

(2π )4
{γ b( /p − /k)S(k + q)�µS(k)

× ( /p − /k)γb�
(b)(p − k). (A11)

From the above equation we can get another expression of
the vertex correction, which we call �(2), as

�(2)
µ = i

∑
a

Ca

∫
d4k

(2π )4
γ aS(k + q)�µS(k)γa�

(a)(p − k)

+ i
∑

b

C̃b

∫
d4k

(2π )4
{[( /p − /k), γ b]S(k + q)

×�µS(k)[γb, ( /p − /k)]�(b)(p − k)}. (A12)

The two expressions of the vertex correction, �(1) and
�(2), are not the same because there are ambiguous terms
proprotional to σµνq

ν, qµ − (p · q)pµ/p2, and so on.
Now we take the limit of q → 0.

lim
q→0

�(1)
µ = −i

∑
a

Ca

∫
d4k

(2π )4
γ aS(k)γa

∂

∂pµ
�(a)(p − k)

+ i
∑

b

C̃a

∫
d4k

(2π )4
[γ ν, γ b]S(k)[γb, γ

κ ]

× ∂

∂pµ
D(b)

νκ (p − k)

= −i
∑

a

Ca

∂

∂pµ

∫
d4k

(2π )4
γ aS(k)γa�

(a)(p − k)

+ i
∑

b

C̃a

∂

∂pµ

∫
d4k

(2π )4
[γ ν, γ b]S(k)

× [γb, γ
κ ]D(b)

νκ (p − k)

= − ∂

∂pµ
�F (p) (A13)

with

D(a)
µν (q) = �(a)(q)qµqnu. (A14)

Similarly

lim
q→0

�(2)
µ = −i

∑
a

Ca

∫
d4k

(2π )4
γ a ∂

∂pµ
S(p − k)γa�

(a)(k)

+ i
∑

b

C̃a

∫
d4k

(2π )4
[γ ν, γ b]

∂

∂pµ
S(p − k)

× [γb, γ
κ ]D(b)

νκ (p − k)

= −i
∑

a

Ca

∂

∂pµ

∫
d4k

(2π )4
γ aS(k)γa�

(a)(p − k)

+ i
∑

b

C̃a

∂

∂pµ

∫
d4k

(2π )4
[γ ν, γ b]S(k)
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× [γb, γ
κ ]D(b)

νκ (p − k)

= − ∂

∂pµ
�F (p) (A15)

In the zero-momentum limit q → 0, thus, the two expressions
of the vertex correction, �(1) and �(2), agree with each other.

Here we give a comment. If we substitute the full prop-
agator, S(k), into Eq. (A8), we have to solve the vacuum
polarization, which is also very difficult. In the usual RMF
approach we usually calculate observables contributed from
the nucleon in the Fermi sea by using only the density-
dependent part, SD(k), instead of the full propagator, S(k).
In the case of the RH, where the self-energies are momentum

independent, the following equation is satisfied,

i

∫
d4k

(2π )4
[SF (k + q) /qSD(k)�(p − k)

+ SD(k) /qSF (k − q)�(p − k + q)]

= i

∫
d4k

(2π )4
SD(k)[�(p − k + q) − �(p − k)]. (A16)

This equation implies us that we can describe particle-hole
excitations with the usual approximation that the density-
dependent part of the nucleon propagator SD (9) is used in
�(1) instead of the full propagator. The actual momentum
dependence is very small, and the Eq. (A16) is approximately
satisfied in the RHF case, too.
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