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Solution of the Bohr Hamiltonian for soft triaxial nuclei
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The Bohr-Mottelson model is solved for a generic soft triaxial nucleus, separating the Bohr Hamiltonian
exactly and using a number of different model potentials: a displaced harmonic oscillator in y, which is solved
with an approximated algebraic technique; and Coulomb/Kratzer, harmonic/Davidson, and infinite square-well
potentials in 8, which are solved exactly. In each case we derive analytic expressions for the eigenenergies, which
are then used to calculate energy spectra. Here we study the chain of osmium isotopes and compare our results

with experimental information and previous calculations.
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I. INTRODUCTION

The Bohr-Mottelson collective model of the nucleus has
recently attracted significant interest because of the possibility
of deriving many “new” solvable cases [1-18]. Intense efforts
did arise because of the availability of models, based on
the square-well potential, that are related with the issue of
critical point symmetries at the phase-shape transition [E(5),
X(5) and Y(5)] [1-3]. This has given rise from one side to
many applications aimed at the survey of existing experimental
spectroscopic data and at the identification of signatures for
the new models [19-25] in various mass regions, especially
in connection with the effort to build new descriptions for
transitional nuclei. Moreover, a number of mathematical
solutions of the Schrodinger equation associated with the Bohr
Hamiltonian with various model potentials have been proposed
[5-11,14-18]. For some of those potentials, which in general
are functions of the quadrupole deformation variables 8 and y,
an exact separation of variables is possible, whereas in other
cases an approximate separation holds. Usually the spectrum
(and transition rates) is derived analytically and compared
with available experimental data. We mention that for a
number of these new solvable cases extensive comparisons
with experimental data are still not available.

Recently a solvable model was proposed for the soft triaxial
rotor with a minimum in the potential along the y direction
located at 7w /6 [14]. The aim of the present article is to extend
and complete that solution, proposing a solvable model for
which the Schrodinger equation is separable. The y-angular
partis then solved for a harmonic potential centered around any
o in the interval [0, 7 /3], whereas the g part is solved exactly
for the Kratzer-like potential, for the Davidson potential, and
for the infinite square-well potential.

Another reason to search for analytic solutions to the more
general case with nonirrotational moments of inertia comes
from a recent study [26] in which the rigid triaxial rotor
model is improved by relaxing the assumption of irrotational
flow moments of inertia. The fit of the three components
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of the moment of inertia to experimental data improves the
description of a number of nuclear properties and suggests
that the irrotational assumption is not correct. Our model
incorporates this idea and extends the rigid model to y-soft
models.

To give an idea of the typical problem we consider we
show in Fig. 1 a contour plot of the potential surface with a
Kratzer-like potential in B (with the minimum at By = 0.2)
and a displaced harmonic oscillator potential in y (with the
minimum at yy = 10°). The solution of the two-dimensional
Schrodinger equation for the Bohr Hamiltonian containing
this potential surface is given by a set of eigenvalues and
their corresponding eigenstates. To each eigenstate (and in
particular to the ground state) an average quadrupole shape is
associated. In the present case (Fig. 1) the wave functions are
concentrated around the region of the minimum and thus we
are dealing with a soft triaxial rotor.

The present study may also be considered as an attempt to
solve a simple model that may be compared with microscopic
theories [such as Hartree-Fock (HF), HF+Bardeen-Cooper-
Schrieffer (BCS), or Hartree-Fock-Bogolivbov(HFB)]. [27—
29]. The potential surfaces used throughout the article, rather
than being calculated with a variational procedure in a
microscopic framework, are instead a priori given in analytical
form. A number of early microscopic studies, such as for
example, Ref. [27], concluded that ysoftness was not only
unavoidable in triaxial nuclei, but that the potential barrier
in the y direction was so small that it cast doubts on the
applicability of the rigid rotor model. We therefore reanalyze
a number of osmium isotopes, which were treated within a
HFB formalism, and compare our results with the results of
Ref. [29].

In the present article, we use a potential of the form
Vi(B) + Va(y)/B%, which allows for a separation of the Bohr
Hamiltonian in 8 and (y, 6;) part (Sec. II). The solution of the
(y, 6;) partis amply presented in Sec. III. In Sec. IV we discuss
the quantum numbers associated with the present model and
presents a few comments on quasidynamical symmetry. In
Sec. V we discuss in detail some examples that illustrate
the method of solving Eq. (10). In Sec. VI, we solve
analytically the 8 part of the problem in the Coulomb/Kratzer,
harmonic/Davidson, and infinite square-well cases. In
Sec. VII and VIII, we discuss the fitting procedure and its
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FIG. 1. Contour plot of the potential V (8, y) with minimum in
= 10° and By = 0.2. The situation depicted here corresponds
to a very soft deformed triaxial rotor, where the V;(8) potential
[see Eq. (3)] has a Kratzer-like form, whereas the V,(y) is a
displaced harmonic oscillator. The coordinates are X = B cos y and
Y = Bsiny.Inthe point § = O the potential goes to 4-oco (black area).

accuracy and we apply the method to the chain of osmium
isotopes and make a comparison with other calculations. Here,
we also stress the fact that, in doing so, in general we go
beyond an irrotational approach and make use of three different
moments of inertia used as parameters. The need to take into
account this possibility has been emphasized before by Wood
et al. [26]. We also compare with the situation of irrotational
flow in which a value yy can be deduced and implies that
fluctuations of the moment of inertia in the y direction are
neglected, but the softness is included. we note that the
values of yy so obtained correlate well with results extracted
from different methods used to analyze data in the Os nuclei
(Sec. VIII). We analyze these isotopes, particularly because
they are thought to be situated in the transitional region
between y-rigid and y-soft shapes. In Sec. IX, we formulate
the main conclusions of the present study, whereas in the
Appendix, we explicitly present the matrix elements used in
the calculations.

II. FORMULATION OF THE MODEL

The Schrédinger equation for the Bohr Hamiltonian reads

HgW(B,y,0) = EV(B,y,6), (1)
where the Hamiltonian is given by
ﬁ_h218ﬂ48 11 0 ()
5= 758, g o’ 98~ 2B, B2sinGyray 7
hZ A2
VB, y). 2
8B B* 122:3 sin?(y — 271 /3) V. y) @
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Here L; are the projections of the angular momentum (L) on
the body-fixed axes and B,, is the mass parameter. An exact
separation of the variables § and y may be achieved when the
potential is chosen as

Va(y)
B
The resulting set of differential equations (one containing only
the B variable and the other containing the y variable and

the Euler angles, 6, with ¢ = 1, 2, 3), after multiplication by
2B, /hz, reads

VB.y)=Vi(B)+ —5— 3

19
[_Fﬁﬁ £+M1(ﬁ)—€+ﬁ2:|$(ﬂ)=0 C))
19 3 L2
TGy oy S ”) 122:3 4sin2(y — 27i/3)
+us(y) — wi| Y(y,0)=0, ()

where  is the separation constant, € = (2B, /hz)E , and
u;, = (2B, /hz)V, with r = 1,2. The wavefunctions satisfy
VB, y,0)=EPB)Y(y, ). In Ref. [14] the same derivation
has been proposed, but the problem was restricted to deriving
the solution of the soft triaxial rotor around y ~ /6. In that
case the rotational kinetic term may be written in a very simple
way and the solution of y-angular part may be given in a
straightforward way. The main result of Ref. [14] was (i) to
extend the Meyer-ter-Vehn formula [30] (strictly valid for a
rigid rotor at y = 30°), proving that the corresponding formula
for the y-soft rotor requires the addition of a (trivial) harmonic
term in the y degree of freedom, and (ii) to show that the
solution of the full problem does not necessarily imply a trivial
extension with some additive term to include the g8 vibrations
but rather yields an expression for the energy levels in which
the quantum numbers are intertwined in a more complicated
way.

Here we extend the results of Ref. [14], addressing the
more general problem of a soft triaxial rotor (not confined to
y ~ 30°), solving approximately the y-angular equation with
a potential of the form

Cly —n)* = Cx? ©6)

that has a minimum in the interval 0° < yp < 60°. For
symmetry reasons we can restrict ourselves to the sector 0° <
10 < 30°. The obstacle to the further separation of variables
in Eq. (5) is represented by the rotational term (second term),
which mixes the variable y with the projections of the angular
momentum. This term can be rewritten as Y ; A; L2. We follow
two strategies to deal with the coefficients A;.

ur(y) =

(1) The first strategy is to approximate these coefficient as
follows

1
"~ 4sin?(yy — 27i/3)

and to replace the corresponding terms in Eq. (5).
The physical meaning of this approximation is that the
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fluctuations of the moments of inertia are completely
neglected, whereas the softness is taken into account.
Making use of the form (7), we can parametrize the
components of the moment of inertia by one single
parameter.

(i) It has been shown in an extension of the rigid rotor
model [26] that the components of the moment of inertia
fitted to experimental data do not necessarily agree with
the irrotational approximation. We therefore include this
observation in our model, as a second strategy, taking the
components of the moment of inertia as parameters.

In the spirit of finding a simple solution, we introduce in
Eq. (5) the further simplification sin 3y ~ sin 3y, obtaining

D,

92 R
—W+Cx2—w+ YO AL | yx.0)=0. ®
i=1,2,3

where the variable x, introduced in Eq. (6), has been used
and where the second-order differential operator D, has
been defined. The wave function may be written in the
unsymmetrized form as an expansion in terms of rotational
wave functions, namely

Yrm(x.0) =Y ag.(x)Dy; (0. ©)
=

where K’ is introduced to distinguish the multiple occurrence
of states with the same L. One may notice that the rotational
basis has an SO(2) symmetry reflected in the good quantum
number K’. We now multiply to the left by D,@’ ¢ and integrate
over the Euler angles, exploiting the orthonormality property
of the Wigner functions where possible. The result is the set
of equations (one for each allowed value of K)

(Dy — wag(x)+ Y A; Y (LMK|L}LMK )af.(x) =0,
i K’

(10)

each of which contains matrix elements of the squared
components of the angular momentum (see the Appendix).
We may rewrite it also as

([)2 —o+ Y A (LMK|£?|LMK)) ak(x)
(A — Ay)
Tt
(A — Ad)
Tt

(LMK|L2 LMK — 2)ak _,(x)

(LMKI|L?|LMK +2)ak,,(x) =0

(11

to highlight that only three of the a coefficients appear in every
equation.

III. ALGEBRAIC APPROACH

A convenient way to treat the y-angular part is to consider
the dynamic symmetry associated with the D, operator,
which is essentially a harmonic oscillator Hamiltonian. The
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advantage here lies in the fact that the spectrum-generating
algebra allows us to write explicit expressions for the y-
vibrational spectrum.

The infinitesimal generators of the sp(2,R) Lie algebra may
be written as

Lo Zy=kx* Z TEE (12)
_— fd —_— — - X—
Kox2 2T : "\2 0x

where k is a constant. Similar approaches have been used in
Refs. [4,6]. The operators above close under commutation,
ie.:

(21, Z5] = —4iZ3

2=

(23, 211 =2iZ;.
(13)

(23, 2] = —2iZ,

With the linear transformation
Xi=321-2) X=12; X3=421+2y), (14
one may recognize the standard commutation relations of the

fourisomorphic Lie algebrae su(1, 1) ~ so(2, 1) ~ sp(2, R) ~
sl(2, R)

X1 %ol =—iXs X Xl =ik (X Xi)=iX. (15)
It is also very useful to define raising, lowering, and weight
operators for this algebra,

X, =X tiX, Xo=X;. (16)

that obey the following commutation relations
[Xi X_1=-2X, [Xo. Xi]l=+X.. (17
The action of the above operators on orthonormal basis states

for the irreps of su(1,1) (|n, A) withn =0, 1,2, ...) is given
by the equations

Xinh) =V +n)@n + Din+1,4) (18)
X_In+1,4) =V +n)n+ 1)nir) (19)

Xolna) = 100 + 2n)|nA). (20)

The values of A are found by comparing the standard
eigenvalue equation for the Casimir operator of su(1,1) with
the eigenvalue equation for the same operator but explicitly
realized in the terms of the operators defined in Eq. (12):

Colnr) = (X3 — X1 — X3)Ind) = }a(r — 2)lnn).  (21)

The action of the Casimir operator on a given function ¢(x)
gives

oy = | 24 2220 - B gy =~ 210 @
2090 = | (L4142 241 1 ="16%"
Therefore we obtain A = 1/2,3/2. As a consequence of the
definitions given in this and in the previous section, we notice
that

Dy = C(Z) + Z,) = V/C4X,, (23)

where the constant  is defined as k = V/C. The action of the
operator 4 X is given, for each allowed value of A, by (1 4 4n)
and (3 + 4n), respectively. Combining the two results we may
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write that the eigenvalue equation for the D, operator is given
by

Dyln,) = VC(1 4 2n,)In,, ), (24)

where we dropped the index A to cover the whole spectrum,
and as D, is the harmonic oscillator operator in the y degree
of freedom, we can associate n with the number of phonons in
the y variable, n = n,,.

IV. SOLUTION OF COUPLED EQUATIONS,
QUASIDYNAMIC SYMMETRY, QUANTUM NUMBERS,
AND BAND STRUCTURE

We discuss here the quantum numbers that appear when
solving the problem presented in the previous section. The
coupled set of Eq. (10) contains the rotational and y-
vibrational structure through the functions a%, and the operator
D, respectively. In the absence of y vibrations (n, =0), we
are left with the rotational structure (see Fig. 2), which can be
analyzed as following. For each L there is a set of allowed Ks:
{Ki,..., Ky} where K; =0and Ky = L for L even (thus we
have L/2 + 1 coupled equations) and K; =2and Ky = L — 1
for L odd [giving (L — 1)/2 equations].

For y =0 and y = 7 /3 the projection of the third com-
ponent of the angular momentum on the intrinsic axis 3
gives a good quantum number (K), whereas for y = /6 the
eigenvalue of the projection on the intrinsic axis 1 is a good
quantum number (R). In the intermediate regions, none of them
may be taken as a good quantum number. In the expansion
(9) the introduction of K’ as a label to distinguish between

40

36
32
28
24
8 20

16

12

Y (deg)

FIG. 2. Eigenvalues of Eq. (10) as a function of the asymmetry
for n,, = 0 (relative to the lowest eigenvalue). In this case the solution
of the rotational part for the y-soft triaxial rotor corresponds to the
outcome of the Davydov model [31]. In addition, the soft model has
infinitely many other copies (one for each possible value of n,) of
these sets of bands at higher energies (depending, of course, on the
magnitude of C).
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the multiple occurrence of states with the same value of L is
justified because it is referring to the rotational states.

It has been observed that in the triaxial region, moving from
y = 30° toward y = 0°, different groups of states may well
be classified into bands: a first band (0", 2%, 4%, ...) tends
to the finite axial rotor values and corresponds to K = 0; a
secondband (2, 3%, 47, .. .)isidentified by its behavior when
y — 0 (in Fig. 2 this group of states somewhat cluster around
y ~ 10°-12°); and the beginning of a third band (4™, 5%, ...)
is seen to escape to infinity at a quicker pace (leaving Fig. 2 at
around y ~ 20°).

The experimental observation that a classification in B
and y bands seems an almost universal feature of nuclear
spectra reinforces this choice. The labeling with the K quantum
number is often encountered in the literature, although for
what we have said here it may not be considered adequate. In
the following we use the notation K* to regroup the various
eigenstates into bands, which are the counterpart of the bands
with good K, that are present in the axial cases.

For phonons with total angular momentum 2, one usually
takes into consideration two projections |K| = 0,2. These
projections correspond to the so-called 8 and y phonons,
which generate axial and nonaxial quadrupole oscillations,
respectively. Because of the nonaxial character of the y
variable, the y vibrations are naturally incorporated into
Eq. (10). This is obtained through the operator Dz, which
adds the y vibrations to the basic structure of rotations of a
rigid triaxial body. Consequently, one can construct y bands
that consist of copies of the structure of the rigid triaxial rotor
(Fig. 2), where every copy possesses a different number of
y vibrations, characterized by n,. Once the rotational and
vibrational structure is determined, the eigenvalue w can be
calculated (in the standard way) and plugged into Eq. (4) to
solve for the § part of the problem. An elaborate discussion on
the B part and the chosen potentials is addressed in Sec. VI.

One may describe the present situation in terms of a
quasidynamical symmetry [32,33] of a peculiar character:
at y = 0° the group SO(2) is a symmetry of the system,
associated with K, whereas at y = 30° another SO(2) group
is a symmetry of the system, associated with R, the chain
being U(5)D>SO(3) common to the whole sector 0 < y < /6.
In the intermediate region, 0 < y < 7/6, the SO(2) symmetry
is broken, but it must be noticed (see Fig. 2) that the structure
of the rotational spectrum, present at y = 0°, persists in the
whole sector without being altered in a dramatic way. Only a
smooth and slight change may be seen. Moreover, the structure
of the “maximally” triaxial rotor at y = 30° persists also in
the region around y ~ 20°-30°. In the intermediate region
these groups of states escape to infinity. It must be further
noticed that the region where the various states, that originate
from the axial rotor side, are most affected is exactly the
region where the states coming from the y = 30° triaxial
rotor diverge. The strange character of this quasidynamical
symmetry is that (at variance with the cases discussed by Rowe
and collaborators [17,32,33], where a true phase transition was
present between two exactly solvable limits associated with
different symmetries and different group structures) here we
are dealing with a smooth transition between two limits that
formally have the same underlying group structure, SO(2), and
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there is no critical point in between. Therefore we conclude
that the proposed labeling that retains the formal division in
B, v, and K bands typical of an axial rotor, is not only justified
by the empirical observation that nonaxial nuclei display the
same classification in bands, but it is also justified in view
of arguments based on a group theoretical approach. It is not
clear, at present, if a quantization procedure around a tilted
axis may help to shed light on this aspect.

V. EXAMPLES

Equation (10) is solved here in a few cases. Applying the
recipe discussed in Sec. IV, the set of differential equations is
turned in a single algebraic equation in w. When L = 0, only
the value K’ = 0 is present and therefore Eq. (10) reduces to

(Dz —w+ Z A; (000|£,.2|000)) ad(x) =0, (25)

l

where all the matrix elements are evaluated to be zero and the
first solution is thus w0 k+=0,n,=0 = +/C and we may write,

in general, wp—0 k+=0.n, = Ve + 2n,,).

States with L = 1 are not present in this model.

For L = 2, the two possibilities are K’ = 0, 2, correspond-
ing to two coupled equations,

(D) — @ +3A; 4+ 3A2)a +V3(A) — Ay)a2 =0 (26)
(D) — 0+ Ay + Ay + 4A3)a + V3(A — Ay)al =0, (27)
whose solutions are, wp—3 g,n, =

VCa+2n,)+2) A iz\/ZA,? — > AA; (@28)

i<j

The rotational parts of these expressions reduce to the correct
values, 3 and 6, respectively, when y = 30°.

For L = 3 the only possibility is K’ = 2 and the solution
becomes

wL=3 Kk an, = VO(1 +2n,) +4A; + 445 + 445, (29)

Notice that when y = 30° two of the three components of
the moment of inertia (A, and A3) are equal to 1 and the
remaining (A;) is 1/4 so the rotational part of the energy
becomes 9 (as obtained in Refs. [14] and [30]). In general we
have @73 k+—2., = VC(1+2n,) +4 Y A;.

For L =4 we can write the determinant of the matrix
mentioned in Sec. IV as a third degree equation in w. Its
three solutions, corresponding to the cases K* = 0, 2, 4, may
be found analytically, although their expressions are rather
lengthy.

It is possible to write an algebraic equation in w for every
value of L, but this equation may be solved analytically only
for the lowest values. We must therefore resort to numerical
computation for high values of the angular momentum.

In Fig. 2 we plot the value of w for various states for C = 0
with irrotational moment of inertia. This case correspond to the
well-known rigid rotor solution, which is a particular aspect
of our model (see Ch. 9 of Ref. [35], for example).
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Finally we notice that, as a consequence of the definitions
given above, the following relation holds:

w00 + W20 = Woop + W320- (30)

This expression is a generalization of the well-known relation
EQY) 4+ EQ'™T) = E(3T) [34.,35].

VI. SOLUTION OF THE g PART

Once the y part is solved with a particular choice for the
moments of inertia, we can determine the solution of the $
part inserting the appropriate values for @ in Eq. (4). With
the substitution £(8) = x(B)B~2, Eq. (4) is simplified to its
standard form:

9’ x(B) 2+ w)
ap? B*
As shown in Refs. [6,7,14] an interesting case is represented by

the Kratzer-like potential (which reduces to a Coulomb-type
potential when B = 0)

ui(B)=—A/B+ B/B*. (32)

In Fig. 3 we depict the surface corresponding to the reduced
potential u(B,y) = ui1(8) + uz(y)/ﬂz, where the potential
u1(B) has a Kratzer-like form and the potential u,(y) has
a displaced harmonic dependence centered (as an example)
around 7/6. The depth of the pocket centered around the
minimum in (By, o) may be adjusted with the parameters
of the two potentials, A, B, and C.

Following [14] we can write the solution to Eq. (4) directly
as

+ {e—m(ﬂ)— }X(ﬂ)=0- €29}

A2/4
(VOJFF B+ wrxom, +1/2+n5)"
(33)

€(ny,ng, L, K*) =

where the values of @, - ., have been found analytically or
numerically as discussed in the previous section. Energies are

FIG. 3. (Color online) Plot of u(B,y) as in formula (3) for
0 <y < 7m/3. The potential u;(8) has a Kratzer-like form, whereas
the potential u,(y) has a displaced harmonic dependence centered
around 7 /6 (for purpose of illustration).
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usually redefined fixing the ground state to zero and using the

energy of the first 27 state as unit, namely

€(n,,ng, L, K*) —¢€(0,0,0,0)
€(0,0,2,0) —€(0,0,0,0)

Another interesting case that also leads to a solvable differen-

tial equation is the Davidson potential [4,36,37]:

Bp

B

This is an extension of the harmonic potential (that can be

obtained when Bp = 0). Inserting this potential in Eq. (4) gives

formally the Laguerre differential equation and the spectrum
may be written as

ep(ny,,ng, L, K*)=+/ApQ2ng + ?L,K*,ny +5/2), (36)

where, dropping the indices for simplicity, T is the solution of
T(T + 3) = Bp + w. The redefinition in reduced energy units
takes in this case a very compact form:

E(ny’ ng, L, K*) =

(34)

ui(B) = ApB* + 35)

2ng + Tr k*n, — 70,0,0

gD(n;/v ng, Lv K*) = (37)

2,00 = 70.0.0

The combination of the results for the y part in Sec. IV-V and
the results for the 8 part yields spectra with an ample range of
different possible behaviors.

Another interesting case is inspired by the E(5) and X(5)
solutions [1,2]. Starting again from Eq. (4) one can adopt a
different substitution, namely ¢(8) = B3/?£(B), and a change
of variables, z = /€B. These transformations, together with
the choice of the potential as an infinite square well, yield the
Bessel differential equation

%/ + (1 - %29/4)¢ —0. (38)

The solution of the equation above is given in terms of Bessel
J functions of irrational order

¢s$w(.3) = C.v,wjm (xs,cu /3£> s 39)

where ¢, are normalization constants (given analytically in
Ref. [38]). The boundary condition at the wall of the potential
well, ¢(B,) = 0, implies that the spectrum is given by

¢)// +

X0\ 2
esolng my, LK) = (22)". (40)
Buw
Here and in Eq. (39), x; ,, is the s-th zero of the Bessel function
with an index that depends on wy, g+ ,,. Notice that ng =s.
The reduced spectrum takes the following form

2 2

_ * S, WL, K* ny 0,000

€sg(ng,n,, L, K") = P R—— 41
0,200 0,000

This solution is somewhat similar to the so-called Z(5)
solution [11], where an infinite square well in § was combined
with a harmonic oscillator centered around y = 30°. Major
differences are the choice of exact separation of variables
made here, the extension of the solution to the whole sector
0° < y < 60° and the possibility to relax the hypothesis of
irrotational motion in deriving for the components of the
moments of inertia.
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VII. RANDOM WALK FITTING PROCEDURE

We are now equipped with a procedure to calculate the
eigenvalues of the y part of the problem and we have given
a few analytic solutions (Coulomb and Kratzer, harmonic
and Davidson, and infinite square well) for the S part.
The energy spectrum [Eq. (33)] depends formally on six
parameters, A, B, C, Ay, Ay, and Aj, three of which come
from the potentials (32) and (6), whereas the other three are
the components of the moment of inertia. A closer at to Eq. (34)
reveals that once the eigenspectrum is scaled in the standard
way, it does not really depend on A, whereas Eq. (33) does. We
can now follow the strategy to keep the irrotational hypothesis
and, because the various components of the moments of inertia
are connected to each other by means of the relations in
Eq. (7), one has to deal with just one component (or
alternatively with y;). The other two components may be thus
determined inverting Eq. (7):

1
=arcsin|{ —— |, 42
s (57%) @

and, substituting the value of y; in the definitions of A; and
A»,, we obtain the results

i 4A; o 44,
T V124 =3+ 12 T (J12A; 312"

Therefore our model, using the Kratzer potential, has only
three parameters, B, C, and A, that may be used to fit
experimental energy spectra.

This reduction of parameters, though convenient, may be
very restrictive (see Ref. [26]) and we prefer to also implement
a procedure to keep all the components as independent
parameters, at the price of complicating the fit to experimental
data. We distinguish the fitting procedures by naming them
irrotational (three parameters) and nonirrotational fit (five
parameters).

Similar considerations apply to the energy spectrum of
the harmonic/Davidson potential. In Eq. (36) six parameters
are formally present, but using the reduced spectrum and the
relations among the components of the moment of inertia,
ultimately depending on only three of them (Bp, C, and A3).
Alternatively the nonirrotational fit includes five parameters
(Bp, C, Ay, Ay, and Aj). Likewise, for the square-well case,
(four) two parameters are present in the (non-)irrotational fit.

Because of the number of parameters we have preferred to
use a numerical method based on a random walk procedure to
determine the energy spectrum.

As a first step we consider an isotope and a subset of
its experimental levels (usually quite small, four levels typ-
ically). Starting from some initial set of parameters (typically
B =C =20 and A3 = 1), we minimize the deviation of
the calculated and experimental energy values by walking
randomly in a suitable part of the multidimensional parameter
space. The random walk is initially constrained to take only
irrotational moment of inertia (i.e., A; and A, are calculated
directly from A3) and consists of a coarse-grain and a fine-grain
stage, each of which takes a certain number of steps. The coarse
and the fine phases of the procedure differ in the percentual
amount of the initial parameter values, which is allowed to

43)
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change randomly (50 and 10% typically). We usually end
up with a set of parameters that correspond to some local
minimum of our hypersurface (although it must be noticed
that in this way we are not sure to catch the absolute global
minimum). From this set one may calculate a spectrum, which
can be compared with the experimental one and a total error,
\/ >..(1 — EM/E™)2, that gives an idea of the accuracy of the
description that one may get. Usually, using as input values
energies of the ground and y bands, the typical accuracy may
range from 1 to 0.1%. At this point one is still allowed to
identify a value of yy, calculated from the irrotational moments
of inertia (42), with the angular position of the minimum.
As a final step we start from the set of parameters resulting
from the irrotational fit, but now we relax the irrotational
hypothesis, treating all the components of the moment of
inertia as individual parameters. Often the higher freedom of
this fit reduces the error by a factor 2—10, but sometimes this
procedure does not improve substantially the quality of the fits.
It has to be stressed that at this point the identification with a
single value for yy no longer makes sense.

Our goal is, from one side, to give a simple model that goes
beyond the estimate of ground-state energies and furnishes a
decent description of ground and y bands and, furthermore,
allows one to extract a possible behavior of the potential energy
surface associated with a given isotope.

One must keep in mind that this model will work only
when the potential energy surface has just one minimum.
The fact that, after fitting, some important discrepancies result
between calculated and experimental values may point out that
a geometrical model may not be well applicable after all.

VIII. THE OSMIUM ISOTOPES

We applied the procedure explained in the previous
section to the case of the osmium isotopes with A =
172180, 184—192. The irrotational fit with the Davidson
potential, starting from the 47 and 6™ levels of the ground-state
band and the 27 level of the K* = 2, n,, = 0 band and the 0"
level of the K* = 0,n,, = 1 band, leads very quickly to a set
of parameters, Bp, C, and A3, that gives always a rather good
description of the low-lying positive parity energy spectrum,
with an estimate on the total error, as defined above, which
is in the range 0.01-0.09. In Figs. 4 and 5 we compare the
experimental energy levels of '#%:192Qs (a) with the irrotational
fit (b), obtained from 1600 runs of coarse grained random
walk plus 1600 runs of fine grained random walk. In this
case the nonirrotational fit does not improve in a sizable way
the quality of the fit. The absolute error in the case of the
10" state is ~100keV, or less. In the best cases the accuracy
for the 8" and 10" members of the ground-state band may
reach the value 1/1000. It is observed that the ground-state
and excited bands are fairly well reproduced (which is not
surprising because we used the positions of two levels of each
band as an input to our calculations). A bit more surprising is
the qualitative behavior of other bands: usually we find that
the (K* =0,n, =1,ng=0)and (K*=4,n, =0,ng =0)
bands lie lower (in a few cases dramatically lower) than the
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FIG. 4. Experimental spectrum of '38Os (a) and irrotational fit (b)

obtained with Bp = 62.301, C = 82.66, A; = 2.3917. Experimental
data are taken from Ref. [39].

first B band (K* =0,n, =0,ng =1). In Fig. 6 we report
the reduced energy of the bandheads of the lowest bands

(@) (b)
2250
2000
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1500
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6L5.295 o548 5934+ 5397
465 6 1
4+ 4.42 0% o464 ond
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4+ 2.82 4+ 281
9+ 237 9+—2.39 500
o+ 1.00 9+ 100 pre _ 5 o 1250
=0 ny=1
0.0 ot 0.00 "1 =0 " i
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FIG. 5. Experimental spectrum of '®?Os (a) and irrotational
fit (b) obtained with Bp = 132.182, C = 44.6504, A; = 1.39954.
Experimental data are taken from Ref. [39].
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I O T T [ S S|
172 174 176 178 180 182 184 186 188 190 192

AOs

FIG. 6. Reduced energies of the bandheads of the (K*, n,,, ng) =
2,0,0),(0,1,0),4,0,0),and (0, 0, 1) bands (indicated with circles,
squares, diamonds, and triangles, respectively) as obtained from the
irrotational fit procedure for the whole chain of osmium isotopes.

for the whole chain. In the osmium nuclei with lower mass
number, we find comparable energies for the 8 band and for
the K* = 0 band, whereas the K* = 4 lies at considerably
higher energies. This is reflected in the magnitudes of the Bp
and C coefficients: for '°?Os they are respectively, ~130 and
~44, but as soon as we move to lower mass numbers the value
of Bp drops to less than 1 for the lightest ones. Thus, the
B vibrations are found at much lower energies.

The example displayed in Fig. 4 is rather rigid and the
(dimensionless) values of the parameters are Bp = 62.3, C =
82.66, and A3 = 2.3917. The latter corresponds to a value of
1o =~ 18.86°. The energy difference between the minimum of
the harmonic oscillator and the values at one of the borders of
the Ay = 60° wedge is roughly

o (y—w)? 044
2B, B2 B3

which, for a reasonable value of Sy (e.g., values smaller than
0.3), is higher than the excitation energy of the higher lying
states shown in Fig. 4: Eg+ ~ 1.5 MeV. To calculate the value
in Eq. (44) we used the Bohr-Mottelson prescription [40] for
the mass, coefficient, B,, = %%AMNR(%, where A =2, My
is the nucleon mass, and Ry = roA!/? is the nuclear radius.
Therefore we obtain

MeV, (44)

R ArRic? 120.72 MeV
2B, 3Mycr2AS3 AS/3

(45)

This expression, combined with the proper mass number, has
been used in Eq. (44). The evaluation of the depth of the
potential well gives an indication that the wave functions of the
states that we have fitted are all well confined inside the well.
In fact the true shape of the potential is thought to depend on
y periodically (terms such as cos 3y are the most important),
therefore the harmonic oscillator shape can represent only a
convenient approximation that is valid around the minimum.
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FIG. 7. (Color online) Values of y; from irrotational fit to various
osmium isotopes (line with circles, lower panel) and corresponding
values of parameters C (middle panel) and Bj (upper panel).

Predictions obtained in Ref. [41] with a different method are also
shown (dashed line, lower panel).

InFig. 7 we show the values of y; (black dots) obtained from
the irrotational fit for the whole chain of osmium isotopes that
we have analyzed together with the corresponding values of
the parameter C (red squares, middle part) and Bp (diamonds,
upper part). We notice that although the value of y; decreases
from the left to the middle and then increases, the value of the
parameter C shows no regular behavior with the mass number.
When one considers the extremes of the mass chain, the rotor
becomes softer. By applying relation (44) to the softest case
(1720s) one can check that the harmonic approximation is still
valid.

In Fig. 7, we also display (dashed line with blue triangles)
predicted effective values of y using K shape invariants [41].
Despite the different technique used to obtain those values
(which are extracted using quadrupole matrix elements and
B(E?2) values) they agree fairly well with our results. For these
values, the error bars result from errors on the measurement of
the transition rates. In our case an estimate of the theoretical
error is quite difficult: in principle we can repeat the fitting
procedure many times and we can extract a distribution of
values of parameters. To understand if our procedure is reliable
we have repeated the fit on 8Os 20 times. We have collected
the various sets of parameters and in Fig. 8 we present the
extracted values of yy. It is therefore possible to obtain an
estimate of the distribution of y; values and to give mean
values and corrected standard deviations as a simple estimate
for the theoretical error.

Hartree-Fock-Bogoliubov calculations have been carried
out (Ref. [29]) in the Os-Pt region with results pointing toward
a prolate structure with yy very close to 0° and with a flat
potential in y (for the Os nuclei with A = 186-192). In
such self-consistent calculations the potential energy surface
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FIG. 8. (Color online) Values of y, (black dots) and of the
parameter C (red squares) extracted from 20 independent fits to
1780s. From these data one obtains an estimate of the theoretical
error associated with the fitting procedure described in the text. Mean
values, (), and mean values + the corrected standard deviation,
((y0) £ 0(y)), are indicated with dashed and dotted lines for both
quantities, respectively.

is calculated variationally, starting from a given effective
interaction. In most cases no dynamical calculations are done
on top of that and energies are often associated with the
exact value of the minimum of this surface. Likewise, a few
excited states can also be predicted. Our approach starts from
a given mathematical expression for the potential V (8, y),
which is then used to solve the collective model and can
predict full energy spectra. However, the particular choice of
V (B, y) made at present may still deviate from actual, more
realistic, potential energy surfaces. Moreover, indications exist
for ground-state hexadecapole deformation in the Pt-Os region,
as suggested by strong E4 coupling arising in (o, ') and
(p, p’) reactions.

Very recently a description of Os isotopes (among others)
has been proposed within the IBM-1 [42]. The authors
fit the low-energy positive-parity spectra obtaining a good
overall description. Both their work and ours, which rely
on models based on different ingredients, describe equally
well a good fraction of the spectral properties of Os isotopes,
although a number of differences clearly leave room for more
detailed studies. Another analysis of quadrupole moments,
and transition and transfer rates of (platinum and) osmium
isotopes in terms of IBM-2 [43] shows that a reasonably
good agreement with experimental data can be obtained with
a smoothly varying set of parameters.

In our present study to construct solutions to the Bohr
Hamiltonian for soft triaxial nuclei, the model parameters used
determine (i) the moments of inertia (through the parameter
Aj, or A; for the more general fit), (ii) the stiffness parameter C
for the y-oscillatory motion, and (iii) Bp and A p determining
the Davidson potential. There appear rather large variations
in particular in Bp and C; however, the deduced value of
the quantity yo (see Fig. 7, bottom panel) still exhibits a
very smooth variation and agrees very well with results
using a totally different approach [41]. We stress that the
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FIG. 9. (Color online) Electric quadrupole moments for osmium
isotopes in eb. Data (red squares with error bars) are taken from
Ref. [44]. The calculated values (black dots) have been obtained by
adjusting an additional parameter to reproduce the excitation energy
of the first 2 state.

above variations do not at all contradict the fact that smooth
variations in the parameters for the IBM-2 Hamiltonian result
in describing the observed data in the Os nuclei, because totally
different models are used.

To test even further our model, we present in Fig. 9 a
comparison of calculated and experimental static quadrupole
moments of the first excited 2% state. The definition of the
quadrupole moment adapted to the present case is:

16w (22 2 \3ZR;
=,/ — — 2 lex 2" 46
0 5 (20_2) o 27 Nl 127), (46)
where the reduced matrix element, once we exploit the
trigonometrical simplification for the y part and we insert
the values of the Clebsch-Gordan coefficients, is calculated to
be
27 llez 127) = (Eo(B)IBIE (ﬂ))i -
1 211417 = \s0 0 m 4C

X [cos Y0 (a% — a(z]) + ZaSaS sin yo]. 47
The last expression still contains the matrix element of g that
depends on the Davidson ground-state wave function, which
in turn contains the parameter Ap. This parameter can be
fixed by requiring that ep(2") — €p(0") matches with the
absolute energy difference in MeV. The results collected in
Fig. 9, are correct both in sign and trend, but they underestimate
a bit the measured values [44]. A more complete study,
including B(E?2) values, is in progress.

IX. CONCLUSIONS

In the present article, we have presented a method to
solve the Bohr-Mottelson collective model for a general soft
triaxial nucleus. By choosing a potential of the form V (8, y) =
Vi(B) + Va(y)/ B2, the Bohr Hamiltonian separates exactly in
the B8 and y variables. Using a displaced harmonic oscillator
potential in the y direction, representing the softness in the
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y variable allows us to solve approximately the y-angular
equation. In solving that part of the problem, we discuss
two possibilities to further separate the y variable from the
projections of the angular momentum. One approximation
neglects fluctuations of the moments of inertia in the y direc-
tion, but keeps the softness. Under this assumptions, the three
components of the moment of inertia are related and result in
one parameter. The other approximation allows a fitting of the
three components of the moment of inertia independently. This
is in line with the observation that the experimental data do
not agree so well with the assumption of irrotational flow.
We then present an algebraic method to find approximate
solutions to the set of coupled equations that result for the
motion in the y variable and also discuss at some length
the state-labeling problem to characterize the various collective
bands that result. We subsequently study the equation for the 8
degree of freedom, which can be solved exactly for a number
of interesting potentials. We thus consider in our calculations
the Coulomb/Kratzer potential, the Davidson potential (which
is an extension of the harmonic oscillator potential in §), as
well as the infinite square-well potential. In each case, we
are able to derive analytic expressions that are then used to
determine the full energy spectra. These energy spectra, which
describe oscillatory behavior in both the 8 and y variables, as
well as the rotational motion, in general depend on six parame-
ters: three that characterize the V (8, y) potential and three that
determine the moment of inertia. Using appropriate scaling
in the energy spectrum only five remain to be determined.
Going back to irrotational motion, the three components of the
moment of inertia are related and this reduces the full set to just
three parameters. Because of the number of parameters and the
very involved energy eigenvalue expression, we have used a
numerical method based on a random walk procedure to obtain
the optimal fitting parameter set. We have used this method to
study the osmium isotopes in the interval 172 < A < 192. One
of the results is the fact that the equilibrium y, value shows
a rather smooth dependence on A, but the stiffness of the
potential in the y variable indicates rigid cases for intermediate
masses and softer cases for isotopes sitting at the extremes of
the considered mass chain. To elucidate this point it would
be very helpful to search for solutions of Eq. (5) with more
involved periodic potentials [45]. Still, the calculated values of
¥ are in rather good agreement with an independent approach
by Werner et al. to extract an effective y value. We hope to
study the rare-earth region in a more systematic way using the
methods presented here.

Other works recent treat similar problems but use different
approaches and aims. Caprio [16] analyzes the numerical
diagonalization of a B-soft, y-stabilized problem, showing
how the approximate separation of variables of the X(5) model
may be questioned on the basis of a strong S-y coupling.
Despite the fact that our approach is complementary (rather
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than solving exactly the numerical problem, we postulate
analytically solvable potentials and we try to see if they can be
profitably used), we reach similar conclusions. For example,
we also find that a considerable degree of dynamical y softness
is needed (for realistic cases of y stiffness) to account for
the energies of the y bands’ levels. Furthermore, our method
allows the search for the optimal value of the actual moments
of inertia. A point of difference is, instead, the pattern for
the staggering: in the examples below we find a scheme of the
type 2%, 3%), (4T, 51), ..., which is similar to that of the rigid
triaxial rotor. Another very important series of articles by Rowe
and collaborators [13,17,18] furnishes a rapidly converging
method for exact numerical treatment of the problem by using
a basis defined in terms of “deformed” wave functions in 8
and five-dimensional spherical harmonics.
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APPENDIX: MATRIX ELEMENTS

List of non-null matrix elements of operators as discussed
in Eq. (11) of Sec. I

(LMKI|L3LMK') = K*ifK = K’ (A1)
LetD-K if K' = K
(LMK|L}LMEK') = { SR g o g o
<LMK|L:_|LMK’) K =K +2
(A2)
—“L*;)*Kz ifK'=K
(LMK|L3LMK') = § — EMEELMED e s g,
_w ifK' =K +2
(A3)
where
(LMK|L2|LM(K - 2))
=/JL+KL+K-1D)L-K+2(L-—K+1) (A4

and
(LMK|L* |LM(K + 2))
=/L+K+2(L+K+1)L—-K-1)(L-K). (A5
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