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Global calculation of α-decay half-lives with a deformed density-dependent cluster model
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A global calculation of favored α-decay half-lives of both even-A and odd-A deformed nuclei is carried
out in the framework of a deformed version of the density-dependent cluster model (DDCM). The influence
of nuclear deformation on α-decay half-lives is taken into account in the deformed DDCM. The microscopic
potential between the spherical α particle and the deformed daughter nucleus is evaluated numerically from the
double-folding model by the multipole expansion method. The deformation and orientation dependence of the
α-core potential is analyzed and discussed. The formulas of the deformed DDCM are presented in detail, and
a large number of numerical calculations of medium and heavy nuclei with available data are completed. The
total number of α emitters calculated in this article is 485, and this covers the nuclei with Z = 52–110. This is
a complete study of α-decay half-lives on both even-A and odd-A nuclei with deformed microscopic potentials.
The numerical results obtained by the deformed DDCM are in good agreement with the experimental data.
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I. INTRODUCTION

The ground state of unstable nuclei has been observed
to have different kinds of decay modes: α decay, β decay,
proton emission, and spontaneous fission. α decay is one
of the most important decay modes for nuclei with proton
numbers Z � 52. Measurements on α decay of ground-state
nuclei can provide reliable information on nuclear structure
such as ground-state energy, ground-state lifetime, and nuclear
spin and parity. Measurements on α decay are also used
to identify new nuclides or new elements because α decay
is a clean and reliable mode to extract information on the
parent nuclei [1–9]. To date, there are more than 400 nuclei
in the periodic table that exhibit the α-decay phenomenon
[1,2]. In recent years, there has been renewed interest in
α decay because of the development of radioactive beams
and new detector technology under low temperature [3,4].
Thanks to these new developments, α decay is now a powerful
tool for investigating the details of nuclear structure, e.g.,
α clustering, shell effect, effective nuclear interaction, and
nuclear deformation [10–15]. From the theoretical side, the
process of α decay is fundamentally a quantum-tunneling
effect, which was first explained by Gamow and by Condon
and Guerney in the 1920s [16,17]. This pioneering work
proved the correctness of quantum mechanics for nuclear
phenomena and led to the use of quantum mechanics on
nuclear many-body systems. Subsequently, a number of
theoretical calculations were performed to predict absolute
α decay width, to extract nuclear structure information, and to
pursue a microscopic understanding of α-decay phenomenon.
These studies are based on various theoretical models such
as the shell model, fissionlike model, and cluster model
[18–29]. Recently, we studied favored α-decay half-lives for

∗Electronic address: zren@nju.edu.cn

two different mass regions with the spherical version of the
density-dependent cluster model (DDCM) [30]. To simplify
the multidimensional problem, we assumed a spherical shape
for both the parent and daughter nuclei in previous calculations
[30]. Indeed, we know that many ground-state α emitters are
spherical or moderately deformed [31,32]. Many different
spherical treatments obtained similar results for favored
α-decay half-lives [21–29]. Although the spherical model has
been successful to some extent, it is useful to work beyond
the spherical approximation and to include new factors such
as nuclear deformation [33–35]. Very recently, we included
the deformation effect on α decay half-lives and proposed the
deformed version of the DDCM [36]. The results of even-even
nuclei have already been reported [36]. In this article, we
present detailed formulas of the deformed DDCM and extend
our calculation to both odd-A nuclei and odd-odd nuclei in a
wide mass region Z = 52−110. In the deformed DDCM, the
microscopic deformation- and orientation-dependent α-core
potentials are evaluated numerically from the double-folding
model by the multipole expansion method [37–40]. Such
nonspherical double-folding potentials are difficult to calculate
by common Fourier transformation techniques and have rarely
been used in the calculation of α-decay half-lives [37,38]. We
analyze and discuss the deformation and orientation depen-
dence of the α-core potentials in detail. Much computational
time is required when the influence of nuclear deformation
of the daughter nucleus is taken into account. The number
of α emitters calculated in this article is 485. The numerical
results of the favored α transitions by the deformed DDCM
are systematically compared with the available experimental
data.

The outline of this paper is as follows. In Sec. II,
we present the formulas and parameters of the deformed
version of the density-dependent cluster model. The numerical
results and corresponding discussions for even-A, odd-A,
and superheavy nuclei are given in Sec. III. Section IV is a
summary.
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II. DENSITY-DEPENDENT CLUSTER MODEL
OF α DECAY

In the density-dependent cluster model, the ground state of
the parent nucleus is assumed to be an α particle interacting
with the daughter nucleus. The expression of α decay width in
the spherical DDCM is [21,30]

� = PαF
h̄2

4µ
exp

[
−2

∫ R3

R2

dR

√
2µ

h̄2 |Q − V (R)|
]

, (1)

where Pα is the preformation probability of the α particle in
the parent nucleus and F is the normalization factor [21,30].
µ is the reduced mass of the α-core system, and Q is the
experimental α decay energy. The total α-core potential V (R)
consists of the nuclear potential, Coulomb potential, and
centrifugal potential. The spherical expression of α decay
width was proposed by Gurvitz and Kalbermann [20] based on
the two-potential approach (TPA). This expression is widely
used in the spherical calculations of α decay width [21,22]. To
extend the α decay width to the deformed case, we assume
a spherical α-particle interacts with an axially symmetric
deformed daughter nucleus. The total α-core potential is given
by [30]

VTotal(R, β) = VN (R, β) + VC(R, β) + h̄2

2µ

(L + 1
2 )2

R2
, (2)

where R is the separation between the mass center of the
α particle and the mass center of the core. β is the orientation
angle of the α particle with respect to the symmetry axis of
the daughter nucleus. Usually the centrifugal term is written in
the form (L + 1

2 )2 in the semiclassical approximation [21,30].
When the term L(L + 1) is replaced by the term (L + 1

2 )2,
there is no significant variation for α decay half-lives of nuclei
[21,30]. The nuclear and Coulomb potentials are obtained from
the double-folding model [41–43]

VN or C(R, β) =
∫

dr1dr2ρ1(r1)ρ2(r2)v(s), (3)

where ρ1 and ρ2 are the density distributions of the α

particle and the daughter nucleus, respectively [37,42]. v(s)
is the effective nucleon-nucleon interaction. The quantity |s| is
the distance between a nucleon in the core and a nucleon in
the α particle: s = R + r2 − r1 [37,42]. The coordinates used
in the double-folding model are defined by Fig. 1. The mass

Daughter nucleus -particle

R

r2

S
r1

FIG. 1. Schematic explanation of coordinates used in double-
folding model.

density distribution of the spherical α particle ρ1 is a standard
Gaussian form given by Satchler and Love [37]. The mass
density distribution of the daughter nucleus ρ2 is a deformed
Fermi distribution and the values of parameters are taken from
the standard textbooks [44,45]. The mass density distribution
of the daughter nucleus is written as

ρ2(r2, θ ) = ρ0

1 + exp[ r2−R(θ)
a

]
, (4)

where the value of ρ0 is fixed by integrating the density
distribution equivalent to the mass number of the daughter
nucleus Ad . The half-density radius R(θ ) is given by

R(θ ) = R0[1 + β2Y20(θ ) + β4Y40(θ )], (5)

where the parameters R0 = 1.07A
1/3
d fm and a = 0.54 fm

are taken from [44,45]. When β2 = β4 = 0, the matter radius
of heavy nuclei with this choice is Rrms ≈ 1.2 × A1/3 (fm)
and this is back to the spherical case automatically [44,45].
The famous M3Y-Reid type nucleon-nucleon interaction and
the standard proton-proton Coulomb interaction are used in
DDCM. The M3Y interaction was first proposed by Bertsch
et al. which was derived from the G-matrix elements of the
Reid potential [41]. It is given by two direct terms with different
ranges and by an exchange term with a delta interaction, and
the parametrized form is given by Satchler and Love [37]

v(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00δ(s), (6)

J00 = −276(1 − 0.005Eα/Aα),

where Eα is the α-decay energy and Aα is the mass number
of the α particle. The energy dependence of the exchange
term is actually very weak for the α decay energies ranged
mainly from 2 to 12 MeV. The double-folding potential
in the deformed case involves a complex six-dimensional
integral. For the spherical-deformed interacting pair, the
double-folding potential is solved numerically by using the
multipole expansion method in which the density distribution
of the daughter nucleus is expanded as [39,40]

ρ(r, θ ) =
∑

l=0,2,4...

ρl(r)Yl0(θ ). (7)

The corresponding intrinsic form factor has the form [39]

ρ̃(l)(k) =
∫ ∞

0
drr2ρl(r)jl(kr). (8)

The double-folding potential can be evaluated by a sum of
different multipole components [39]

VN or C(R, β) =
∑

l=0,2,4...

V l
N or C(R, β), (9)

and the multipole component of the double-folding potential
is given by

V l
N or C(R, β) = 2

π
[(2l + 1)/4π ]1/2

×
∫ ∞

0
dkk2jl(kR)ρ̃1(k)ρ̃2

(l)(k)ṽ(k)Pl(cos β),

(10)
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where ρ̃1(k) is the Fourier transformation of the density
distribution of the α particle. ρ̃2

(l)(k) is the intrinsic form factor
[Eq. (8)]. ṽ(k) is the Fourier transformation of a local two-body
effective interaction. Pl(cos β) is the Legendre function of
degree l. The double-folding potentials given by Eqs. (9)
and (10) are functions of both the separation R and the
orientation angle β (see Fig. 1). We note that the depth of
the double-folding nuclear potential is determined separately
for each decay to ensure the quasibound condition [21,30]

∫ π

0

∫ R2(β)

R1(β)

√
2µ

h̄2 [Q − VTotal(R, β)] sin βdRdβ

= (G − L + 1)
π

2
, (11)

where R1(β), R2(β), and R3(β) are three classical turning
points of a certain orientation angle β. The values of
R1(β), R2(β), and R3(β) are obtained by numerical solutions
of the equation VTotal(R, β) = Q. L is the angular momentum
carried by the α particle, and G is the global quantum number
given by [30]

G = 20(N > 126),

G = 18(82 < N � 126), (12)

G = 16(N � 82).

It is interesting to note that the depth of the nuclear potential,
i.e., the renormalization factor λ, is not an adjusting parameter
in DDCM [30]. It is chosen to generate a quasistationary state
with the global quantum numbers G and L [30]. In fact, the
variation of λ is small in both spherical and deformed cases
where its values range from λ = 0.55 to 0.65 for different
nuclei. When the α-core interaction has been determined,
the width � is calculated by the microscopic double-folding
nuclear and Coulomb potentials. It is well known that in
both spherical and deformed treatments, the magnitude of
the α-decay width is mainly determined by the corresponding
penetration probability. In the deformed DDCM, the polar-
angle dependent penetration probability of α decay is given
by

Pβ = exp

[
−2

∫ R3(β)

R2(β)

√
2µ

h̄2
|Qα − VTotal(R, β)|dR

]
, (13)

where R2(β) and R3(β) are the second and third classical
turning points for a certain orientation angle β. The total
penetration factor P is obtained by averaging Pβ in all
directions such that

P = 1

2

∫ π

0
Pβ sin(θ ) dθ. (14)

This averaging procedure is widely used in both α decay
and fusion reaction calculations which can also be found in
Refs. [33–35]. The value of the normalization factor F is also
obtained by averaging along different orientation angles. This
is similar to previous work, but now it is more complex [30].
From the numerical results, we know that the value of F in the
deformed case is very close to that of the spherical one [30].

The α decay width in the deformed DDCM is given by [36]

� = PαF
h̄2

4µ

1

2

∫ π

0
Pβ sin(θ ) dθ. (15)

The α decay half-life is related to the decay width by the
well-known expression [30]

T1/2 = h̄ln 2/�. (16)

III. THEORETICAL RESULTS AND DISCUSSIONS

A. Double-folding potential of the spherical-deformed
nuclear pair

The microscopic α-core potential plays an important role
in the calculation of α decay half-lives. Because the daughter
nucleus has an axially symmetric shape, the nuclear and
Coulomb potentials between α particle and daughter nucleus
are actually nonspherical in deformed DDCM calculations.
However, the calculation of the deformed double-folding
potential is time consuming. It is found that the multipole
expansion method is a good approximation for calculating the
microscopic double-folding potentials between the spherical
α particle and the deformed daughter nucleus. It is also proved
in Ref. [40] that the multipole expansion is accurate and stable
for the spherical-deformed nuclear pair. In our calculations,
we use the standard proton-proton Coulomb interaction and
the effective M3Y interaction which is derived from the Reid
nucleon-nucleon potential [41]. In Fig. 2, we illustrate the sum
of nuclear and Coulomb potentials of α+232Th system for two
different orientations β = 0◦ and β = 90◦. The deformation
of the daughter nucleus 232Th is taken from Möller et al. [31].
We use their theoretical deformation because the value agrees
well with the magnitude of experimental deformation [32].
The difference between the experimental deformation and that
from Möller et al. is small, and its influence on the calculated
half-lives is not large. For spherical nuclei, it is obvious
that the shapes and depths of the obtained double-folding
potentials are the same in all orientations and the calculated

FIG. 2. Sum of double-folding nuclear and Coulomb potentials
of 236U for two orientations β = 0◦ and β = 90◦.
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α-core interactions are only a function of the separation R. For
deformed nuclei, the double-folding potentials are dependent
on both the separation R and the orientation angle β. As shown
in Fig. 2, the total potential at β = 0◦ is more attractive than
that at β = 90◦ in the medium region. This is because there
is a large overlap of nuclear density distribution at orientation
angle β = 0◦. Larger deformation will certainly lead to more
significant variations for different orientation angles. If the
deformation parameter equals zero, the double-folding α-core
potential is automatically back to that of the spherical case in
DDCM.

B. Variation of each term in deformed DDCM

In DDCM, the nuclear and Coulomb potentials are mi-
croscopically determined using input parameters, such as the
radius and the diffuseness, that are all taken from the classical
nuclear textbooks [44]. The depth of the nuclear potential
λ is adjusted to reproduce the experimental α decay energy
by application of the Bohr-Sommerfeld condition. The only
free parameter in DDCM is the preformation factor of the
α particle in the parent nucleus. In spherical calculations,
the preformation factor of the α cluster is chosen as 1.0 for
even-even heavy nuclei. For odd-A nuclei and odd-odd nuclei,
the preformation factors are slightly reduced in the calculations
[30]. In the medium mass region, a set of relatively small
values is chosen for the three kinds of nuclei [30]. Experiments
have shown that the preformation factor varies smoothly in the
open-shell region and has a value smaller than 1.0 [14]. The
microscopic calculation gives a value of 0.3 for the α-cluster
preformation factor of even-even nucleus 212Po [19]. In present
calculations, we find that the experimental α decay half-lives
of a certain kind of nuclei (even-even, odd-A, or odd-odd
nuclei) can be well reproduced by using the same preformation
factor. This means both the medium mass α emitters and
heavy ones can be well described in a consistent way by the
deformed DDCM. Through a least-squares fit to the available
experimental half-lives of nuclei with Z = 52–105, we obtain
a set of parameters of the preformation factors: Pα = 0.38
for even-even nuclei, Pα = 0.24 for odd-A nuclei, and Pα =
0.13 for odd-odd nuclei. These values agree with both the
experimental facts and the microscopic calculations [14,19].
It also agrees with the popular idea that the nuclear ground
state is described mainly by the single-particle motion of the
shell model, and the α-cluster probability in the ground-state
wave function is less than a half. In DDCM, other factors
in the decay width, such as the normalization factor F , vary
smoothly in the deformed case. But the penetration factor P

varies significantly when the deformation effect of the daughter
nucleus is taken into account. So the penetration factor is
more sensitive to nuclear deformation than to other terms of
the decay width [46–49]. It is thus concluded that nuclear
deformation mainly affects the barrier penetration probability
of the α particle.

C. Comparison of experimental α-decay half-lives
with theoretical ones for different kinds of nuclei

Now we discuss the calculated results of α-decay half-
lives within the framework of the deformed DDCM. The

α-decay energy Qα and the excitation energies of the daughter
nucleus E∗

L+ are all measured values from experiments
[1,2,21]. The small effect of the electron shielding correction
on decay energy Qα is also included in a standard way [21,30].
The values of nuclear deformation are taken from Ref. [31]
which correspond to those of the daughter nucleus. Although
the hexadecapole deformation is small for many α emitters
and its influence on α-decay width is marginal, it can be
included in the systematic calculations of half-lives for nuclei
with Z = 52–105. Detailed analysis of the experimental and
theoretical α-decay half-lives is given for different kinds of
nuclei.

1. Even-even nuclei

The ground-state spin and parity of all even-even nuclei
is 0+. The α decay of even-even nuclei mainly proceeds to
the ground state of the daughter nucleus. Although the parent
nucleus can also decay to the excited states of the daughter
nucleus, this probability is very small in normal cases, and
it can be neglected for a systematic calculation of half-lives
of many nuclei [21,30,36]. The α decay between the ground
states of even-even nuclei is a favored transition, which means
that the angular momentum and parity of the α particle is
0+. We plot the logarithms of the hindrance factors for all
even-even nuclei in Fig. 3. The hindrance factor is defined
as the ratio between the experimental and theoretical α-decay
half-lives (HF = TExp./TCal.). It is known experimentally that
the magnitude of α-decay half-lives of the even-even nuclei
varies in a very wide range from 10−8 to 1024 s. Although the
amplitude of the variation of half-lives is as high as 1032 times,
we can see from Fig. 3 that the experimental α decay half-lives
of many even-even nuclei are reproduced within a factor of 2
by the deformed DDCM [36].

Because we discussed the results of even-even nuclei in
Ref. [30], we present here only a few typical results of
even-even nuclei as a supplement to the previous publication.
For even-even isotopic chains, the α-decay half-lives of the
isotopes generally increase with increasing neutron number.
However, for the trans-Pb isotopic chains, a sharp decrease
of half-life occurs at the spherical shell closure N = 126.
For instance, the α-decay half-life of the nucleus 210Po is as

FIG. 3. Logarithms of hindrance factors (HF = TExp./TCal.) of
even-even nuclei (Z = 52–104).
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TABLE I. Experimental and theoretical α-decay half-lives T (in log base 10 and in seconds) for even-even nuclei (Z = 82–88), where the
nuclear deformation effect is taken into account.

Ap Zp Ad Zd Qα(MeV) β2 β4 TExp. TCal.

182 Pb 178 Hg 7.054 −0.113 −0.026 −1.222 −1.243
184 Pb 180 Hg 6.807 −0.122 −0.026 −0.260 −0.403
186 Pb 182 Hg 6.505 −0.122 −0.018 0.681 0.716
188 Pb 184 Hg 6.141 −0.130 −0.017 2.041 2.176
190 Pb 186 Hg 5.731 −0.130 −0.025 3.903 4.013
192 Pb 188 Hg 5.252 −0.130 −0.025 6.602 6.441
194 Pb 190 Hg 4.766 −0.130 −0.032 9.996 9.290
210 Pb 206 Hg 3.823 −0.008 0.000 16.568 16.033
192 Po 188 Pb 7.354 0.000 −0.008 −1.469 −1.462
194 Po 190 Pb 7.022 0.000 −0.008 −0.357 −0.348
196 Po 192 Pb 6.688 0.000 −0.008 0.778 0.873
198 Po 194 Pb 6.341 0.000 −0.008 2.176 2.243
200 Po 196 Pb 6.014 0.000 −0.008 3.663 3.660
202 Po 198 Pb 5.733 0.000 −0.008 5.114 4.960
204 Po 200 Pb 5.516 0.000 −0.008 6.279 6.033
206 Po 202 Pb 5.358 0.000 −0.008 7.146 6.848
208 Po 204 Pb 5.248 −0.008 −0.008 7.959 7.433
210 Po 206 Pb 5.439 −0.008 −0.008 7.079 6.354
212 Po 208 Pb 8.985 0.000 0.000 −6.523 −6.633
214 Po 210 Pb 7.865 0.000 0.008 −3.796 −3.644
216 Po 212 Pb 6.939 0.000 0.008 −0.824 −0.613
218 Po 214 Pb 6.147 0.000 0.009 2.279 2.548
200 Rn 196 Po 7.083 0.000 0.015 0.000 0.238
202 Rn 198 Po 6.803 0.000 −0.015 1.079 1.260
204 Rn 200 Po 6.578 0.009 −0.015 2.041 2.127
206 Rn 202 Po 6.415 0.009 −0.015 2.740 2.780
208 Rn 204 Po 6.293 0.009 −0.015 3.380 3.274
210 Rn 206 Po 6.190 −0.018 −0.008 3.954 3.700
212 Rn 208 Po 6.413 −0.018 −0.008 3.146 2.698
214 Rn 210 Po 9.242 0.000 0.008 −6.569 −6.553
216 Rn 212 Po 8.235 0.000 0.008 −4.347 −3.959
218 Rn 214 Po 7.299 −0.008 0.008 −1.456 −1.035
220 Rn 216 Po 6.438 0.020 0.018 1.748 2.223
222 Rn 218 Po 5.623 0.039 0.028 5.519 6.004
206 Ra 202 Rn 7.450 −0.104 0.004 −0.620 −0.338
208 Ra 204 Rn 7.307 −0.087 0.003 0.146 0.152
210 Ra 206 Rn 7.190 −0.044 −0.007 0.568 0.581
212 Ra 208 Rn 7.068 −0.026 −0.008 1.114 1.013
214 Ra 210 Rn 7.306 −0.026 −0.008 0.398 0.114
216 Ra 212 Rn 9.559 0.000 0.008 −6.745 −6.609
218 Ra 214 Rn 8.581 0.008 0.008 −4.585 −4.173
220 Ra 216 Rn 7.627 0.008 0.008 −1.638 −1.321
222 Ra 218 Rn 6.710 0.040 0.029 1.591 2.000
224 Ra 220 Rn 5.823 0.111 0.081 5.519 5.889
226 Ra 222 Rn 4.904 0.137 0.100 10.724 11.093

long as 1.2 × 107 s, but that of 212Po is only 0.3 µs. This is
directly related to the influence of the spherical shell closure
at N = 126. Some typical results in this region are listed in
Table I for the isotopic chains of Pb, Po, Rn, and Ra. In Table I,
the mass numbers and chemical symbols of the parent nucleus
and daughter nucleus are listed in columns 1–4. The α-decay
energy Qα is listed in column 5. The quadrupole deformation
is given in column 6, and the hexadecapole deformation in
column 7. The experimental and theoretical α-decay half-lives

(in logarithm with a base 10) are given in columns 8 and
column 9, respectively. As seen in Table I, we reproduce
the half-lives of many α emitters within a factor of 2–3 in
this region. The deviation between experiment and theory
around the shell closure N = 126 can be further improved
by combining the calculations of the cluster and microscopic
models [50].

Because large deformations occur for many nuclei with
Z = 90–100 and the influence of deformation on half-lives
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FIG. 4. Experimental and calculated α-decay half-lives for even-
even isotopes of Th, U, Pu, Cm, Cf, and Fm.

is evident, we compare the calculated half-lives with the
measured ones for isotopes of Th, U, Pu, Cm, Cf, and Fm in
Fig. 4. We see that the experimental data are well reproduced
by DDCM in this deformed region. The theoretical points
(stars) almost coincide with the experimental ones (black
circles). In Fig. 4, the influence of the spherical shell closure
N = 126 is clearly seen from the α decay half-lives of
the Th isotopic chain. Around the spherical shell N = 126,
the variation of experimental α decay half-lives of 216Th
(N = 126) and 218Th (N = 128) is as large as 105 times.
Around the deformed shell N = 152, the variation of half-lives
is approximately 10 times for Cm, Cf, and Fm isotopic chains.
For instance, the α-decay half-life of 252Fm (N = 152) is
only ten times larger than that of 254Fm (N = 154). This
demonstrates that the influence of the deformed shell on
half-lives is less than that of the spherical one.

2. Odd-A nuclei and odd-odd nuclei

The situation of odd-A α emitters is more complicated than
that of even-even nuclei. The ground-state spin and parity of
odd-A nuclei cannot be automatically assigned as those of
even-even nuclei. For some odd-A nuclei, the ground-state
spin and parity are still unknown in experiment. The favored
α transitions of these nuclei can either proceed to the ground
state or to an excited state of the daughter nucleus. The
ground-state to ground-state transition is not necessarily the
favored case for odd-A α emitters. For odd-A and odd-odd
nuclei, Audi et al. [51] pointed out that the assumption of
favored transition is reasonable in regions where the Nilsson
model for deformed nuclei applies. This assumption was
often used to estimate the α-decay energy from nuclear
masses by Audi et al. [51], and here we use the same
assumption for deformed heavy nuclei [51]. Our calculations
of odd A include 231 α emitters in the periodic table. The
logarithms of average deviations of 231 odd-A nuclei are
S = 	i=231

i=1 |log10T
Exp.

1/2 (i) − log10T
Cal.

1/2 (i)|/231 = 0.229. This
value of logarithm deviation corresponds to a factor of 1.8
between the experimental and theoretical half-lives. Because

(a)

(b)

FIG. 5. Logarithms of the hindrance factors (HF = TExp./TCal.) of
odd-A nuclei and odd-odd nuclei.

the half-lives of odd-mass nuclei vary erratically with neutron
number, we also plot the logarithms of the hindrance factors
(HF = TExp./TCal.) of these nuclei in Fig. 5(a). The logarithms
of the hindrance factors of odd-odd nuclei are plotted in
Fig. 5(b), which we will discuss later. In Fig. 5(a), most of
the points lie in the vicinity of the line HF = 1.0, which
means the calculated lifetime is identical to the experimental
one. For many odd-mass nuclei, the experimental half-lives
are reproduced within a factor of 2. For some nuclei, the
hinderance factor is beyond a factor of 3. These nuclei
often involve very weak branch ratios of α decay and large
uncertainties of experimental half-lives.

In Fig. 6, we further compare our predicted half-lives with
the measured ones for odd-mass isotopes of the actinides
(Z = 89–101). Fig. 6(a) is for odd-A nuclei with even proton
numbers and Fig. 6(b) is for odd-A nuclei with odd proton
numbers. The circle denotes the experimental partial half-life,
and the star denotes the calculated one. We can see from Fig. 6
that the theoretical half-lives follow the experimental data well
for both odd-even nuclei and even-odd nuclei. An analysis of
Figs. 4–6 indicates that the deformed calculations reproduce
well the experimental α-decay half-lives when large nuclear
deformations are involved. This good agreement clearly shows
the validity of the deformed DDCM for odd-A nuclei.

The α decay of odd-odd nuclei is slightly more complicated,
and the available data are less than those of even-even
nuclei and odd-A nuclei. We collect the 79 data of odd-odd
α emitters in the region Z = 53–105 and calculate their half-
lives with the deformed DDCM. The logarithms of average
deviations of 79 odd-odd nuclei are S = 	i=79

i=1 |log10T
Exp.

1/2 (i) −
log10T

Cal.
1/2 (i)|/79 = 0.318. This value of logarithm deviation

corresponds to a factor of 2.1 between the experimental
half-life and theoretical one. For the details of calculated
results, we plot the hindrance factors of the α-decay half-lives
of these nuclei in Fig. 5(b). We see that the theoretical
half-lives of many odd-odd α emitters are very close to
the experimental data. We reproduce the half-lives of many
odd-odd α emitters at the factor of 2–3 level. The half-lives of
a few odd-odd α emitters are outside this range. Nevertheless
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(b)

(a)

FIG. 6. Experimental and theoretical α-decay half-lives for odd-
mass isotopes of actinides (89−101).

compared with previous calculations of odd-odd nuclei, the
results of this article improve the agreement between theory
and experimental data.

To see the overall agrement between the experimental
data and theoretical results, we plot in Fig. 7 the average
deviations between experiment and theoretical half-lives for
three kinds of α emitters with proton number Z = 52–105.
The logarithms of average deviations of even-even nuclei,
odd-A nuclei, and odd-odd nuclei are See = 0.209, Soe =
0.229, and Soo = 0.318, respectively. The logarithms of
average deviations 0.3 and 0.5 corresponds to factors of 2.0

FIG. 7. Logarithms of average deviations (with a base 10)
between experimental α-decay half-lives and theoretical ones for
three kinds of nuclei.

and 3.0 between experimental and theoretical half-lives. This
implies that the experimental half-lives of even-even nuclei
and odd-A nuclei are reproduced within a factor of 2 by
the deformed DDCM. The average deviation of odd-odd α

emitters is slightly larger than those of even-even and odd-A
nuclei. However, the absolute deviation of the half-lives of
odd-odd nuclei is also at the level of a factor of 2. This
agreement between model and data is generally very good. A
consistent treatment for both medium mass nuclei and heavy
nuclei is obtained in a unified framework.

3. Superheavy nuclei

There has been growing interest in the α-decay half-lives
of superheavy nuclei in recent years [22,28,30,35,52,53].
These studies are useful for future experiments on superheavy
nuclei. Based on the success of the deformed DDCM for
nuclei with Z = 52–105, we now extend the calculations
of half-lives to superheavy nuclei with Z = 106–110. In
Table II, we give both the experimental α-decay half-lives and
theoretical ones for isotopic chains of Z = 106–110 (Sg−Ds).
The experimental α-decay energies Qα are from [9,30] and
listed in column 2. The quadrupole deformation in column 3
is taken from the calculations of the macroscopic-microscopic
model (MM) [31]. The quadrupole deformation in column 4 is
taken from the calculations of the relativistic mean-field model
(RMF) with a TMA force parameter [52,53]. The experimental
α-decay half-lives Tα(Exp.) [9,30] are given in column 5. The
corresponding theoretical half-lives calculated by the two sets
of deformation parameters (columns 6 and 7) are very close.
The difference between the two sets of calculated half-lives
is small. The logarithms of average deviations between the
experiment half-lives and the two sets of calculated half-lives
are 0.35 and 0.39, respectively, which correspond to a factor
of 2.5 between the experimental and theoretical half-lives. The
deformed calculations of DDCM also give reasonable results
for the α-decay half-lives of nuclei in the superheavy region
Z = 106–110. So we conclude that the agreement between
the half-lives of DDCM and the data of superheavy nuclei
is reached. For superheavy nuclei with Z > 110, there are
large uncertainties in the deformation parameters used by
the different theoretical models. On the experimental side, it
would be interesting to improve the precision of experimental
α-decay half-lives and to classify the decays from the ground
state and from isomeric states. Therefore, the superheavy
nuclei with Z > 110 are not included in the present deformed
calculations, and it will be very interesting to investigate their
properties in the future.

Before ending this section, let us quickly review the
numerical results of the deformed DDCM. We calculated
the α decay half-lives of many nuclei with proton number
Z = 52–110. For the region of Z = 52–104, the number of
even-even α emitters is 157 and the average deviation between
the data and the theoretical results is within a factor of 2.
The number of odd-A emitters in this region is 231, and the
average deviation between the data and the theoretical results
is also within a factor of 2. The average deviation of the
α-decay half-lives of 79 odd-odd emitters in this region is
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TABLE II. Experimental and theoretical α-decay half-lives of superheavy nuclei (Z = 106–110), in seconds.

Nuclei Qα(MeV) β2 β2 Tα(Expt) Tα(Calc1) Tα(Calc2)
MM RMF MM RMF

273Ds → 269Hs+α 11.291 0.231 0.220 1.1 × 10−4 7.1 × 10−5 7.8 × 10−5

271Ds → 267Hs+α 10.958 0.230 0.230 6.2 × 10−4 4.4 × 10−4 4.4 × 10−4

270Ds → 266Hs+α 11.242 0.230 0.240 1.0 × 10−4 6.4 × 10−5 5.9 × 10−5

269Ds → 265Hs+α 11.345 0.230 0.240 2.7 × 10−4 6.1 × 10−5 5.6 × 10−5

268Mt → 264Bh+α 10.299 0.229 0.250 7.0 × 10−2 1.8 × 10−2 1.5 × 10−2

269Hs → 265Sg+α 9.354 0.229 0.220 7.1 × 100 1.7 × 100 1.8 × 100

267Hs → 263Sg+α 10.076 0.229 0.260 7.4 × 10−2 1.7 × 10−2 1.3 × 10−2

266Hs → 262Sg+α 10.381 0.229 0.250 2.3 × 10−3 1.8 × 10−3 1.5 × 10−3

265Hs → 261Sg+α 10.777 0.238 0.250 5.8 × 10−4 2.9 × 10−4 2.6 × 10−4

264Hs → 260Sg+α 10.590 0.239 0.250 5.4 × 10−4 5.4 × 10−4 4.9 × 10−4

267Bh → 263Db+α 9.009 0.229 0.260 1.7 × 101 8.6 × 100 6.4 × 100

266Bh → 262Db+α 9.477 0.229 0.260 1.0 × 100 6.4 × 10−1 4.8 × 10−1

265Bh → 261Db+α 9.380 0.228 0.260 9.4 × 10−1 7.0 × 10−1 5.2 × 10−1

264Bh → 260Db+α 9.671 0.239 0.260 4.4 × 10−1 1.8 × 10−1 1.5 × 10−1

266Sg → 262Rf+α 8.836 0.229 0.210 2.6 × 101 8.2 × 100 9.7 × 100

265Sg → 261Rf+α 8.949 0.228 0.220 2.4 × 101 6.0 × 100 6.4 × 100

263Sg → 259Rf+α 9.447 0.239 0.260 1.2 × 10−1 1.8 × 10−1 1.5 × 10−1

261Sg → 257Rf+α 9.773 0.238 0.260 7.2 × 10−2 2.4 × 10−2 2.0 × 10−2

approximately at a factor of 2. For the superheavy region with
Z = 106–110, we calculated the half-lives of 18 α emitters,
and the average deviation with the data is at a factor of
2.5. So the total number of α emitters investigated in this
article is NTotal = 157 + 231 + 79 + 18 = 485. In 1993, Buck
et al. [21] made a systematic study of α-decay half-lives
of nuclei with Z = 52–109 by a spherical cluster model. In
2000, Royer [25] used the generalized liquid drop model
to calculate the α-decay half-lives of 373 α emitters of
which the numbers of even-even, odd-A, and odd-odd nuclei
were 131, 192, and 50, respectively. After their calculations,
some old data were corrected by experimental physicists and
some new data of α-decay half-lives were obtained [1,2,51].
We have taken into account the corrections and added the new
data in the calculations of this article [1,2,9,30,51]. Therefore,
the number of α emitters in this article is 485, which covers
the nuclei with Z = 52–110. This research is an important
contribution to the study of α-decay half-lives. The global cal-
culation of α-decay half-lives presented in this article should be
useful in future studies of α-decay half-lives of medium and
heavy nuclei far from stability and for those of superheavy
elements. Finally, we would like to mention that there are
other approaches to the study of α-decay of deformed nuclei
[46–48]. Fröman [46] investigated α decay with the deformed
WKB approach, and this was further developed by Delion
et al. [47]. They successfully described the α decays of heavy
and superheavy nuclei [47]. Recently, the α decay of actinides
to rotational states has also been studied by the nonadiabatic
approach with a double-folding potential, which explained
well the partial half-lives of the first and second excited
states [48,49]. This confirms again that the double-folding
potential is successful for α-decay half-lives of nuclei and
this conclusion agrees well with that of this article. In the
calculations of this article, we took into account the α decays
between the ground states of even-even nuclei and omitted

the α decay to the first excited state of the rotational band of
ground state in the daughter nucleus. According to previous
studies, the transition to the first excited state of the rotational
band can be omitted for spherical nuclei and for nuclei with
moderate deformation [49,50]. But for well-deformed nuclei,
the branching ratio to the first excited state can be as large as
20–30% because the excited energy of the first excited state is
small [49,50]. This can bring the uncertainty in the calculated
half-life to within the range 20–30%. However, the agreement
between the calculated and experimental half-life is a factor
of 2 or 3 (i.e., 200% or 300%), and one says that this is
good agreement. Therefore, a 20–30% change in the half-life
is small compared with 200% or 300%, and the omission of
the transition to the first excited state does not influence the
conclusion of this article. Actually, the transition to the first
excited state can be included in the deformed DDCM, and there
is no difficulty in including any nucleus if its excited energy of
the first excited state is known [50]. But this involves a huge
quantity of computational time for a systematic calculation of
this study in which the number of nuclei is as large as 485 and
the energy of the first excited state is still unknown for many
nuclei such as those in the superheavy region. Of course, it will
be interesting to pursue this problem further and to improve
the agreement between the results of the model and the data.

IV. SUMMARY

In summary, we present a global calculation of α-decay
half-lives for both even-A and odd-A nuclei with the deformed
version of the density-dependent cluster model (DDCM),
which considers nuclear deformations. The formulas for
calculations of the α-decay half-lives are derived and presented
in the deformed case of microscopic double-folding potentials.
Detailed analysis for favored α transitions of nuclei with
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Z = 52–110 is carried out in the deformed DDCM. The
potentials between spherical α particles and deformed daugh-
ter nuclei are evaluated numerically from the double-folding
model by the multipole expansion method. Based on the
popular M3Y nucleon-nucleon interaction and the standard
proton-proton Coulomb interaction, the α-core potentials in
DDCM are well defined in physics. The nuclear deformations
affect the barrier penetration probabilities significantly. The
preformation factor used in the deformed DDCM is consistent
for all nuclei in the nuclide chart. Their values are also in accord
with the experimental facts and the microscopic calculations.
The number of α emitters studied in this article is 485, and
it covers the nuclei with Z = 52–110. So this is a global
calculation of α-decay half-lives. The theoretical α-decay
half-lives are in good agreement with the experimental data.

A unified description of α-decay half-lives of both spherical
and deformed nuclei is obtained by using the deformed
density-dependent cluster model.
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