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Correlations and effective interactions in nuclear matter
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We performed self-consistent Green’s function calculations for symmetric nuclear matter using realistic
nucleon-nucleon (NN ) interactions and effective low-momentum interactions (Vlow−k), which are derived from
such realistic NN interactions. We compare the spectral distributions resulting from such calculations. We also
introduce a density-dependent effective low-momentum interaction that accounts for the dispersive effects in the
single-particle propagator in the medium.

DOI: 10.1103/PhysRevC.74.014303 PACS number(s): 21.30.Fe, 21.65.+f, 24.10.Cn

I. INTRODUCTION

The description of bulk properties of nuclear systems
starting from realistic nucleon-nucleon (NN ) interactions is
a long-standing and unsolved problem. Various models for
the NN interaction have been developed, which describe
the experimental NN phase shifts up to the threshold for
pion production with high accuracy [1–4]. A general feature
of all these interaction models are strong short-range and
tensor components, which lead to corresponding correlations
in the nuclear many-body wave function. Hartree-Fock mean-
field theory, which represents the the lowest-order many-
body calculations one can perform with such realistic NN

interactions, fails to produce bound nuclei [5,6] precisely
because Hartree-Fock does not fully incorporate many-body
correlation effects.

That correlations beyond the mean field are important is
supported by experiments exploring the spectral distribution
of the single-particle strength. One experimental fact found
in all nuclei is the global depletion of the Fermi sea. A
recent experiment from NIKHEF puts this depletion of the
proton Fermi sea in 208Pb at a little less than 20% [7]
in accordance with earlier nuclear matter calculations [8].
Another consequence of the presence of short-range and tensor
correlations is the appearance of high-momentum components
in the ground state wave function to compensate for the
depleted strength of the mean field. Recent JLab experiments
[9] indicate that the amount and location of this strength is
consistent with earlier predictions for finite nuclei [10] and
calculations of infinite matter [11].

These data and their analysis, however, are not sufficient to
allow for a detailed comparison with the predictions derived
from the various interaction models at high momenta. In this
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article, we want to investigate a possibility to separate the
predictions for correlations at low and medium momenta,
which are constrained by the NN scattering matrix below
pion threshold, from the high momentum components, which
may strongly depend on the underlying model for the NN

interaction. For that purpose we perform nuclear many-body
calculations within a model space that allows for the ex-
plicit evaluation of low-momentum correlations. The effective
Hamiltonian for this model space are constructed from a
realistic interaction to account for correlations outside the
model space.

This concept of a model space and effective operators
appropriately renormalized for this model space has a long
history in approaches to the nuclear many-body physics. As an
example we mention the effort to evaluate effective operators
to be used in Hamiltonian diagonalization calculations of
finite nuclei. For a review on this topic see e.g. Ref. [12].
The concept of a model space for the study of infinite
nuclear matter was used e.g. by Kuo et al. [13–15]. Also
the Brueckner-Hartree-Fock (BHF) approximation can be
considered as a model-space approach. In this case one restricts
the model space to just one Slater determinant and determines
the effective interaction through a calculation of the G matrix,
the solution of the Bethe-Goldstone equation.

The effective Hamiltonians for such model-space calcu-
lations have frequently been evaluated within the Rayleigh-
Schrödinger perturbation theory, leading to a non-Hermitian
and energy-dependent result. The energy dependence can be
removed by considering the so-called folded diagrams as has
been discussed e.g. by Brandow [16] and Kuo [17]. We note
that the folded-diagram expansion yields effective interaction
terms between three and more particle, even if one considers
a realistic interaction with two-body terms only [18,19].

During the past few years the folded-diagram technique
has been applied to derive an effective low-momentum
potential Vlow−k [20] from a realistic NN interaction. By
construction, Vlow−k potentials reproduce the deuteron binding
energy, low-energy phase shifts, and the half-on-shell T matrix

0556-2813/2006/74(1)/014303(8) 014303-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.014303
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calculated from the underlying realistic NN interaction up
to the chosen cutoff parameter. The resulting Vlow−k turns
out to be rather independent of the original NN interaction
if this cutoff parameter for the relative momenta is below
the value of the pion-production threshold in NN scattering.
The off-shell characteristics of the Vlow−k effective interaction
are not constrained by experimental data and can influence the
many-body character of the interaction.

For finite nuclei we find that one does indeed obtain
different binding energies for 16O depending on the underlying
NN interaction from which one derives the Vlow−k interaction.
For example, using coupled-cluster techniques at the singles
and doubles level (CCSD) [21] we find binding energies
for 16O at a lab momentum cutoff of � = 2.0 fm−1 to be
−143.4 ± 0.4 MeV and −153.3 ± 0.4 MeV for the N3LO [4]
and CD-Bonn two-body interactions, respectively. The CCSD
calculations were carried out at up to seven major oscillator
shells (with extrapolations to an infinite model space) using
the intrinsic Hamiltonian defined as H = T − Tcm + Vlow−k ,
where Tcm is the center-of-mass kinetic energy.

Attractive energies are obtained if such a Vlow−k interaction
is used in a Hartree-Fock calculation of nuclear matter or
finite nuclei [22,23]. High-momentum correlations, which are
required to obtain bound nuclear systems from a realistic
NN interaction (see above) are taken into account in the
renormalization procedure that leads to Vlow−k . Supplementing
these Hartree-Fock calculations with corrections up to third
order in the Goldstone perturbation theory leads to results for
the ground-state properties of 16O and 40Ca, which are in fair
agreement with the empirical data [22]. (One should note that
Tcm was not included in these calculations.) Calculations in
infinite matter demonstrate that Vlow−k seems to be quite a good
approximation for the evaluation of low-energy spectroscopic
data. The results for the pairing derived from the bare
interaction are reproduced [23]. The prediction of pairing
properties also agree with results obtained phenomenological
interactions such as the Gogny force [24,25]. The Vlow−k

interaction also yields a good approximation for the calculated
binding energy of nuclear matter at low densities.

At high densities, however, BHF calculations using Vlow−k

yield too much binding energy and do not reproduce the
saturation feature of nuclear matter [23]. This is because of
the fact that Vlow−k does not account for the effects of the
dispersive quenching of the two-particle propagator, as is done
e.g. in the Brueckner G matrix derived from a realistic NN

interaction. The saturation can be obtained if a three-nucleon
interaction is added to the Hamiltonian [26].

An alternative technique to determine an effective Hamil-
tonian for a model space calculation is based on a unitary
transformation of the Hamiltonian. It has been developed by
Suzuki [27] and leads to an energy-independent, Hermitian
effective interaction. The unitary-model-operator approach
(UMOA) has also been used to evaluate the ground-state
properties of finite nuclei [28–31].

In the present study we are going to employ the unitary
transformation technique to determine an effective interaction,
which corresponds to the Vlow−k discussed above. This
effective interaction is then used in self-consistent Green’s
function (SCGF) calculation of infinite nuclear matter. Various

groups have recently developed techniques to solve the
corresponding equations and determine the energy and mo-
mentum distribution of the single-particle strength in a consis-
tent way [11,32–38]. Therefore we can study the correlation
effects originating from Vlow−k inside the model space and
compare it to the correlations derived from the bare interaction.
Furthermore, we use the unitary transformation technique
to determine an effective interaction which accounts for
dispersive effects missing in the original Vlow−k (see discussion
above).

After this introduction we present the method for evaluating
the effective interaction in Sec. II and briefly review the basic
features of the SCGF approach in Sec. III. The results of our
investigations are presented in Sec. IV, which is followed up
by the conclusions.

II. EFFECTIVE INTERACTION

For the definition and evaluation of an effective interaction
to be used in a nuclear structure calculation, which is restricted
to a subspace of the Hilbert space, the so-called model
space, we follow the usual notation and define a projection
operator P, which projects onto this model space. The operator
projecting on the complement of this subspace is identified
by Q and these operators satisfy the usual relations such as
P + Q = 1, P 2 = P,Q2 = Q, and PQ = 0 = QP . It is the
aim of the UMOA to define a unitary transformation U in such
a way that the transformed Hamiltonian does not couple the
P and Q space, i.e., QU−1HUP = 0.

For a many-body system the resulting Hamiltonian can be
evaluated in a cluster expansion, which leads to many-body
terms. This is very similar to the folded-diagram expansion,
which has been discussed above. In UMOA studies of finite
nuclei terms up to three-body clusters have been evaluated
[28,29] indicating a convergence of the expansion up to this
order.

In the present study we aim to determine an effective
two-body interaction and therefore consider two-body systems
only. We define the effective interaction as

Veff = U−1(h0 + v12)U − h0 , (1)

with v12 representing the bare NN interaction. The operator
h0 denotes the one-body part of the two-body system and
contains the kinetic energy of the interacting particles. This
formulation leads to an effective interaction corresponding to
Vlow−k . Because, however, we want to determine an effective
interaction of two nucleons in the medium of nuclear matter,
we also consider the possibility to add a single-particle
potential to h0. Note that in any case h0 commutes with the
projection operators P and Q.

The operator for the unitary transformation U can be
expressed as [39]

U = (1 + ω − ω†)(1 + ωω† + ω†ω)−1/2 , (2)

with an operator ω satisfying ω = QωP such that
ω2 = ω†2 = 0. In the following we describe how to determine
the matrix elements of this operator ω. As a first step we solve
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the two-body eigenvalue equation

(h0 + v12)|�k〉 = Ek|�k〉 . (3)

This can be done separately for each partial wave of the
two-nucleon problem. Partial waves are identified by total
angular momentum J , spin S, and isospin T . The relative
momenta are appropriately discretized such that we can reduce
the eigenvalue problem to a matrix diagonalization problem.
Momenta below the cutoff momentum � define the P space
and will subsequently be denoted by |p〉 and |p′〉. Momenta
representing the Q space are labeled |q〉 and |q ′〉, whereas
states |i〉, |j 〉, |k〉, and |l〉 refer to basis states of the total P + Q

space.
From the eigenstates |�k〉 we determine those NP (NP

denoting the dimension of the P space) eigenstates |�p〉,
which have the largest overlap with the P space and determine

〈q|ω|p′〉 =
NP∑
p=1

〈q|Q|�p〉〈ϕ̃p|p′〉, (4)

with |ϕp〉 = P |�p〉 and 〈ϕ̃p| denoting the biorthogonal state,
satisfying∑

p

〈ϕ̃k|p〉〈p|ϕk′ 〉 = δk,k′ and
∑

k

〈p′|ϕ̃k〉〈ϕk|p〉 = δp,p′ .

(5)
In the next step we solve the eigenvalue problem in the P space

ω†ω|χp〉 = µ2
p|χp〉 (6)

and use the results to define

|νp〉 = 1

µp

ω|χp〉, (7)

which because of the fact that ω = QωP can be written as

〈q|νp〉 = 1

µp

∑
p′

〈q|ω|p′〉〈p′|χp〉. (8)

Using Eqs. (6)–(8) and the representation of U in Eq. (2), the
matrix elements of the unitary transformation operator U can
be written

〈p′′|U |p′〉 = 〈p′′|(1 + ω†ω)−1/2|p′〉

=
NP∑
p=1

(
1 + µ2

p

)−1/2〈p′′|χp〉〈χp|p′〉 , (9)

〈q|U |p′〉 = 〈q|ω(1 + ω†ω)−1/2|p′〉

=
NP∑
p=1

(
1 + µ2

p

)−1/2
µp〈q|νp〉〈χp|p′〉, (10)

〈p′|U |q〉 = −〈p′|ω†(1 + ωω†)−1/2|q〉

= −
NP∑
p=1

(
1 + µ2

p

)−1/2
µp〈p′|χp〉〈νp|q〉 , (11)

〈q ′|U |q〉 = 〈q ′|(1 + ωω†)−1/2|q〉

=
NP∑
p=1

{(
1 + µ2

p

)−1/2 − 1
}〈q ′|νp〉〈νp|q〉 + δq,q ′ .

(12)

These matrix elements of U can then be used to determine the
matrix elements of the effective interaction Veff according to
Eq. (1). They might also be used to define matrix elements of
other effective operators.

III. SELF-CONSISTENT GREEN’S FUNCTION APPROACH

One of the key quantities within the SCGF approach is the
retarded single-particle (sp) Green’s function or sp propagator
G(k, ω) (see e.g. Ref. [40]). Its imaginary part can be used to
determine the spectral function

A(k, ω) = −2 Im G(k, ω + iη) . (13)

The spectral function provides the information about the
energy and momentum distribution of the single-particle
strength, i.e., the probability for adding or removing a particle
with momentum k and leaving the residual system at an
excitation energy related to ω. In the limit of the mean-
field or quasiparticle approximation the spectral function is
represented by a δ function and takes the simple form

A(k, ω) = 2πδ(ω − εk) , (14)

with the quasiparticle energy εk for a particle with
momentum k. The sp Green’s function can be obtained from
the solution of the Dyson equation, which reduces for the
system of homogeneous infinite matter to a a simple algebraic
equation [

ω − k2

2m
− �(k, ω)

]
G(k, ω) = 1 , (15)

where �(k, ω) denotes the complex self-energy. The self-
energy can be decomposed into a generalized Hartree-Fock
part plus a dispersive contribution

�(k, ω) = �HF(k) − 1

π

∫ +∞

−∞
dω′ Im�(k, ω′ + iη)

ω − ω′ . (16)

The next step is to obtain the self-energy in terms of the
in-medium two-body scattering T matrix. It is possible to
express Im�(k, ω + iη) in terms of the retarded T matrix
[11,41,42] (for clarity, spin- and isospin quantum numbers
are suppressed)

Im�(k, ω + iη) = 1

2

∫
d3k′

(2π )3

∫ +∞

−∞

dω′

2π

×〈kk′|ImT (ω + ω′ + iη)|kk′〉
× [f (ω′) + b(ω + ω′)]A(k′, ω′). (17)

Here and in the following f (ω) and b(ω) denote the Fermi
and Bose distribution functions, respectively. These functions
depend on the chemical potential µ and the inverse temperature
β of the system. Note, that the results discussed below are for
the limit of zero temperature. The in-medium scattering matrix
T is to be determined as a solution of the integral equation

〈kk′|T ( + iη)|pp′〉 = 〈kk′|V |pp′〉 +
∫

d3q d3q ′

(2π )6

×〈kk′|V |qq′〉G0
II(qq′, + iη)

×〈qq′|T ( + iη)|pp′〉 , (18)
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where

G0
II(k1, k2, + iη) =

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
A(k1, ω)

×A(k2, ω
′)

1 − f (ω) − f (ω′)
 − ω − ω′ + iη

. (19)

stands for the two-particle Green’s function of two noninteract-
ing but dressed nucleons. The matrix elements of the two-body
interaction V represent either the bare NN interaction v12 or
the effective interaction Veff , in which case the integrals are
cut at the cutoff parameter �.

The in-medium scattering equation (18) can be reduced to
a set of one-dimensional integral equations if the two-particle
Green’s function in Eq. (19) is written as a function of the
total and relative momenta of the interacting pair of nucleons
and the usual angle-average approximation is employed (see
e.g. Ref. [43] for the accuracy of this approximation). This
leads to integral equations in the usual partial waves, which
can be solved very efficiently if the two-body interaction
is represented in terms of separable interaction terms of a
sufficient rank [33].

Finally, we consider the generalized Hartree-Fock contri-
bution to the self-energy in Ref. (16), which takes the form

�HF(k) =
∫

d3k′

(2π )3
〈k, k′|V|k, k′〉n(k′), (20)

where n(k) is the correlated momentum distribution, which is
to be calculated from the spectral function by

n(k) =
∫ +∞

−∞

dω

2π
f (ω)A(k, ω). (21)

Also the energy per particle, E/A, can be calculated from the
spectral function using Koltun’s sum rule

E

A
= 1

ρ

∫
d3k

(2π )3

∫ +∞

−∞

dω

2π

1

2

(
k2

2m
+ ω

)
A(k, ω)f (ω) .

(22)
Eqs. (13)–(21) define the so-called T-matrix approach to the
SCGF equations. They form a symmetry conserving approach
in the sense of Ref. [42], which means that thermodynamical
relations such as the Hughenholtz-Van Hove theorem [33,44]
are obeyed.

The BHF approximation, which is very popular in nuclear
physics, can be regarded as a simple approximation to this
T-matrix approach. In the BHF approximation one reduces the
spectral function A(k, ω) to the quasiparticle approximation
(14). Furthermore one ignores the hole-hole scattering terms
in the scattering Eq. (18), which means that one replaces

[1 − f (ω) − f (ω′)] → [1 − f (ω)][1 − f (ω′)] , (23)

which is the usual Pauli operator. This reduces the in-medium
scattering equation to the Bethe-Goldstone equation. The
removal of the hole-hole scattering terms leads to real self-
energies �(k, ω) at energies ω below the chemical potential,
i.e., for the hole states.

IV. RESULTS AND DISCUSSION

In the following we discuss results for symmetric nuclear
matter obtained from SCGF calculations. These calculations
are either performed in the complete Hilbert space using
the bare CD-Bonn [1] interaction or in the model space,
which is defined by a cutoff parameter � = 2 fm−1 in the
two-body scattering equation, employing the corresponding
effective interaction Vlow−k , which is derived from the CD-
Bonn interaction using the techniques described in Sec. II. We
note that using this unitary model operator technique we were
able to reproduce the results of the BHF calculations presented
in Ref. [23], which used tabulated matrix elements of Ref. [20]
with good accuracy. The NN interaction has been restricted
to partial waves with total angular momentum J less than 6.

Results for the calculated energy per nucleon are displayed
in Fig. 1 for various densities, which are labeled by the
corresponding Fermi momentum kF . The effective interaction
Vlow−k accounts for a considerable fraction of the short-range
NN correlations, which are induced by realistic interactions
such as the CD-Bonn interactions. Therefore, already the
Hartree-Fock approximation using this Vlow−k yields rea-
sonable results for the energies as can be seen from the
dotted line of Fig. 1. Hartree-Fock calculations using the bare
CD-Bonn interaction yield positive energies ranging between
2–15 MeV/c for the densities considered in this figure. Note
that the CD-Bonn interaction should be considered as a soft
realistic interaction. Interaction models, which are based on
local potentials, such as the Argonne interaction [2], yield
more repulsive Hartree-Fock energies [6].
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CD-Bonn T-matrix

Vlow-k

Vlow-k (HF)

kF (fm-1)

E
/N

   
   

 (
M
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)

FIG. 1. (Color online) Binding energy per nucleon for symmetric
nuclear matter as function of the Fermi momentum: Results of self-
consistent T-matrix calculations for the CD-Bonn potential (dashed
line), are compared to results of calculations using Vlow−k with � =
2 fm−1 in the Hartree-Fock approximation (dotted line), the self-
consistent second order approximation (dashed-dotted line) and for
the self-consistent T -matrix approximation (solid line) within the
model space.
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The inclusion of correlations within the model space
yields a substantial decrease of the energy. The self-consistent
T-matrix approach provides additional attraction ranging
between 6 MeV/c at a density of 0.4 ρ0 (with ρ0 the
empirical saturation density) and 3 MeV/c at 2 ρ0. The fixed
cutoff parameter � seems to reduce the phasespace available
for correlations beyond the mean-field approach at higher
densities. Therefore the energy calculated in the self-consistent
T-matrix approach reduces to the Hartree-Fock result at large
densities.

Figure 1 also displays the energies resulting from a
SCGF calculation within the model space, in which the
T-matrix has been approximated by the corresponding scatter-
ing matrix including only terms up to second order in the NN

interaction V. The results of such second-order calculations in
Vlow−k are represented by the dashed-dotted line and show
a very good agreement with the model-space calculations
including the full T matrix. This confirms the validity of
approaches, which consider correlation effects within the
model space in a perturbative way.

All these model space calculations using Vlow−k , however,
fail to reproduce the results of the SCGF calculations, which
are obtained in the complete space using the bare NN

interaction, which are labeled by CD Bonn T matrix in Fig. 1.
In particular, the model-space calculations yield too-attractive
energies at high densities and therefore do not exhibit a
minimum for the energy as a function of density. This confirms
the results of the BHF calculations of Ref. [23].

It has been argued [23] that this overestimate of the binding
energy at high densities is because of the fact that Vlow−k

does not account for the quenching of correlation effects,
which is because of the Pauli principle and the dispersive
effects in the single-particle propagator getting more important
with increasing density. Therefore we try to account for
the dispersive quenching effects by adopting the following
two-step procedure.

In a vein similar to the use of a G matrix within a
self-consistent BHF calculation, as a first step we perform
BHF calculations using Vlow−k . The resulting single-particle
spectrum is approximated by an effective mass parametriza-
tion. This parametrization of the mean field is employed
to define the single-particle operator h0, used in Eq. (1)
and the following equations of Sec. II (see also Ref. [30]).
The resulting effective interaction is used again for a BHF
calculation within the model space, leading to an update of the
mean-field parametrization. The procedure is repeated until a
self-consistent result is obtained. This leads to effective masses
ranging between m∗/m = 0.86 for a Fermi momentum kF

of 1 fm−1 and m∗/m = 0.61 for a Fermi momentum kF of
1.7 fm−1. Because these mean-field parametrizations depend
on the density, this method yields an effective density-
dependent interaction, which in the limit of the density ρ → 0
coincides with Vlow−k . Therefore we call this effective interac-
tion the density-dependent Vlow−k or, in short, Vlow−k(ρ). Such
a procedure amounts to summing up certain higher order terms
in the full many-body problem.

In a second step this Vlow−k(ρ) is used in SCGF calculations
at the corresponding density. Energies resulting from such
model-space calculations using Vlow−k(ρ) are presented in
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FIG. 2. (Color online) Same as Fig. 1 but for Vlow−k(ρ) calculated
at each density.

Fig. 2. The comparison of the various calculations within the
model space exhibits the same features as discussed above
for the original Vlow−k . The correlation within the model
space provide a substantial reduction of the energy as can
be seen from the comparison of the self-consistent T-matrix
approach with the Hartree-Fock results. The approach treating
correlations up to second order in Vlow−k(ρ) yields energies
that are very close to the complete T-matrix approach.

The density dependence of the effective interaction
Vlow−k(ρ) yields a significant improvement for the compar-
ison between the model-space calculations and the SCGF
calculation using the bare CD-Bonn interaction. Note that the
energy scale has been adjusted going from Fig. 1 to Fig. 2.
The discrepancy remaining at densities above ρ0 might be
because of the effects of the Pauli quenching, which are not
included in Vlow−k(ρ). Using the UMOA techniques these Pauli
effects would be included in terms of effective three-nucleon
forces. These deviations could also originate from the simple
parametrization of the dispersive quenching in Vlow−k(ρ).

Our investigations also provide the possibility to explore
the effects of correlations evaluated within the model space
using the effective interaction Vlow−k . We can furthermore
compare these correlation effects with the corresponding
effects determined by the bare interaction in the unrestricted
space. As a first example, we discuss the imaginary part of
the self-energy calculates at the empirical saturation density
ρ0 for various nucleon momenta p as displayed in Fig. 3. The
calculations within the model space reproduce the results of the
unrestricted calculations with a good accuracy in the energy
interval for ω ranging between 50 MeV below and 50 MeV
above the chemical potential µ. The remaining differences
around the Fermi energy can be attributed to the difference in
the effective masses obtained using the Vlow−k and the bare
potential [45]. The agreement between the T-matrix results
around ω = µ using the two potentials is improved if one
rescales by the ratio of the effective masses. The imaginary
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FIG. 3. (Color online) Imaginary part of the self-energy as a
function of the energy ω for various momenta p as indicated in
the panels [see Eq. (17)]. The results have been determined for
the empirical saturation density ρ0; using Vlow−k in the T-matrix
approximation (solid line), using Vlow−k in the second-order approx-
imation (dashed-dotted line), and employing CD-Bonn interaction
in the T-matrix approximation (dotted line). The dashed line in the
first panel denotes the results of the T-matrix calculation with the
CD-Bonn potential rescaled by the ratio of the effective masses at
the Fermi momentum obtained with the Vlow−k and the bare CD-Bonn
potential.

part calculated with Vlow−k , however, is much smaller than
the corresponding result obtained for the bare interaction at
energies ω − µ above 100 MeV. Furthermore the model-space
calculations do not reproduce the imaginary part for energies
below the chemical potential at momenta k above 400 MeV/c.

The imaginary part of the self-energy is a very important in-
gredient for the evaluation of the spectral function A(k, ω) and
therefore also for the calculation of the occupation probability
n(k) [see Eq. (21)]. The small values for the imaginary part of
the self-energy at high momenta k and negative energies ω − µ

leads to occupation probabilities at these momenta, which are
much smaller than the corresponding predictions derived from
bare realistic NN interactions, as can be seen from Fig. 4. This
missing strength in the prediction of Vlow−k at high momenta
is accompanied by larger occupation probabilities at low
momenta. The self-consistent T-matrix approximation using
CD-Bonn yields an occupation probability at k = 0 of 0.897,
whereas the corresponding number using Vlow−k is 0.920. For
this comparison one must keep in mind that this reduction of
the occupation probability n(k = 0) using Vlow−k reflects only
the effects that are the result of correlations within the model
space. Correlation effects because of configurations outside
the model space could be accounted for by a renormalization
of the single-particle density operator employing the same
unitary transformation that has been used to define the effective
interaction Vlow−k .
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FIG. 4. (Color online) Momentum distribution n(k) [see Eq. (21)]
calculated for nuclear matter at the empirical saturation density ρ0.
Results of the T-matrix approximation within the model space (solid
line) are compared to results of the second-order approximation
(dashed-dotted line) and the T-matrix approximation (dotted line)
in the unrestricted space.

At this density, the calculation including only terms up to
second order in Vlow−k yields a rather good approximation to
the self-consistent T-matrix approximation within the model
space.

As a second example we consider the imaginary part of the
self-energy calculated at a lower density ρ = 0.4 × ρ0. The
results displayed in Fig. 5 refer to nucleons with momentum
k = 0. Also at this density we find that the imaginary part
evaluated with Vlow−k drops to zero at large positive energies
much faster than the predictions derived from the bare
interaction (see upper panel on the left in Fig. 5).
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FIG. 5. Imaginary part of the self-energy as a function of the
energy ω for nucleons with momentum k = 0 calculated at the density
ρ = 0.4 × ρ0. Results of the T-matrix approach (solid line) and the
second-order approximation (dashed-dotted line) within the model
space are compared to results obtained in the unrestricted calculation
(dotted line).
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It is worth noting that at this low density the second-order
approximation is not such a good approximation to the full T-
matrix approach as it is for the higher densities. Characteristic
differences between the dashed-dotted and the solid line show
up at energies ω close to the chemical potential. To trace the
origin of these differences we display in Fig. 5 the contributions
of various partial waves of NN interaction channels to this
imaginary part. It turns out that the differences are largest
in the 3S1 − 3D1 and the 1S0 channels. This means that the
perturbative approach is not very successful in those two
channels that tend to form quasibound states. In these channels
all particle-particle hole-hole ladders have to be summed up
to obtain the pairing solution. Note that the pairing solutions
are suppressed at higher densities if the effects of short-range
correlations are properly taken into account [46,47].

Furthermore, we point out that a different scale is used in
the two lower panels of Fig. 5. Taking this into account, it
is evident from this figure that the main contribution to the
imaginary part of the self-energy, and that means the main
contribution to the character of the deviation of the spectral
function from the mean-field approach, originates from the
NN interaction in the 3S1 −3D1 channel.

V. CONCLUSIONS

During the past few years it has become very popular to
perform nuclear structure calculations using effective low-
momentum NN interactions. These Vlow−k interactions are
based on a realistic model of the NN interaction. They are
constructed to be different from zero only within a model space
defined by a cutoff � in the relative momenta of the interacting
nucleons. Within this model space they reproduce the NN data
of the underlying bare interaction, although the many-body
solutions may show differences with different starting NN

interactions.
For this study we performed SCGF calculations of sym-

metric nuclear matter employing Vlow−k effective interactions
as well as the bare CD-Bonn interaction they are based on.
Special attention was paid to the correlations that can be
described within this model space as compared to correlations
predicted by the underlying interaction within the unrestricted
space.

Using a cutoff � = 2 fm−1 we find that the spectral distri-
bution of the single-particle strength in an energy window of

±50 MeV around the Fermi energy is rather well reproduced
by the calculation using Vlow−k . The effective interaction
Vlow−k is softer than typical realistic NN interactions. There-
fore for many observables it is sufficient to approximate the full
in-medium scattering matrix T by the approximation including
terms up to second order in Vlow−k . This justifies the use of the
resummed effective interaction in many-body approximations
that do not include ladder-diagram resummation. Special
attention must be paid to nuclear systems at smaller densities:
the possible formation of quasibound states may require the
nonperturbative treatment of the NN scattering in the medium.
This also has implications for the use of Vlow−k in studies of
weakly bound nuclear systems.

The model-space approach cannot reproduce correlation
effects, which lead to spectral strength at high energies and
high momenta. For nuclear matter at the empirical saturation
density ρ0 the momentum distribution is reliably predicted up
to a momentum of 400 MeV/c. This could be improved by a
renormalization of the single-particle density operator.

The Vlow−k approach overestimates the binding energy per
nucleon at high densities. Therefore we introduced a density-
dependent effective interaction Vlow−k(ρ) that we constructed
along the same line as the original Vlow−k . The new effective
interaction accounts for a dispersive correction of the single-
particle propagator in the medium. This improves the behavior
of the effective interaction significantly. For densities above
ρ0, however, the binding energies calculated with Vlow−k(ρ)
are still too large. This might be improved by determining
effective three-nucleon forces explicitly from the underlying
bare interaction. Note, however, that other three-nucleon
forces, representing e.g. the relativistic effects included in
a Dirac-Brueckner-Hartree-Fock calculation or subnucleonic
degrees of freedom, might be required to reproduce the
empirical saturation point of nuclear matter.
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[32] P. Bożek and P. Czerski, Eur. Phys. J. A 11, 271 (2001).
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