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Fission modes of 256Fm and 258Fm in a microscopic approach
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A static microscopic study of potential-energy surfaces within the Skyrme-Hartree-Fock-plus-BCS model is
carried out for the 256Fm and 258Fm isotopes with the goal of deducing some properties of spontaneous fission.
The calculated fission modes are found to be in agreement with the experimentally observed asymmetric-to-
symmetric transition in the fragment-mass distributions and with the high- and low-total-kinetic-energy modes
experimentally observed in 258Fm. Most of the results are similar to those obtained in macroscopic-microscopic
models as well as in recent Hartree-Fock-Bogolyubov calculations with the Gogny interaction, with a few
differences in their interpretations. In particular an alternative explanation is proposed for the low-energy fission
mode of 258Fm.
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I. INTRODUCTION

Before the work of Brandt and collaborators [1] in
1963, very little was experimentally known about detailed
spontaneous-fission properties of isotopes other than 252Cf.
These authors measured the mass-yield and kinetic-energy dis-
tributions for the spontaneous fission of 254Fm and obtained a
well-marked asymmetric mass-yield curve. Later on, Balagna
et al. [2] and John et al. [3] showed independently that the
experimental fragment-mass distribution for the spontaneous
fission of 257Fm is essentially symmetric, with a very slight dip
in a broad peak centered at the fragment mass 127–128. John
and collaborators [3] also investigated the thermal-neutron-
induced fission of 257Fm and obtained a sharper symmetric
pattern. Based on the results from the Argonne group published
the following year [4] and showing the asymmetric character
of the spontaneous fission of 256Fm, they concluded that
“symmetric mass division in low-energy fission of heavy
actinides appears abruptly at 257Fm.” This was confirmed
later in the measurements by Hulet and collaborators [5–7],
who found very narrow symmetric mass distributions in the
spontaneous fission of 258Fm and 259Fm.

Another remarkable spontaneous-fission property that
rapidly changes along the Fm isotopic chain is the fragment
kinetic-energy distribution: it is very well reproduced by a
single Gaussian for A � 256 with an average total kinetic
energy TKE that follows the Viola systematics [6,8], whereas
heavier isotopes have a much higher TKE value. This is
particularly the case for 258Fm where Hulet et al. [9] found
that the total-kinetic-energy distribution has a non-Gaussian
shape that can be unfolded into two Gaussians. These authors
named this behavior “bimodal fission” and showed that it cor-
responds to two different fission modes: one is a high-energy
mode (TKE = 230 MeV) associated with a narrow symmetric
mass distribution and the other one is a low-energy (TKE =
205 MeV) form of fission with a much broader (still symmet-
ric) mass distribution, which even reverts to asymmetric when
spontaneous-fission events associated with lower energies
(TKE � 200 MeV) are selected. Interestingly both modes have
about the same abundance.

From the theory side, a number of authors investigated
these two spontaneous-fission properties in Fm isotopes.

On the one hand, Lustig, Maruhn, and Greiner [10] studied the
transition in the mass-distribution patterns. They calculated
the mass-yield curves of even Fm isotopes from A = 254
to 260 and reproduced the observed transition. On the other
hand, several groups investigated the bimodal fission of 258Fm,
from the characteristics of its potential-energy surface. Four of
them made use of a macroscopic-microscopic model, relying
on a liquid-drop contribution to the binding energy (with
different nuclear surface parametrizations) and the Strutinsky
method with various single-particle potentials to calculate the
microscopic correction to the macroscopic energy [11–15].
Even though all of them did not agree on the height of the
outer saddle point relative to the ground state of the fissioning
nucleus, they all obtained two fission valleys leading to two
different families of prescission shapes, namely elongated
slightly asymmetrical configurations and compact symmet-
rical configurations corresponding to two nearly spherical
129Sn nascent fragments. They were dubbed respectively as
the “old path” and the “new path” in Refs. [12,13]. The
existence of these two fission valleys is in agreement with the
experimental observation of two energy modes. Pashkevich
[14] even showed that the difference between the Coulomb
interaction energy between the nascent fragments estimated
in both valleys for different neck radii (about 30 MeV) was
reasonably close to the TKE difference between the fission
modes (25 MeV).

More recently, two groups of authors performed calcu-
lations of potential-energy surfaces, covering the region of
saddle points and beyond, within microscopic self-consistent
mean-field approaches, including residual pairing correla-
tions and using density-dependent phenomenological effective
nucleon-nucleon interactions. On the one hand, within the
Hartree-Fock-Bogolyubov (HFB) approximation with the D1S
Gogny interaction, Warda and collaborators [16–18] carried
out an extensive study addressing both spontaneous-fission
properties discussed in the first two paragraphs. However,
some of their arguments do not seem to be consistent with
their results, as shown in Sec. I of this article. On the
other hand, Staszczak and coworkers [19] implemented
the Hartree-Fock-plus-BCS (HFBCS) approximation, with
the SLy4 Skyrme interaction in the mean-field channel and the
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seniority (constant-G) force in the pairing channel. They also
obtained a reflection-asymmetric path and a symmetric one
in their fission-barrier calculations for the even Fm isotopes
from A = 242 to 264, but their claimed overall qualitative
agreement with existing experimental data does not seem clear
from the results presented.

Finally it is worth mentioning that Asano and coworkers
[20] recently performed dynamical calculations of fragment
kinetic-energy and mass distributions, based on the multidi-
mensional Langevin equation and a macroscopic-microscopic
potential-energy surface, for the 264Fm isotope at a compound
nucleus excitation energy of 10 MeV. They also calculated the
mass distributions of 256Fm and 258Fm at the same excitation
energy and obtained a good agreement with the experimental
data for the thermal-neutron-induced fission of 255Fm [21] and
257Fm [3].

Within the HFBCS microscopic approach, the present
study aims at clarifying several points related to the above
spontaneous-fission properties of 256Fm and 258Fm from
a careful, static study of their potential-energy surfaces,
extending the brief discussion in Ref. [22]. After a short
description of the HFBCS model and the method used to
explore the energy surface, I present the results in Sec. III and
discuss them in Sec. IV. Finally I draw the main conclusions
in Sec. V.

II. MODEL AND METHOD FOR EXPLORING
THE POTENTIAL-ENERGY SURFACE

The microscopic approach followed in this study has
already been applied to calculations of actinide fission barriers
and presented in detail in Ref. [23]. It is based on the
HFBCS approximation implemented with a density-dependent
nucleon-nucleon effective interaction. Such an approach is
self-consistent because of both the Hartree-Fock approxi-
mation itself and the density dependence of the effective
interaction. However, because very large elongations are
involved up to and beyond scission (defined, for example, as in
recent works [24,25]), the approximate correction term for the
zero-point rotational motion added in Ref. [23] does not seem
to be well suited for such deformations and is not taken into
account. As for the spurious contribution from center-of-mass
vibrations to the energy, thoroughly analyzed by Bender et al.
in Ref. [26], only the traditional one-body contribution
E

(1)
K (leading simply to a renormalization factor 1 − 1/A in

the kinetic energy) is considered because the SkM∗ force
parameters were fitted within this framework. As shown in
Table I, adding the two-body contribution E

(2)
K (perturbatively

calculated) to the Hamiltonian changes the deformation energy
with respect to its ground-state value by about 1 MeV.

As long as we deal with one-cluster nuclear shapes,
this effect can be considered to be small. However, the
center-of-mass correction is expected to be important at and
beyond scission, and a tractable correction appropriate for
any configuration ranging from slightly deformed to well-
separated fragment shapes has not yet been proposed.

To illustrate this, let us consider a configuration with two
identical, well-separated fragments. On the one hand, we

TABLE I. One-body E
(1)
K and two-body E

(2)
K

contributions to the center-of-mass kinetic en-
ergy in MeV per nucleon at the ground state
(Q20 = 32.5 b) and far beyond the outer saddle
point in the fission valley (Q20 ≈ 400 b) of 256Fm
(see Sec. III for details).

Q20 (b) E
(1)
K E

(2)
K Total

32.5 18.72 −13.21 5.51
400.7 18.34 −12.16 6.18

would expect the energy of the total system to be

E = E1 + E2 + E
(int)
C , (1)

where E
(int)
C is the Coulomb interaction energy between the

two fragments (which expression, not needed here, is given
after this discussion). In Eq. (1), Ei denotes the energy of
fragment i obtained by subtracting the one- and two-body
parts of the center-of-mass kinetic energy of fragment i
from the expectation value 〈Ĥ 〉(A/2) of the corresponding
Hamiltonian:

Ei = 〈Ĥ 〉(A/2) − (
E

(1)
K + E

(2)
K

)
. (2)

Using the following estimates in MeV per nucleon for E
(1)
K

and E
(2)
K assumed to be independent of A and the deformation

coordinate (expressed as the quadrupole moment Q20) and
deduced from Table I:

E
(1)
K ≈ 18.5 MeV (3)

E
(2)
K ≈ −0.7E

(1)
K , (4)

we arrive at

E ≈ 2 〈Ĥ 〉(A/2) + E
(int)
C − 11 MeV. (5)

On the other hand, a common application of the center-of-mass
correction (even including the two-body part) leads to

E′ = 〈Ĥ 〉(A) − (
E

(1)
K + E

(2)
K

)
, (6)

with 〈Ĥ 〉(A) ≈ 2 〈Ĥ 〉(A/2) + E
(int)
C ; hence

E′ ≈ 2 〈Ĥ 〉(A/2) + E
(int)
C − 5.5 MeV. (7)

The difference between E, the intuitively correct result, and
E′ amounts to about 5–6 MeV in absolute value. In this work,
where the two-body part of the center-of-mass correction is
not taken into account, the energy actually calculated is

E′′ = 〈Ĥ 〉(A) − E
(1)
K

≈ 2 〈Ĥ 〉(A/2) + E
(int)
C − 18.5 MeV, (8)

which underestimates E by about 7–8 MeV. That means that,
in the absence of a correct treatment of the spurious center-
of-mass motion, the approximate corrected energy calculated
here is off by at least 5 MeV at and beyond scission, even if the
two-body contribution is taken into account. Nevertheless for
the purpose of the present study this is not a serious limitation
because it does not affect the existence of stable solutions at a
given elongation.
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Let us now be precise about how the Coulomb energy is
calculated in this work and what expression of E

(int)
C is used to

estimate the fission-fragment total kinetic energy in Sec. IV.
First, the direct Coulomb energy E

(dir)
C of the fissioning nucleus

E
(dir)
C = e2

2

∫
d3 r

∫
d3 r′ ρp(r) ρp(r′)

| r − r′| (9)

= e2

4

∫
d3 r ρp(r)

∫
d3 r′| r − r′|�ρp(r′), (10)

where e2 ≈ 1.44 MeV fm, ρp(r) is the local proton density and
� is the Laplacian operator, is computed exactly by numerical
integration of the well-behaved expression (10) as proposed by
Vautherin [27]. Then the exchange part E

(exch)
C is calculated by

combining the Slater approximation [28] with a kind of local
density approximation, which leads to the expression [29,30]

E
(exch)
C = −e2

2

∫
d3 r

∫
d3 r′ |ρp(r, r′)|2

| r − r′| (11)

≈ −3 e2

4

(
3

π

)1/3 ∫
d3 r [ρp(r)]4/3, (12)

where ρp(r, r′) is the nonlocal proton density (off-diagonal
matrix elements of the one-body density operator). The two
densities ρp(r) and ρp(r, r′), including the BCS occupation
probabilities v 2

i as in Ref. [27], take the form

ρp(r) = 2
∑
i>0

v 2
i

∑
σ

∣∣ϕ(σ )
i (r)

∣∣2
(13)

ρp(r, r′) = 2
∑
i>0

v 2
i

∑
σ,σ ′

(
ϕ

(σ )
i (r)

)∗
ϕ

(σ ′)
i (r′), (14)

where the sums run over all the pairs of time-reversed
conjugate states and ϕ

(σ )
i (r) stands for the component of

spin σ of the single-particle wave function associated with
the single-particle state |i〉. The Coulomb interaction energy
between two complementary piecesV1 andV2 of the fissioning
nucleus is defined by

E
(int)
C = e2

∫
V1

d3 r1

∫
V2

d3 r2
ρp(r1) ρp(r2) − |ρp(r1, r2)|2

| r1 − r2| (15)

and can be decomposed into direct and exchange parts E
(int dir)
C

and E
(int exch)
C , respectively:

E
(int)
C = E

(int dir)
C + E

(int exch)
C , (16)

with

E
(int dir)
C = e2

∫
V1

d3 r1 ρp(r1)
∫
V2

d3 r2
ρp(r2)

| r1 − r2| (17)

E
(int exch)
C = −e2

∫
V1

d3 r1

∫
V2

d3 r2
|ρp(r1, r2)|2
| r1 − r2| . (18)

Equations (14) and (18) show that the exchange contribution
vanishes when the single-particle wave functions are localized
in either subset V1 or V2, which is the case in separated-
fragment configurations (at and beyond scission), but not

before the neck ruptures. Because the exchange part of the
Coulomb energy is calculated with the approximate expression
in Eq. (12), it gives no contribution to the Coulomb interaction
energy. Indeed E

(exch)
C can be written as

E
(exch)
C = E

(exch 1)
C + E

(exch 2)
C , (19)

where E
(exch i)
C is given by

E
(exch i)
C = −3 e2

4

(
3

π

)1/3 ∫
Vi

d3 r [ρp(r)]4/3 (20)

and is interpreted as the exchange term of the Coulomb
self-energy of the subset Vi . In consequence, E

(int)
C is over-

estimated when its exchange contribution is calculated with
the approximation given in Eq. (12), but by less and less as we
approach scission.

In practice the phenomenological Skyrme SkM∗ interaction
in the mean-field channel and the seniority force in the pairing
channel are chosen, with the same set of parameters as in
Ref. [23]. The Hartree-Fock equations are solved by expansion
of the single-particle states in a cylindrical harmonic-oscillator
basis, which needs to be appropriately truncated for practical
calculations. Appropriately means here that, given a truncation
prescription and a maximal size parameter N0 (see, e.g,
Ref. [31]), the basis parameters for a given deformation
should be chosen so as to minimize the energy. Following
Ref. [31], I introduce a deformation parameter q = ω⊥/ωz

and the spherical-equivalent harmonic-oscillator constant b =√
m ω/h̄, where ω is related to the oscillator frequencies ωz

(in the z direction) and ω⊥ (in the plane perpendicular to the
z axis) through ω3 = ωz ω2

⊥. In particular 17 oscillator shells
(N0 = 16) are included throughout this work unless otherwise
specified, as this basis size was shown in Ref. [23] to be
sufficient to within about 0.1 MeV for the relative energies
(with respect to the ground state) up to the outer saddle point
of 252Cf.

Given the variational character of the HFBCS approxima-
tion and the difficulty of computing energy on a mesh in
an N-dimensional deformation space with N > 2, I resort to
implementing the method described in Ref. [32] where it was
applied to calculations of fission paths for 70Se. Assuming
axial symmetry, a limited number of shape degrees of freedom
are retained, namely the elongation of the fissioning system
expressed as the axial quadrupole moment Q20 or the center-
of-mass distance Dc.m. between the (pre-)fragments, the mass
asymmetry through either the axial octupole moment Q30 or
the heavy (pre-)fragment mass AH , and the neck coordinate
QN (introduced by Berger et al. [33] and used by Warda et al.
[16]). Under this assumption, the center of mass of the
fissioning nucleus, located on the symmetry axis chosen to
be the z axis, is fixed at the origin of the reference frame by
adding to the Hamiltonian a constraint on the expectation value
of z. The definitions of the retained shape coordinates can be
found in Ref. [32], except for AH

AH = max{Aright, Aleft}, (21)
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where the mass of the right and left fragments are, respectively,
defined by

Aright =
∫

z� zneck

d3 r ρ(r) (22)

Aleft = A − Aright. (23)

In Eqs. (22) and (23), ρ(r) denotes the nuclear density (neutron
plus proton contributions) and A the mass of the fissioning
nucleus. The neck abscissa zneck is defined here as the z value
at which the nuclear density integrated in the perpendicular
plane is minimal. This definition holds only for sufficiently
necked-in nuclear shapes and corresponds to the value of z

for which the neck radius is minimum. The light-fragment
mass AL is thus simply given by AL = A − AH . The number
of protons in the heavy and light fragments ZH and ZL are
defined in the same way.

Interpreting the fission modes in terms of valleys of the
potential-energy surface, we do not need to explore the whole
surface to find these valleys and a constrained variational
approach like the HFBCS approximation seems suitable to
this purpose. However, two limitations should be kept in mind.
On the one hand, a partial exploration of the energy surface
might not lead to the lowest valleys at a given elongation (the
driving coordinate here), whereas, on the other hand, such an
approach does not guarantee finding the lowest saddle point
between a pair of local minima (in a given deformation space),
as already pointed out in Ref. [32]. It will therefore be verified
a posteriori, by comparison with experiment, that the valleys
obtained are the most relevant ones. An important point when
using this approach is to take great care to check the stability
of the solutions when looking for the relevant valleys. More
precisely these solutions should correspond to significantly
deep local minima for each constrained Q20 value in the
directions of mass asymmetry and neck coordinate. Finally, the
point in a given fission valley where the solution corresponds
to the larger constrained elongation is called the exit point of
the fission valley. One can similarly define the exit point of a
fusion valley upon considering the solution that corresponds
to the smaller constrained elongation.

III. RESULTS

The model and method presented in the previous section are
applied to the 256Fm and 258Fm isotopes. Earlier calculations
[23] were performed for these heavy nuclei in the same
framework except that left-right symmetry was imposed (in
addition to axial symmetry). The results reported here are
obtained by releasing this constraint.

For the 256Fm isotope, only left-right reflection symmetric
solutions are found between the spherical shape at Q20 = 0
and Q20 ≈ 160 b. The corresponding deformation-energy
curve is plotted in Fig. 1 as a solid line. A superdeformed
minimum lies just beyond the inner fission barrier, around
which preliminary calculations seem to indicate some softness
in the direction of left-right asymmetric deformations (with a
possible local minimum at a finite Q30 value). Beyond this
minimum, two kinds of valleys exist: the so-called fission

256Fm

sym.

GS SD

Q20(b)
E

d
ef

(M
eV

)

asym.EF

sym. CF
128

50Sn+
128
50Sn

asym. CF
123

49In+
133
51Sb

-1930

-1920

-1910

-1900

-1890

-1880

-1870

0 100 200 300 400 500

FIG. 1. Potential energy of deformation Edef as a function of the
quadrupole moment Q20 along the different fission paths obtained for
the 256Fm isotope. The solid line from 0 to 160 barns (b) represent
left-right symmetric solutions including the ground-state (GS) and the
superdeformed (SD) minima. The solid and the dotted lines beyond
250 b correspond to symmetric and asymmetric compact fission (CF)
paths, respectively. The dashed line is the bottom of the asymmetric
elongated fission (EF) valley.

valley, corresponding to one-body–shaped configurations, and
the so-called fusion valley, corresponding to two separated
fragments (see, for example, Refs. [33,34]).

On the one hand, only one fission valley is obtained (dashed
line labeled asym. EF—asymmetric elongated fission—in
Fig. 1), along which the 256Fm nucleus exhibits left-right
asymmetric shapes. The valley stretches from Q20 ≈ 140 to
420 b, where the one-body-shaped solution becomes unstable
against neck rupture. As we can see in Fig. 2 showing slices
of the potential-energy surface in the Q30 direction at three
different fixed elongations Q20, the transition between the
symmetric path from the superdeformed minimum and the
asymmetric fission valley occurs smoothly around Q20 =
160 b. At the exit point of the fission valley, the nascent
fragments are calculated to be approximately 140

54Xe and 116
46Pd.

On the other hand, two fusion valleys corresponding to the
symmetric 128

50Sn+128
50Sn and slightly asymmetric 123

49In+133
51Sb

fragmentations are found in the potential-energy surface. They
are represented in Fig. 1 as a solid line and a dotted line,
labeled sym. CF (symmetric compact fission) and asym. CF
(asymmetric compact fission), respectively. Although these
valleys are plotted only for elongations less than Q20 =
375 b, they exist for larger elongations. In contrast their upper
ends represent exit points as defined in the end of the previous
section. The two fusion valleys can also be visualized in
Fig. 3 showing a cut in the heavy-fragment mass AH direction
at a fixed elongation Q20 = 280 b chosen as an example.
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FIG. 2. Cuts in the potential-energy surface along the axial
octupole moment Q30 direction at different fixed elongations Q20

for 256Fm. The solid circles represent calculated points, whereas the
solid lines are drawn as eye guides.

In this figure, the solid line represents solutions obtained by
increasing the constraint on AH from 128 (symmetric solution)
to about 133, beyond which these solutions become unstable.
Similarly the dashed line corresponds to solutions obtained by
decreasing the constraint on AH from about 141 to about 131,
below which this kind of solutions does not exist. The two
minima at AH = 128 and 133.5 are therefore not connected
through a continuous curve in Fig. 3, from which we learn
that one or several additional degrees of freedom are missing
in the description of this region of the energy surface (for
example, the fragment deformations). Nevertheless, this does
not cast any doubt on the existence of the two fusion valleys.
Regarding the exact location of the asymmetric minimum on
the dashed curve of Fig. 3, the present HFBCS calculations
indicate that the mass of the heavy fragment varies very little

256Fm

AH

E
d

ef
 (

M
eV

)

Q20=280 b

-1900

-1898

-1896

-1894

-1892

-1890

130 135 140

FIG. 3. Cut of the potential-energy surface along the AH direction
at a fixed elongation Q20 = 280 b for 256Fm. The solid line represents
solutions obtained by increasing AH from 128 (symmetric solution)
and the dashed line is obtained by decreasing AH from about 141.

in the asymmetric fusion valley, with an average integer value
of 133.

Let us now turn to the 258Fm isotope. Its potential-
energy surface presents some features in common with the
one of 256Fm from the spherical point to the also present
superdeformed minimum, with only symmetric solutions—
corresponding to the solid line in Fig. 4—in this elongation
range. As in 256Fm, octupole softness is observed around the
top of the inner fission barrier. An asymmetric fission valley
emerging in the vicinity of the superdeformed minimum is
also present in 258Fm and plotted as a dashed line in Fig. 4.
The nascent fragmentation around the exit point, namely
approximately 141

54Xe+117
46Pd, is similar to that obtained in

256Fm. However, there are two major differences between
256Fm and 258Fm. The symmetrical solutions in 258Fm not
only remain stable against left-right asymmetric deformations
until scission but also give rise to two different families of
nuclear shapes. The solutions with compact shapes constitute
the symmetric compact fission (CF) path marked with solid
circles in Fig. 4 (labeled sym. CF) and those associated with
elongated configurations form the symmetric elongated fission
(EF) path marked with solid triangles (labeled sym. EF).

A word of caution should be said here about the symmetric
EF path. As mentioned in Sec. II, the present calculations
are done using a harmonic-oscillator basis size N0 = 16 for
the expansion of single-particle states. Even though this is
large enough to show the existence of the symmetric EF
path (that is, its stability with respect to left-right asymmetric
deformations), it is not the case when addressing quantitative
questions such as the location of the exit point. This is why
axial and left-right symmetric calculations are performed with
a larger basis size N0 = 20. It then becomes possible to scan the
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258Fm
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129
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FIG. 4. Same as described in the legend to Fig. 1 for the 258Fm
isotope. Solid circles and triangles are calculated points along the
symmetric compact fission (sym. CF ) and symmetric elongated
fission (sym. EF ) paths, respectively.

potential-energy surface on a mesh (Dc.m.,Q2f), where Dc.m.

and Q2f stand, respectively, for the center-of-mass distance and
the fragment axial quadrupole moment (which is of course the
same for each fragment because of the reflection symmetry).
Because we deal here with very large elongations of the
fissioning nucleus, the centers of mass of the prefragments
(and a fortiori of the separated fragments) are well defined
and it becomes more physical and intuitive to consider Dc.m.

rather than Q20. It is worth adding here that Q20,Q2f , and
Dc.m. are not independent of each other because they obey the

258Fm     N0=20  b=0.42

 10
 12

 14
 16

 18
 20

 22
Dc.m.(fm)-30 -20 -10  0  10  20  30  40  50  60Q2f (b)

-2000

-1980

-1960

-1940

-1920

-1900

Edef (MeV)

FIG. 5. Surface of deformation energy as a function of the center-
of-mass distance Dc.m. and the fragment elongation Q2f for 258Fm.

TABLE II. Values of the deformation energy on a (b, q) mesh
(b in fm−1) at Q20 = 190 b for 258Fm, calculated with 17 major
shells (N0 = 16).

b\q 1.6 1.8 2.0 2.2

0.38 −1903.03 −1903.28 −1903.75 −1903.67
0.40 −1903.85 −1904.04 −1904.21 −1903.93
0.42 −1903.99 −1904.05 −1904.21 −1903.66
0.44 −1903.61 −1903.66 −1903.91 −1903.37
0.46 −1903.15 −1903.31 −1903.56 −1903.16

relation

Q20 = 2 Q2f + A

2
D2

c.m., (24)

where A is the mass number of the fissioning nucleus.
In practice, it is extremely time consuming to optimize the

basis parameters b and q at each grid point. Therefore I resort
to an approximate procedure in which b is optimized using
a smaller basis corresponding to N0 = 16 at an elongation
Q20 ≈ 190 b somewhat smaller than the elongation at which
the symmetric EF valley appears. The resulting value of b is
then used over the whole range of deformations covered by
the mesh (10 fm � Dc.m. � 23 fm and −30 b � Q2f � 60 b). As
we can see in Table II, 0.42 is the approximate optimal value
for b. As for q, to which the results are not very sensitive (see
Table II), especially with the enlarged basis, an approximate
variation with Dc.m. is taken into account (the actual values of
q appear in Fig. 7 discussed below). The resulting numerical
uncertainties are not expected to drastically affect the relative
position of the symmetric EF and CF valleys or the nuclear
shape at the exit point of the EF valley.

The potential-energy surface obtained for 258Fm is dis-
played in three different forms: in Fig. 5 as a three-dimensional
surface, in Fig. 6 as a two-dimensional contour diagram, and
in Fig. 7 as a series of cuts at fixed Dc.m. values.

258Fm     N0=20  b=0.42

dEdef = 3 MeV

-1900

-1900-1903
-1906

 10  12  14  16  18  20  22

Dc.m.(fm)

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

Q
2f  (b

)

FIG. 6. Contour diagram of the deformation energy as a function
of the center-of-mass distance Dc.m. and the fragment elongation Q2f

for 258Fm. The energy interval between the contour lines (dEdef)
is 3 MeV.
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FIG. 7. Cuts in the potential-energy surface along the Q2f direction at different fixed center-of-mass distances Dc.m. for 258Fm.

The deformation-energy curves as functions of Q2f in
Fig. 7 exhibit two minima for Dc.m. � 12.5 fm. One at Q2f ≈ 0
is associated with a configuration having very few nucleons in
the neck (QN ≈ 0), corresponding thus to two separated, iden-

tical, and nearly spherical fragments (symmetric CF valley).
The other minimum varies with Dc.m. from 18 to 45 b and the
associated configuration has a finite neck radius (QN � 6): it
corresponds to the symmetric EF valley. The deformation-

014301-7



L. BONNEAU PHYSICAL REVIEW C 74, 014301 (2006)

-1950

-1940

-1930

-1920

-1910

-1900

10 12 14 16 18 20 22 24

258Fm

Dc.m.(fm)

E
d

ef
(M

eV
)

sym. CF
sym. EF

Q20(b)

E
d

ef
(M

eV
)

-1950

-1940

-1930

-1920

-1910

-1900

100 200 300 400 500 600 700

FIG. 8. Deformation energy along both symmetric fission valleys
as a function of Dc.m. (upper panel) and as a function of Q20 (lower
panel), obtained with N0 = 20 and b = 0.42.

energy curves are all continuous except for Dc.m. � 21 fm
(for which only the calculated points are plotted). Indeed two
kinds of configurations coexist for 30 b � Q2f � 40 b. They
are characterized by different QN values: QN ≈ 0 for the
steep increasing branch (separated fragments) and QN ≈ 6 for
the other one (very elongated one-body-shaped configuration).
From Fig. 7 we can approximately localize the exit point of
the symmetric EF valley at about Dc.m. = 22 fm, with Q2f ≈
45 b.

From these results, we can deduce the variation of the
deformation energy along the bottom of each valley as a
function of the driving coordinate Dc.m. (see the upper panel
of Fig. 8). It is also instructive to plot the same curves as
functions of the quadrupole moment Q20 (see the lower panel
of Fig. 8). The variation of the energy is of course not affected
by the choice of the driving coordinate because Dc.m. is a
monotonically increasing function of Q20, as shown in Fig. 9,
but the relative position of the two valleys can differ because
of a projection effect. Indeed projecting the multidimensional
energy surface onto a deformation subspace distorts it and the
resulting pattern generally depends on the actual subspace.
However, we can neglect this effect when comparing two
valleys if the distortion is weak or the energy difference
between the two valleys is large.

258Fm

Q20(b)
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10

15

20

25

100 200 300 400 500 600 700

FIG. 9. Variation of Dc.m. along both symmetric fission valleys as
a function of Q20, obtained with N0 = 20 and b = 0.42.

IV. DISCUSSION

A. Asymmetric-to-symmetric transition
in the fragment-mass distribution

From the features of the potential-energy surface we can
obtain some information about the fragment-mass distribution
in the spontaneous fission of 256Fm and 258Fm.

Starting from the ground state of 256Fm, the lowest and
only continuous path leading to scission is asymmetric in
its late stages, where the nascent fragments have a fairly
constant mass ratio of AH/AL ≈ 140/116 beyond Q20 ≈
350 b. Under the assumption that the most probable fragmenta-
tion experimentally observed corresponds to the configuration
just before neck rupture, that is, at the exit point of the
fission valley, the mass distribution in the spontaneous fission
of 256Fm is inferred to be asymmetric and peaked at AL ≈
116 and AH ≈ 140, only one mass unit away from the
experimental value for the heavy fragment AH ≈ 141 [4].
This property has also been successfully described within
the macroscopic-microscopic finite-range liquid-drop model
by Möller et al. [13] who found AH ≈ 140. Moreover, the
calculations by Warda et al. [16] have shown the same
behavior in the transition from the ground-state symmetric
path to the asymmetric fission valley. This can be seen in
their Fig. 5, where their cuts in the QN direction at various
elongations Q2 = Q20/2 are similar to the HFBCS cuts along
Q30, because QN and Q30 turn out to be in a one-to-one
correspondence along the cuts of Fig. 2 here. It is worth
mentioning that the portion of the symmetric path between
Q2 ≈ 90 and Q2 ≈ 130 b in Fig. 3 of Warda et al. [16] does
not correspond to local minima in the QN direction, as can
be seen in their Fig. 5. Although the authors of Ref. [16]
found a clear left-right reflection asymmetry in their nuclear
shapes along the EF path, they reported that the two nascent
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FIG. 10. Sequence of nuclear shapes along the symmetric CF
valley of 258Fm between Dc.m. = 13.0 and 15.0 fm. The solid
lines correspond to equal nuclear density contours ranging from
ρ(r) = 0.01 fm−3 (outermost contour) to ρ(r) = 0.15 fm−3 (inner-
most contour) with 0.01 fm−3 steps. The thick solid line marks the
density contour at half the saturation density, namely ρ(r) = ρsat/2 =
0.08 fm−3.

fragments have nearly equal masses, which they inferred in an
unclear way from the integrated particle number as a function
of z plotted in their Fig. 4(b). On the contrary, assuming that
the neck most likely ruptures where its radius is minimum,
Figs. 4(a) and 4(b) of Ref. [16] rather indicate that the heavy

fragment has a mass of about 136 and an atomic number of
about 52, in much better agreement with the HFBCS results
and the experimental data [4].

Contrary to 256Fm, the most favorable exit channel (i.e, the
lowest continuous path) beyond the superdeformed minimum
in 258Fm goes along the only symmetric path that eventually
forks, instead of following the asymmetric EF valley because
of the ridge separating them (at least 1.5 MeV high according
to Warda et al. [16]). Whichever valley is eventually followed
by the spontaneously fissioning nucleus toward scission, the
outcome is the same in terms of mass fragmentation because
in either valley the configurations are left-right symmetric.
This leads thus to a symmetric mass distribution, as was
obtained in all the other theoretical sudies and in agreement
with experiment [6,7].

B. Bimodal fission in 258Fm

Let us now relate the properties of the valleys obtained in
the potential-energy surface of 258Fm to the fragment total-
kinetic-energy and mass distributions of this isotope.

The two symmetric valleys present a major difference
associated with the nuclear shapes. Whereas the fissioning
nucleus develops already in the early stages of the CF valley
a narrow neck connecting two nearly spherical nascent frag-
ments (see Fig. 10), the neck of a fissioning nucleus following
the symmetric EF valley persists over a much wider range of
total elongation Q20, with very elongated nascent fragments
(see Fig. 11). From a geometrical argument and approximating
the total fragment kinetic energy by the Coulomb interaction
energy (the dominant contribution) at scission, we can deduce
that the fragments formed in the descent of the fissioning
nucleus along the symmetric CF valley have a much higher
kinetic energy than those associated with fission events from
the symmetric EF valley. In both cases the fragment-mass
distribution is expected to be symmetric because the parent
nucleus fissions into two identical fragments in both valleys.
More specifically, in the case where 258Fm undergoes fission
through compact shapes such as the ones displayed in Fig. 10,
the high stiffness of the CF valley in the mass asymmetry
direction, resulting from the strong shell effects in the nearly
spherical and doubly magic nascent fragments, produces a
mass distribution much narrower than the one corresponding
to fission events through the symmetric EF valley.

These arguments show that the two HFBCS symmetric
valleys are consistent with the kinetic-energy and mass-
distribution properties of the two modes experimentally
observed. Therefore it is natural to identify the symmetric
EF path with the low-TKE mode, and the symmetric CF
path with the high-TKE mode. Another argument in favor
of the interpretation of the symmetric EF valley relies on
the similarity between the nuclear shapes of Fig. 11 and
those obtained in the liquid-drop model, with which the
experimentally measured properties of the low-energy mode
are consistent [9].

To provide more quantitative grounds to this interpretation,
a discussion is now devoted to the estimation of the fragment
total kinetic energy associated with each fission path. Let us
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FIG. 11. Same as described in the legend to Fig. 10 for nuclear
shapes along the symmetric EF valley between Dc.m. = 12.5 22.0 fm.

assume that TKE is given by

TKE = E
(int)
C + E

(int)
N + E

(sc)
K , (25)

where a small nuclear interaction energy, E
(int)
N , and a some-

what larger prescission kinetic energy, E
(sc)
K , are added to

the dominant Coulomb interaction energy, E
(int)
C . These three

contributions have to be calculated just after neck rupture, that
is, at scission. The Coulomb part poses no particular problem,

so I focus on how to calculate the prescission kinetic and
nuclear contributions.

The relative energy of a scission configuration �Esc with
respect to the initial energy of the fissioning nucleus (its
ground-state energy in the present case of spontaneous fission)
represents the available energy at scission. This energy can
be shared among collective degrees of freedom other than
deformation, essentially kinetic energy in the fission direction,
E

(sc)
K , and internal degrees of freedom as an “internal”

excitation energy, E
(sc)
T . We can thus write

−�Esc = E
(sc)
K + E

(sc)
T , (26)

assuming that a physical scission configuration lies below the
ground state to be accessible by tunneling from the ground-
state well (�Esc < 0). Because a static study is unable to
provide the actual partitioning, I postulate an equipartition of
−�Esc between its two components

E
(sc)
K = E

(sc)
T ≈ −�Esc

2
. (27)

This approximation leads to values of prescission kinetic
energy of about 10 MeV for the scission configurations
considered in Table III. This is of the same order as the
one assumed by Brosa et al. [35] and consistent with the
experimental average TKE values, as well as the one found
by Bonasera [36] in semi-classical dynamical calculations
and by Abe et al. [37] from dynamical calculations based
on the two-dimensional Langevin equation and the one-body
dissipation mechanism.

As for the nuclear interaction between the two fragments, it
can be in principle calculated with the Skyrme force. This
requires one to disentangle the three contributions of the
nuclear energy of the whole system, namely the self-energies
of the two fragments and the interaction energy between the
fragments. This is ambiguous because one has to unfold the
local densities into two sets of densities localized each in one
of the fragments (with some overlap in the neck). However,
Pomorski and Dietrich [38] did the calculation in the case of
two spherical nuclei and showed that the resulting potential is
similar to the folded Yukawa-plus-exponential (YPE) potential
proposed by Krappe, Nix, and Sierk [39]. For this reason I use
the latter potential, with the parameters of Ref. [40].

The actual calculation of the different contributions of
TKE for the three paths requires the determination of a

TABLE III. Characteristics of the approximate scission config-
urations for each fission path: center-of-mass distance Dc.m. in fm,
corresponding total elongation Q20 in barns, deformation parameter
β (dimensionless) defined by Zhao et al. [42], Coulomb interaction
energy E

(int)
C , nuclear interaction energy E

(int)
N , and prescission kinetic

energy E
(sc)
K in MeV, together with their sum TKE and the most-

probable heavy-fragment mass AH .

Valley Dc.m. Q20 β E
(int)
C E

(int)
N E

(sc)
K TKE AH

Sym. CF 15.0 289.26 1.27 238.6 −1.7 7.1 244 129
Asym. EF 18.2 462.14 1.55 204.7 −1.4 11.7 215 141
Sym. EF 22.0 714.36 1.86 178.5 −5.2 10.4 184 129

014301-10



FISSION MODES OF 256Fm AND 258Fm IN A . . . PHYSICAL REVIEW C 74, 014301 (2006)

scission configuration for each path. As for the symmetric
CF valley, I postulate that the shape at Dc.m. = 15 fm in
Fig. 10 is the scission-point configuration. This is consistent
with the criterion of Goutte et al. [24] that, at scission, the
nuclear density in the neck, at z = zneck defined in Sec. II, is
0.01 fm−3. In the CF valley this corresponds to Dc.m. ≈ 15.0
fm. In fact it is remarkable that a scission point lies in the
bottom of a valley. In contrast, no scission configurations are
found along the symmetric or the asymmetric EF paths. It
becomes more difficult and ambiguous to assign a scission
point to each of these EF paths. However, to obtain an
estimate of the associated kinetic energies, a kind of “sudden
approximation” is used for an approximate calculation of
E

(int)
C . The two nascent fragments are approximated at the

exit point by the equivalent coaxial spheroids having the
same elongations and root-mean-square radii as the actual
fragments. They result from a sudden neck rupture assumed
to preserve the mass and charge asymmetries as well as the
center-of-mass distance. The Coulomb interaction energy is
calculated from the exact analytical expression of Quentin
[41], whereas the nuclear interaction energy is calculated with
the YPE potential by numerical integration.

The calculated results of E
(int)
C ,E

(int)
N , and E

(sc)
K for each path

are given in Table III, together with the resulting kinetic-energy
values rounded to the nearest integer. The TKE values for
the symmetric CF and EF valleys lie in the ranges of the
experimental high- and low-energy modes, respectively (see
Fig. 7 of Ref. [9]). As for the asymmetric EF path, the HFBCS
total kinetic energy is less than 220 MeV, which is consistent
with the conclusion from Fig. 8 of Ref. [9] that the fragments
associated with the fission events above AH = 140 in the
mass distribution have a TKE value lower than 220 MeV.
The authors of Ref. [9] also reported that the mass-yield curve
obtained by selecting spontaneous-fission events with TKE <

200 MeV becomes asymmetric, from which it can be inferred
that a significant number of symmetric pairs of fragments
have a TKE value between 200 and 220 MeV. However,
there is no evidence showing which type of symmetric
configurations (elongated or compact) dominates in this kinetic
energy range or what the average TKE value of fragment
pairs with AH � 140 is. Therefore, based on kinetic-energy
considerations, it seems possible that the asymmetric EF valley
contributes to feed the low-energy mode, but probably less so
than the symmetric EF one because of the ridge separating
them.

Two recent studies support this suggestion. On the one
hand, Zhao et al. [42,43] deduced a deformation parameter
of the scission configurations β, which gives a measure of
the deviation from two touching spheres, from experimental
average total-kinetic-energy systematics. The value β = 1.49
that these authors obtained from the average TKE value of
the low-energy mode in 258Fm is close to the average value
βasym = 1.53 ± 0.02 corresponding to the asymmetric mode
throughout the actinide region. It is interesting to note that the
value I obtained for the asymmetric EF path βHFBCS = 1.55
is compatible with this systematics. On the other hand, Asano
et al. [20] performed more recently dynamical calculations of
the fragment kinetic-energy and mass distributions of 264Fm
as well as the fragment-mass distributions of 256Fm and

258Fm, at an excitation energy of the compound nucleus of
10 MeV. These authors found that their distributions can be
decomposed into three modes: (i) a mass symmetric high-
energy mode (TKE = 232.1 MeV); (ii) a mass asymmetric,
low-energy mode (AH = 147.0, TKE = 200.8 MeV); and
(iii) a symmetric, very low energy mode (TKE =
171.7 MeV). Their calculated deformation parameters of the
scission configurations associated with the first two modes are
in very good agreement with the systematics of Zhao et al.
[42,43]. Even though the results obtained by Asano and
collaborators correspond to a different isotope at a higher
compound-nucleus excitation energy, they can be considered
similar to those for 258Fm reported in Table III.

Contrary to the above interpretation proposed for the
calculated fission paths, Warda and collaborators [16,17]
identified the low-kinetic-energy mode with the asymmetric
EF path only, because they do not seem to have found a
symmetric EF path. In the same way as for 256Fm, they
accounted for the symmetric character of the corresponding
mass distribution by a mass symmetric division associated
with left-right reflection asymmetric shapes. This explanation
is not supported by the present HFBCS calculations. However,
it would be very interesting to compare the exit points
of the asymmetric EF valleys obtained in both models.
Indeed the finite-range effect of the Gogny effective force
may play a role in the nuclear interaction energy, therefore
affecting the scission configurations and the total kinetic
energies.

Finally the similar abundance experimentally observed for
the two fission modes still needs to be explained. Because a
static model cannot predict the branching ratio, I can provide
only the following plausible qualitative argument. As shown in
Fig. 7, the symmetric EF path appears between Dc.m. = 12.0
and 12.5 fm, at about the same energy as the CF path. This
seems to indicate an equally important feeding of both valleys,
leading to an expected branching ratio of about 1.

V. CONCLUSION

The features of the potential-energy surface of the 256Fm
and 258Fm isotopes calculated within the HF(SkM∗)+BCS(G)
model successfully account for the experimentally observed
asymmetric-to-symmetric transition in the mass distribution
for spontaneous fission as well as most of the measured
properties of the bimodal spontaneous fission in 258Fm. The
HFBCS results suggest a different interpretation from the one
proposed by Warda et al. [16] for the low-energy mode in the
spontaneous fission of 258Fm. This mode seems to be better
understood as a combination of a dominant one corresponding
to symmetric very elongated scission configurations and
another one associated with asymmetric rather elongated
scission shapes (with a nearly spherical heavy fragment). The
estimates of the total kinetic energy for each component are
compatible with the experimental data [9] as well as with
recent dynamical calculations [20]. As an alternate dynamical
approach, the virial- theorem-based approach, developed and
initially applied to heavy-ion collisions by I. N. Mikhailov
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and collaborators [44], can also be applied to fission. This
work is underway for the symmetric fission of the 258Fm
isotope with microscopically calculated ingredients, namely
the potential-energy surface obtained in the present study and
the inertia parameters calculated in the HFBCS framework as
in Ref. [45].

ACKNOWLEDGMENTS

I am deeply grateful to A. J. Sierk and P. Möller for a careful
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