
PHYSICAL REVIEW C 74, 014003 (2006)

Power counting with one-pion exchange
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Techniques developed for handing inverse-power-law potentials in atomic physics are applied to the tensor
one-pion exchange potential to determine the regions in which it can be treated perturbatively. In S, P , and
D waves, the critical values of the relative momentum are less than or of the order of 400 MeV. The Wilsonian
renormalization group (RG) is then used to determine the power counting for short-range interaction in the
presence of this potential. In the P and D waves, where there are no low-energy bound or virtual states, these
interactions have half-integer RG eigenvalues and are substantially promoted relative to naive expectations. These
results are independent of whether the tensor force is attractive or repulsive. In the 3S1 channel, the leading term
is relevant, but it is demoted by half an order compared to the counting for the effective-range expansion with
only a short-range potential. The tensor force can be treated perturbatively in those F waves and above that do not
couple to P or D waves. The corresponding power counting is the usual one given by naive dimensional analysis.
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I. INTRODUCTION

Since Weinberg [1] first proposed that the ideas of chiral
perturbation theory (ChPT) could be applied to nuclear forces,
there has been a continuing debate over which parts of
interaction can be treated perturbatively and which can, or
indeed must, be treated nonperturbatively. This has led to two
widely used schemes for constructing effective field theories
(EFT’s) to represent these forces.1

One is based on Weinberg’s original suggestion [1] and has
been widely applied by van Kolck and collaborators [3–5].
It will be referred to here as the WvK scheme. In it, one
first expands potential using perturbative “Weinberg” power
counting (like that in ChPT for mesons or single nucleons [6]).
Then one constructs the scattering amplitude by iterating the
lowest-order terms: the leading, energy-independent contact
interaction and one-pion exchange (OPE).

The other scheme, developed by Kaplan, Savage, and Wise
(KSW) [7], starts from a nontrivial fixed point of the renormal-
ization group, which corresponds to a two-body system with an
infinite scattering length. In the expansion around this point,
all pion-exchange forces as well as momentum- or energy-
dependent contact interactions are treated as perturbations.

At very low momenta, pion-range physics is not resolved,
and nuclear forces can be described only in terms of contact
interactions. In this regime the two schemes, WvK and KSW,
are equivalent, since iterating the leading contact interaction
leads to the same power counting [7–9], and they just reproduce
the effective-range expansion [10,11]. However, at higher
momenta, they treat OPE differently. There, problems with
the perturbative KSW scheme have been identified by Fleming,
Mehen, and Stewart [12]. In particular, they have shown that
the expansion is only slowly convergent in the 1S0 channel
and, worse, it seems not to converge at all in the 3S1 channel.
This has led Beane et al. [13] to propose a hybrid approach,
using KSW in the former and WvK in the latter.

1For reviews, see Refs. [2,3].

The strength of the OPE potential is given by the square
of the pseudovector coupling which, to leading chiral order, is
given by f 2

πNN = g2
Am2

π/(16πF 2
π ). Empirical determinations

lead to values for f 2
πNN of about 0.075 [14]. If we factor the

nucleon mass out of the Hamiltonian, we find that the OPE
potential contains the scale

λπ = 16πF 2
π

g2
AMN

� 290 MeV, (1)

which is constructed from the nucleon mass and the pion decay
constant. Since both of these are high-energy scales in ChPT,
one would naturally take this to be a high-energy quantity. If
λπ were much larger than mπ , OPE could then be treated as
weak for scattering momenta of the order of mπ , and the KSW
scheme would apply. This would be the case in a world with
much smaller up- and down-quark masses, where one would
be much closer to the chiral limit, and mπ would be smaller
than fπ , not just smaller than 4πfπ —the typical combination
that appears in chiral expansions for processes involving at
most one nucleon [6]. Unfortunately, in the real world λπ is
only about twice mπ , and so we do not have a good separation
of scales. This is what underlies the difficulties in building a
useful perturbative EFT with pion-exchange forces.

The first question is whether to iterate OPE or not.
However, Nogga, Timmermans, and van Kolck [15] have
shown numerically that iterated OPE cannot be consistently
renormalized if the contact interactions are assigned the orders
they would have in naive dimensional analysis. A similar
observation is also made in footnote 5 of Ref. [16], but without
examining in detail the consequences for power counting.
Hence, if we choose to iterate OPE, we are forced to address
a second question: what power counting should we use for the
resulting contact interactions?

In this work, I address the first question by constructing
exact solutions to the Schrödinger equation and examining
them for nonanalytic dependence on the strength of the
OPE potential. In the chiral limit, this potential has a tensor
form proportional to 1/r3. Solutions can be obtained using
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techniques that have been developed in atomic physics
[17–19]. As in the case of the simple 1/r3 potential studied
by Gao [19], the solutions in each partial wave become
nonanalytic in the strength above some critical value for
the dimensionless product of the momentum and coupling
strength. This implies that the potential must be treated
nonperturbatively in this region.

For the 1/r3 in uncoupled partial waves, the critical values
have been determined by Gao [19]. Here I apply these results
to the tensor potential in coupled waves. Since the strength of
OPE is given in terms of 1/λπ , these results can be converted
into a critical value for the relative momentum in each
channel, above which OPE must be treated nonperturbatively.
In channels involving waves with l � 2, these critical momenta
are <∼400 MeV, implying that OPE needs to be iterated in
them, in agreement with the observations in Ref. [12]. In
contrast, the critical momenta in channels that involve only
waves with l � 3 are well above 1 GeV, and so OPE can be
treated perturbatively.

To answer the second question, I use the Wilsonian renor-
malization group (RG) [20] to determine the scale dependence
of the interactions between two nucleons. In this approach,
one imposes a floating cutoff �, lying between the low-energy
scales of interest and high scales of the underlying interest.
Demanding that the scattering amplitude be independent of the
cutoff then leads to an RG equation for the effective short-range
potential describing the physics that is not resolved at the scale
� [21–23].

This cutoff could be imposed on a plane-wave basis, but
in the presence of a known long-range potential, it turns out
to be more convenient to work in the basis of distorted waves
(DW’s) of that potential [22,23]. For a long-range potential that
is singular at the origin, the scaling behavior, and hence the
power counting, is controlled by the power-law dependence of
the DW’s for small r. In the case of the 1/r3 tensor potential,
I find that the short-range interactions have half-integer RG
eigenvalues (anomalous dimensions) and so their scaling is
quite different from that given by naive dimensional analysis.
These eigenvalues are all positive if the scattering is weak,
but they are smaller than they would be in the absence of the
long-range potential. Compared to the usual power counting
[1], these interactions are “promoted” to lower orders in the
expansion in small scales and hence are more important for
low-energy scattering than one would naively expect. This
agrees with the numerical observations in Ref. [15]. Similar
conclusions about the need for a modified power counting are
drawn in Refs. [16,24,25], which use a related DW approach
with a radial cutoff only. The RG analysis here provides the
new power counting. It also shows that in waves where the
tensor force can be treated perturbatively, the usual power
counting still applies.

II. SOLUTIONS IN THE CHIRAL LIMIT

The long-range OPE potential has a central piece

VπC(r) = 1

3
f 2

πNN

e−mπ r

r
(σ 1 · σ 2)(τ 1 · τ 2), (2)

and a tensor piece

VπT (r) = 1

3

f 2
πNN

m2
π

(
3 + 3mπr + m2

πr2
)e−mπ r

r3
S12(τ 1 · τ 2),

(3)
where S12 = 3(σ 1 · r̂)(σ 2 · r̂) − σ 1 · σ 2.

In the spin-singlet channels, only the central Yukawa
potential VπC contributes. This has a 1/r singularity at the
origin. Even when iterated, this is not sufficient to affect the
power counting for the short-range interactions [22]. However,
in the case of the spin-triplet channels, we have to deal with the
tensor piece of OPE. This behaves like 1/r3 at short distances,
so it is not obvious that it can ever be treated perturbatively.
If we do iterate this interaction, the resulting nonperturbative
short-distance physics can alter the power counting.

In fact, a 1/r3 singularity is sufficiently short ranged that
waves with low momenta do not resolve the singularity, and
their scattering can still be treated perturbatively. As discussed
below, the critical value of the momentum above which
nonperturbative behavior sets in is proportional to the scale
λπ in Eq. (1) and increases rapidly with the orbital angular
momentum of the wave. This is because in higher partial
waves, the centrifugal barrier “protects” low-energy waves
from probing the singularity.

At long distances, the potential falls off exponentially as a
result of the finite pion mass. This ensures that there are no
nonanalytic terms in the scattering amplitude and so, at very
low energies, the effective-range expansion [10,11] can be
applied to it. However, it does not alter the singular behavior at
short distances, so the effects of that can still be analyzed using
the simpler form of the potential in the chiral limit (mπ → 0).2

In the chiral limit the tensor interaction has the 1/r3 form

VπT (r) = 1

MNλπ

1

r3
S12(τ 1 · τ 2). (4)

This and other singular inverse-power-law potentials also arise
for systems in atomic physics, where techniques for solving
the corresponding Schrödinger equations have developed.3

In applications in both nuclear and atomic physics, these
singular potentials should not be regarded as “fundamental”.
Instead they provide the long-range parts of effective interac-
tions. At small separations, the finite sizes and structures of
nucleons or atoms cannot be ignored, and other, short-range
interactions are important. The solutions to the Schrödinger
equation with one of these potentials can be used as a DW
basis for analyzing the scale dependence of the associated
short-range terms. Provided they are viewed in this way, as

2If λπ had been much smaller than mπ then this would not be
possible; the exponential falloff would mean that waves did not probe
the singularity until their momenta were at least of order mπ . As
discussed below, the critical momenta obtained in the chiral limit are
greater than mπ in all channels except the 3S1–3D1. Even in that case,
the critical momentum is of the order of mπ/2, so the conclusion
that perturbation theory breaks down for momenta of the order of mπ

should still be valid, although the precise value of the momentum at
which this happens will be different.

3For a recent review, see Ref. [26]. A review of older approaches
can be found in Ref. [27].
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pieces of effective theories, even attractive singular potentials
are meaningful (contrary to the comment at the end of
Ref. [19]).

A. Uncoupled channels

The tensor interaction couples spin-triplet partial waves
with l = j ± 1, such as 3S1 and 3D1, but not those with l = j .
I consider the latter first. For these, the tensor operator is just
S12 = 2 [28], and the potential has a simple 1/r3 form. The
solutions to the corresponding Schrödinger equation can be
constructed as series expansions in Bessel functions using the
method of Refs. [17–19].4 Solutions for the pure 1/r3 potential
have previously been obtained by Gao [19], but I recap some
of the main features of the method here before applying it to
the coupled waves.

The radial Schrödinger equation describing the relative
motion of the two particles has the form

− 1

MN

[
d2

dr2
+ 2

r

d

dr
− l(l + 1)

r2

]
ψ(r) + B3

r3
ψ(r) = Eψ(r).

(5)
The strength of the potential is B3 = −6/(MNλπ ) in the
uncoupled isospin-singlet waves, such as 3D2 and 3G4, and
B3 = 2/(MNλπ ) in the isospin-triplet ones, such as 3P1 and
3F3 . It is convenient to rewrite this equation in dimensionless
form by introducing the coordinate x = pr and the coupling
κ = pMNB3, where p = √

MNE is the on-shell relative
momentum. It is also convenient to put the radial equation
into a form similar to Bessel’s equation by defining φ(x) =
x1/2ψ(x). After some rearrangement, the resulting equation is[

x2 d2

dx2
+ x

d

dx
+ x2 −

(
l + 1

2

)2
]

φ(x) = κ

x
φ(x). (6)

In this form we see that the behavior of the solutions is
controlled by the single combination of the energy and the
coupling strength, κ .

This equation can be solved analytically with the aid of
the methods in Refs. [17–19] by expanding φ(x) in terms of
Bessel functions as

φ(x) =
∞∑

n=−∞
anJn+ν(x). (7)

The shift in the order by ν is needed because the interaction on
the right-hand side generates secular perturbations that must
be resummed [17] (see also Ref. [34], Sec. 11.1). Substituting
the expansion (7) into Eq. (6) leads to an infinite set of linear
equations for the coefficients an:[

(n + ν)2 −
(

l + 1

2

)2
]

an = κ

2(n + ν + 1)
an+1

+ κ

2(n + ν − 1)
an−1, (8)

4Other closely related methods exist for solving equations with
inverse-power-law potentials. These are based on Laurent [29–31] or
Bessel-product expansions [32,33].

for −∞ < n < ∞. By introducing bn = an/(n + ν) and

fl(n + ν) = 2(n + ν)
[
(n + ν)2 − (

l + 1
2

)2]
, (9)

the linear equations can be put into the more symmetric form

κbn−1 − fl(n + ν)bn + κbn+1 = 0, −∞ < n < ∞. (10)

Following Refs. [18,19] (see also Ref. [29]), one can
solve these equations to get a representation of the ratios of
coefficients in terms of a continued fraction. For positive n, I
define the ratios

Rn = bn

κbn−1
. (11)

These satisfy the recurrence relation

Rn = 1

fl(n + ν) − κ2Rn+1
. (12)

In terms of these, the bn can all be related to b0 and expressed
as

bn =
(

n∏
m=1

Rm

)
κnb0. (13)

In a similar way, for negative n, I define

Rn = b−n

κb−(n−1)
, (14)

and these satisfy

Rn = 1

fl(−n + ν) − κ2Rn+1
. (15)

The corresponding coefficients can be written as

b−n =
(

n∏
m=1

Rm

)
κnb0. (16)

Using these results in Eq. (10), with n = 0, gives

fl(ν) − κ2
(
R1 + R1

) = 0. (17)

This is a nonlinear eigenvalue equation which determines the
shift ν. Alternatively, if one is simply interested in the value
of ν, one can look for the zeros of the infinite-dimensional
Hill determinant of the coefficients in Eq. (10) (see Ref. [34],
Sec. 7.5). If the set of equations is truncated to a finite number,
this can be done straightforwardly with the aid of Mathematica
[35]. Taking |n| <∼ 20 is sufficient to determine the zeros to six
significant figures, at least for small angular momenta (l <∼ 5).

The resulting eigenvalue equation, in either version, is an
even function of κ; hence, the roots of the equation are the
same for both repulsive and attractive potentials of the same
strength. From the fact that fl(ν) is an odd function, it follows
that

Rn(−ν) = −Rn(ν). (18)

Hence, if ν is a solution of Eq. (17), so is ν. Also, the roots
are periodic under addition of any integer to ν. From now on,
I shall use ν to denote the root whose real part lies between
l and l + 1

2 . This ensures that coefficient a0 is large in the
expansion of the corresponding solution, φ(+)(x), at least for
small κ . A second, independent solution, φ(−)(x), is obtained
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by replacing ν by −ν. From the symmetry of Rn, it follows
that the coefficients in the two solutions are related by

a
(−)
−n = (−1)na(+)

n , (19)

if we choose

a
(−)
0 = a

(+)
0 ≡ a0. (20)

The coefficient a0 can be fixed by requiring that the solutions
have the standard asymptotic normalization of a Bessel
function for large r.

Solutions to these equations can be obtained using pertur-
bation theory if κ is small, corresponding to a weak coupling
or, equivalently, low energies. This is just the Born expansion,
and it leads to expressions for the solutions as power series
in κ . The advantage of the Bessel expansion [17–19] is that it
determines the radius of convergence of this series, as well as
providing analytic forms for the solutions in nonperturbative
cases.

For κ = 0, the order of the Bessel function is ν = l + 1
2 ,

and the solutions of the radial Schrödinger equation are just
spherical Bessel functions jl(pr). Consider next very small
values of κ . For these, we can approximate the ratios by their
leading-order expressions from Eqs. (11) and (15):

Rn � 1

fl(n + ν)
, Rn � 1

fl(−n + ν)
, (21)

and the eigenvalue equation (17) becomes

fl(ν) − κ2

[
1

fl(1 + ν)
+ 1

fl(−1 + ν)

]
= 0. (22)

Since the solution ν lies very close to l + 1
2 in this limit, we

can write

ν = l + 1
2 − δν. (23)

In partial waves with l � 1, we can approximate fl(n + ν) by

fl(ν) � −4
(
l + 1

2

)2
δν,

fl(n + ν) � 4n
(
l + n + 1

2

) (
l + 1

2 (n + 1)
)
. (24)

Using these in the eigenvalue equation we get, at order κ2,

δν = 3

16

κ2(
l − 1

2

)(
l + 1

2

)(
l + 3

2

)
l(l + 1)

. (25)

In the corresponding solutions to the Schrödinger equation,
only the coefficent a0 is large.

For s waves, we need to be more careful since f0(−1 + ν)
is small in the weak-coupling limit:

f0(−1 + ν) � −δν. (26)

TABLE I. Critical values of the
dimensionless coupling κ for which
eigenvalues ν form degenerate pairs.
These agree with the values of εsc in
Table I of [19], where εsc = κ2

c /4.

l κc

0 0.318058
1 2.51811
2 8.33342
3 19.6983
4 38.6026
5 67.0469

Using this in the eigenvalue equation, we find that the leading
shift δν is of order κ and is given by5

ν = 1
2 − |κ|. (27)

In the corresponding wave function, a−1 is of the same order
in κ as a0.

For larger values of κ we need to iterate the recurrence
relations for the Rn but, provided κ is small enough, we can still
expand the results as power series in κ . Similarly the solutions
to the eigenvalue equation and hence the wave functions
themselves can be found perturbatively as Born expansions in
powers of κ [17]. Since κ ∝ pB3, these expansions describe
systems with either weak coupling or low energy.

As |κ| increases, these series converge more slowly and
eventually a perturbative treatment becomes impossible. A
definite upper bound on the value of κ for which this occurs
can be found by following the behavior of the eigenvalues
of Eq. (17). As |κ| increases, pairs of eigenvalues approach
integer values from above and below until, at some critical
value, they form degenerate pairs. Then, for larger values of
|κ|, they move off into the complex plane [19]. The presence
of a square-root branch point where this happens means that
eigenvalue ν cannot be expanded in powers of κ above this
critical value, κc. If the eigenvalue cannot be expanded in
this way then neither can the solutions to the set of linear
equations (10), and hence κc also provides an upper limit on
the convergence of any perturbative expansion of the solutions.

The values of κc for low partial waves are listed in Table I.
For large orbital angular momentum (l >∼ 20) κc grows roughly
as 0.3l.3 This can be understood if nonperturbative behavior
sets in when waves can penetrate the centrifugal barrier to radii
where the 1/r3 and centrifugal potentials are roughly equal.
To estimate where this occurs we can set

E � l(l + 1)

MNr2
� B3

r3
. (28)

5Compare Ref. [26] Sec. 2.5.2, noting that I have made a different
choice from the multiple roots of the equation for ν. For s-wave
scattering by a pure 1/r3 potential, this dependence of the order of
the Bessel functions on κ leads to nonanalytic terms in the phase
shift [19,36,37]. However, these are not present for OPE, even in the
chiral limit, since the tensor potential vanishes in s waves.
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This leads to

κ � [l(l + 1)]3/2, (29)

which is consistent with the observed growth with l.
This dependence of κc on the orbital angular momentum

demonstrates that it is short-distance physics that leads to the
breakdown of perturbation theory: the wave function has to
penetrate the centrifugal barrier before it can “see” the singular
core. The radius at which this happens is, from Eq. (28), of the
order of

r0 � β3

l(l + 1)
, (30)

where

β3 = MNB3 (31)

is the length scale associated with the strength of the potential.
These estimates of the critical value of κ and the associated
radius fail for small angular momenta. In particular, κc is
nonzero for l = 0, because the 1/r3 potential is short ranged
in the sense that, apart from a single logarithmic term, its
low-energy scattering amplitude can be expanded in powers of
the energy [19,36,37] (unlike the Coulomb or 1/r2 potentials).
Hence, a minimum momentum is required before its singular
nature can be resolved.

In the realistic case of finite pion mass, the long-range
tail of potential is replaced by an exponential falloff. Since
the breakdown of perturbation theory is a short-range effect, it
should not be altered qualitatively by a nonzero mπ , especially
in high partial waves. Provided the radius r0 is much smaller
than 1/mπ , the finite mass will not even change the critical
value of κ significantly. In lower waves, where r0 is comparable
to or less than 1/mπ , momenta of the order of mπ are
needed before the singularity is resolved and nonperturbative
behavior sets in. Hence, in channels where the momentum
corresponding to κc is less than mπ , such nonperturbative
effects are still expected for momenta of order mπ , but not
for much lower momenta.

Because the forms of the wave functions at short distances
will be an important ingredient in the RG analysis below, I will
outline their basic features here. More details of the solutions
can be found in Ref. [19] for the case of repulsive 1/r3

potentials. For small r, we can use the WKB approximation to
find their forms. In the case of a repulsive potential, this shows
that the solutions have exponential dependence on

√
κ/x,

or equivalently
√

β3/r . In dimensionless form, the small-x
solutions are

φ(±)(x) ∼ A(±)(κ)x1/4 exp

[
2

√
κ

x

]

+B(±)(κ)x1/4 exp

[
−2

√
κ

x

]
. (32)

The determination of the coefficient A of the dominant piece
of a solution requires careful asymptotic analysis of the series
(7). The important terms at small x are those for large negative
values of n. These can be summed using Laplace’s method
(see Ref. [34], Sec. 6.7). Under the analytic continuation x →
ei2πx, the dominant and subdominant pieces of the solution

exchange roles (an example of Stokes’s phenomenon—see
Ref. [34], Sec. 3.7). This shows that their coefficients are
related by

B (±) = −ie±i2πνA(±). (33)

Having found the small-x forms of the two independent
solutions φ(±)(x), we can then build the regular solution (which
behaves like x1/4 exp[−2

√
κ/x]) as a linear combination of

them. These regular solutions form a complete, orthogonal
set of basis functions for the RG analysis of the short-range
physics.

In the case of an attractive inverse-cube potential, we need
to be more careful. Since, as already noted, ν and the ratios
of determinants are independent of the sign of the potential,
solutions for this case can be obtained by replacing κ by
−κ in the recursion relations for the ratios of coefficients an.
Alternatively one can make an analytic continuation x → eiπx

of the solutions already found for the repulsive case. The latter
method shows that the solutions have the small-x forms

φ(±)(x) ∼ C(±)(κ)x1/4 cos

[
2

√
κ

x
+

(
±ν − 1

4

)
π

]
, (34)

where I have now defined the dimensionless coupling to be
positive-definite: κ = pMN |B3|. The continuation also shows
that the C(κ) are related by

C(±) = 2A(±), (35)

to the coefficients A(κ) of the dominant pieces of solutions
with the same ν for a repulsive potential of the same strength.

Both of the solutions for an attractive potential display
oscillatory behavior as x → 0, and so any linear combination
of them is an equally good solution. For the RG analysis,
we need a well-defined set of orthogonal basis functions.
As in the case of an attractive inverse-square potential,6

this can be obtained if we choose a self-adjoint extension
of the original Hamiltonian. In practice this means fixing
the phase of these short-distance oscillations [25,38]. This
phase should be independent of energy to form an extension
whose eigenfunctions are orthogonal. In essence one short-
distance parameter, the leading energy-independent term of
the effective potential, has been used to provide a well-defined
set of DW’s of the long-range potential. Clearly this leads
to a redundancy in the parametrization: a different choice
of extension can be compensated by changing the leading
term in the short-range potential [23]. However, any energy
or momentum dependence due to short-range physics can
be described entirely by higher-order terms in that potential.
Note that here I am requiring orthogonality simply in order
to generate a suitable DW basis for studying the effects of
the short-range interactions. This is in contrast to the approach
developed in Refs. [16,24,25], which imposes an orthogonality
condition on the full wave functions, thus leading to very strong
constraints on the short-distance interactions.

The forms of the short-distance wave functions for attrac-
tive and repulsive potentials look very different, depending

6See Refs. [23,39] and references therein for more discussion of
this potential.

014003-5



MICHAEL C. BIRSE PHYSICAL REVIEW C 74, 014003 (2006)

sinusoidal or exponentially on
√

β3/r . However, we shall see
that it is their power-law radial dependence that controls RG
flow of short-distance interactions, and this is the same for both
cases. Although the wave functions for the attractive potential
oscillate at short distances, these oscillations depend on a
scale, β3, unlike the analogous ones found for the inverse-
square potential. The scale-free oscillations found there and in
the corresponding three-body systems lead to limit cycles in
the RG flow [23,38–43], but here the scale dependence of the
1/r3 potential means that we should not expect to find similar
limit cycles.

B. Coupled channels

The solution of the Schrödinger equation for the coupled
spin-triplet channels proceeds along very similar lines. Using
the matrix elements of S12 in the two-component basis of waves
with l = j ± 1 [28], the chiral limit of the tensor potential can
be written in the form

VπT (r) = 1

2j + 1

( −2(j − 1) 6
√

j (j + 1)

6
√

j (j + 1) −2(j + 2)

)
BT

r3
, (36)

where BT = −3/(MNλπ ) for isospin-singlet waves, with l =
j ± 1 even; and BT = 1/(MNλπ ) for isospin triplets, with
l = j ± 1 odd. Rescaling the equation as above, it can be
written in a dimensionless form similar to Eq. (6):[

x2 d2

dx2
+ x

d

dx
+ x2

]
φ −

(
Lj + 1

2
1
)2

φ = 1

x
Kjφ, (37)

where the 2 × 2 matrices are

Lj =
(

j − 1 0

0 j + 1

)
,

(38)

Kj = κT

2j + 1

( −2(j − 1) 6
√

j (j + 1)

6
√

j (j + 1) −2(j + 2)

)
,

and the dimensionless combination of momentum and cou-
pling strength is

κT = pMNBT

=
{−3p/λπ, isospin singlet,

+p/λπ, isospin triplet.
(39)

The solutions to these equations can be expanded in Bessel
functions as

φ(x) =
∞∑

n=−∞
anJn+ν(x), (40)

where an are two-component vectors. Substituting this into
Eq. (37) leads to an infinite set of linear equations. As in the
uncoupled case, these can be put into a symmetric form by
defining bn = an/(n + ν) and

F(n + ν) =
(

fj−1(n + ν) 0

0 fj+1(n + ν)

)
. (41)

The resulting equations are then

Kbn−1 − F(n + ν)bn + Kbn+1 = 0, −∞ < n < ∞.

(42)
If we write

bn = RnKbn−1, (43)

then the Rn satisfy the recurrence relation

Rn = [F(n + ν) − KRn−1K]−1 . (44)

In terms of these matrices, the coefficients bn for n � 1 are

bn =
( ∞∏

m=1

RmK

)
b0, (45)

where the matrix product should be read as starting with m = 1
at the right. Similarly we can write the coefficients b−n as

b−n =
( ∞∏

m=1

RmK

)
b0, (46)

where the Rn are given by

Rn = [
F(−n + ν) − KRn−1K

]−1
. (47)

Consistency of the equation for n = 0 requires that ν satisfy

det
[
F(ν) − K

(
R1 + R1

)
K

]
= 0. (48)

This is equivalent to the Hill determinant corresponding to
Eq. (42). As for the simple inverse-cube potential, the roots of
this equation are symmetric in ν and periodic.

The 2 × 2 nature of the problem means that this eigenvalue
equation has two roots ν1 and ν2 with real parts between l and
l + 1

2 . The solutions to the Schrödinger equation (37) for these
roots will be denoted by φ(1,+)(x) and φ(2,+)(x), respectively.
There are also two other independent solutions φ(1,−)(x) and
φ(2,−)(x), corresponding to the roots −ν1 and −ν2. The starting
coefficients b(i,±)

0 must be eigenvectors of the n = 0 equation

[F − K(R1 + R1)K]ν=νi
b(i,±)

0 = 0. (49)

Since F(n + ν) is an odd function, the matrices for positive
and negative roots are related by

Rn(−ν) = −Rn(ν). (50)

If we choose the starting coefficients such that

a(i,−)
0 = a(i,+)

0 ≡ a(i)
0 , (51)

then the coefficients in the pairs of solutions are related by

a(i,−)
−n = (−1)na(i,+)

n . (52)

The a(i)
0 can again be fixed using the asymptotic normalization

of the solutions.
As for the case of uncoupled channels, the eigenvalues ν

move into the complex plane for large enough values of κT ,
and the solutions can no longer be expanded perturbatively.
The critical values for which this happens are listed in
Table II. The coupled nature of the equations means that there
are in general two of these values. The one exception is j = 0,
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TABLE II. Critical values of the dimensionless cou-
pling κT for which eigenvalues ν form degenerate pairs.

j l κc1 κc2

0 1 0.629528
1 0,2 0.683495 2.48290
2 1,3 1.61857 6.91983
3 2,4 3.95647 14.3624
4 3,5 8.02206 23.2001

where only l = 1 is possible, and the critical value of κT is just
a quarter of the one in Table I for a P wave.

The same methods outlined above can be used to find the
coefficient vectors an and hence to construct solutions to the
radial Schrödinger equation (37). Again, the full forms of
these are not needed here, just their short-distance behaviors.
These can be obtained by applying the WKB method to the
eigenchannels of the potential. Since the eigenvalues of Kj

are +2κT and −4κT , one of these channels is repulsive and
one attractive. For small x, all the solutions are mixtures of
exponential and sinusoidal pieces, with the form

φ(x) ∼ e+A(κT )x1/4 exp

[
2

√
κ+
x

]

+ e+B(κT )x1/4 exp

[
−2

√
κ+
x

]

+ e−C(κT )x1/4 cos

[
2

√
κ−
x

+
(

±ν − 1

4

)
π

]
, (53)

where κ+ and −κ− are the eigenvalues of Kj ,

κ+ =
{

12p/λπ,

2p/λπ,
κ− =

{
6p/λπ, isospin singlet,

4p/λπ, isospin triplet,
(54)

and e± are the corresponding eigenvectors

e+ = 1√
2j + 1

(√
j + 1√

j

)
,

(55)

e− = 1√
2j + 1

( √
j

−√
j + 1

)
,

for an isospin triplet channel, and vice versa for a singlet. As
in the single-channel case, analytic continuation in x can be
used to relate B(κT ) to A(κT ), and to express C(κT ) in terms
of the A(κT ) of the solution for a repulsive potential.

A basis set of physical, orthogonal solutions can be formed
by taking two linear combinations of these four independent
solutions at each energy. These must be regular, with no
admixture of the divergent x1/4 exp[2

√
κ+/x] piece in the

repulsive channel, as discussed in Refs. [16,25] for the 3S1–
3D1 waves. As for the attractive inverse-cube potential, one
energy-independent parameter is also needed to fix the phase
of the oscillations in the attractive channel [13]. Although
these solutions contain both oscillatory and exponentially
decreasing pieces at small x, what matters in the RG analysis
will be their power-law behavior, which is the same as for the
uncoupled 1/r3 case above.

TABLE III. Critical values of the
relative momentum at which pairs of
eigenvalues become degenerate and
hence the tensor potential cannot be
treated perturbatively.

Channel pc (Mev)

3S1–3D1 66
3P0 182
3P1 365
3P2–3F2 470
3D2 403
3D3–3G3 382
3F3 2860
3F4–3H4 2330
3G4 1870

C. Critical momenta

For the one-pion-exchange potential of interest here, the
strengths of the tensor interaction in the various channels
are all fixed in terms of the scale λπ introduced in Eq. (1).
The critical values of the dimensionless coupling can then be
converted into critical values of the relative momentum for
each scattering channel. Taking λπ = 290 MeV leads to the
critical momenta listed in Table III. These are the maximum
values of the momenta for which one could attempt to construct
a perturbative expansion of the solutions. In practice, one
would expect such an expansion to be sufficiently convergent
to be useful only for momenta well below these values.

From the table we see that in two channels, 3S1–3D1 and
3P0, the critical values are less than or of the order of mπ . These
are obtained from the chiral limit of the OPE; the values for
finite mπ will be somewhat higher. However, they will still be
of the order of mπ since, as discussed above, the exponential
falloff cannot make the radius at which the waves probe the
singular core much smaller than 1/mπ . It is thus not surprising
that Fleming, Mehen, and Stewart [12] found that the pertur-
bative KSW approach fails for these cases. In the other P and
D waves, the values are low enough, ∼400 MeV, to suggest that
these should also be treated nonperturbatively at the energies
of interest for nuclear physics. Again, this is in accord with
the findings of Ref. [9].

Between the D and F waves, the critical momenta jump
by a factor of about 6. Two effects contribute to this: the
critical dimensionless couplings are about twice as large for the
F waves, and their physical couplings are three times smaller
since the F waves are isospin triplets. Hence for the F waves
and above that do not couple to P or D waves, the breakdown
scales are well above 1 GeV. In these cases it should be possible
to treat OPE perturbatively. A similar conclusion is reached in
Ref. [15], but on the basis of very different arguments which
rely heavily on keeping mπ finite.

III. RENORMALIZATION GROUP ANALYSIS

The long-range pion-exchange physics in low-energy nu-
clear EFT’s can be calculated from ChPT [1–3]. The short-
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range physics is then parametrized in terms of contact inter-
actions. If the EFT is to have any predictive power, we must
be able to organize these interactions systematically according
to some power counting. In weakly interacting systems, one
can do this by simply counting powers of the low-energy
scales, generically denoted here by Q. This naive dimensional
analysis leads to the power counting used in ChPT for mesons
and single nucleons [6]. In contrast, nonperturbative effects
can introduce new low-energy scales and generate anomalous
dimensions for terms in the short-distance potential. As a
result, these terms may not scale as predicted by naive
dimensional analysis, so the power counting can be quite
different.

The RG provides a general and powerful tool for analyzing
scale dependences, particularly in nonperturbative systems. In
the context of few-body systems, it is convenient to express
this in the form of a differential equation describing the “flow”
of the short-range potential as the cutoff is varied [21–23].
This equation can be constructed as follows. First, we apply a
floating cutoff at some scale � that lies between the low-energy
scales of interest and the scale of the underlying physics �0.
This assumes that these scales are well separated; if they are
not, the expansion in powers of Q/�0 will not converge and
we shall not be able to construct a useful EFT. Second, we
demand that physical observables be independent of the cutoff
�, since its value is arbitrary. As a result, the couplings in
our effective potential must depend on �. This dependence
ensures, in particular, that the couplings cancel any parts of
loop integrals that diverge for large �. Finally, we rescale the
theory by expressing all dimensioned quantities in units of �.
Powers of � can then be used to determine the net powers of
low-energy scales in the terms in the potential.

Having constructed the RG equation for the rescaled po-
tential, we can look for fixed points. These are �-independent
solutions that can form the end points of the RG flow. They
describe scale-free systems. Perturbations around a fixed
point can be expanded in eigenfunctions of the linearized
RG equation that scale with definite powers of �, given by
the eigenvalues of this equation. These perturbations can be
classified according to their eigenvalues as relevant, irrelevant,
or marginal.

Marginal terms (“renormalizable” ones in field-theoretic
language) have no power-law dependence on the cutoff after
rescaling, although in general they can depend logarithmically
on it. Like the fixed-point potential, these terms are important
at all scales. They are the leading-order terms in the WvK
scheme, of order 1/Q in low-energy scales. Since the loop
integrals in the Lippmann-Schwinger equation are of order
Q, all iterations of these terms are of the same order, and
hence they need to be treated nonperturbatively. Irrelevant
(or “nonrenormalizable”) terms vanish as positive powers of
� as � → 0. These are higher-order terms which become
weak at low energies and so can be treated perturbatively.
Lastly, relevant (or “super-renormalizable”) terms grow as
negative powers of �. These are unimportant at high energies
but become increasingly important at low energies, ultimately
changing the nature of the low-energy EFT. If such terms
are present, a fixed point is unstable and, for low-enough
values of �, the theory will ultimately flow to a different point.

An example of this is provided by the scattering-length term
in the pionless EFT [21].

The RG approach developed in Ref. [22] assumes that a
two-body potential consists of a known long-range piece VL

and a short piece VS which parametrizes the physics that lies
outside the scope of our effective theory. This method starts
by using the “two-potential trick” [11] to define a T matrix
describing scattering between distorted waves (DW’s) of the
long-range potential. The Hilbert space is then reduced by
imposing a cutoff on the basis of DW’s at momentum �.
For this cutoff to lead to a well-defined space, the DW’s
should form a complete orthogonal set of basis functions.
This requires that the long-range potential, and any parameter
needed to form a self-adjoint extension of it, should be
independent of energy.

Demanding that the (fully off-shell) T matrix be indepen-
dent of the cutoff � leads to the differential equation

∂VS

∂�
= −VS

∂GL

∂�
VS, (56)

where GL is the DW Green’s function for the long-range
potential. To treat cases where the DW’s vanish or diverge
at the origin as a result of nonperturbative effects of VL, the
short-range potential is taken to have the δ-shell form

VS(p, λ,�,R; r) = VS(p, λ,�,R)
δ(r − R)

4πR2
, (57)

where λ denotes a generic low-energy scale associated with VL.
The radius R provides a second regulator here, which can be
thought of as a “factorization scale” separating the long-range
physics which lies within the domain of our EFT from the
unknown nonperturbative physics at shorter distances. This
second scale is introduced because it leads to an RG equation
from which the scaling of the potential can be deduced in a
particularly transparent way. In approaches based on a simple
momentum cutoff, as in Ref. [15], or a coordinate-space
regulator, as in Refs. [16,24,25], a single scale plays both roles
of renormalization and factorization.7 For present purposes,
R should be chosen to be small enough such that the wave
functions have reached a common, energy-independent form.

With this δ-shell form for VS , Eq. (56) becomes

∂VS

∂�
= −MN

2π2
|ψL(�,R)|2 �2

p2 − �2
V 2

S (p, λ,�,R), (58)

where ψL(p, r) are the DW’s for VL and I have assumed that it
does not produce any bound states. Taking the “factorization”
radius R to be small enough that it lies in the asymptotic region,
the DW’s can all be written in the form

ψL(p,R) ∼ N (λ/p)(pR)(σ−1)/2F (λR). (59)

This is a slight generalization of the cases considered in
Ref. [22] to potentials that generate a non-power-law depen-
dence on R in this region, described by the function F (λR).

7This is analogous to the choice that is often made in studies of the
QCD evolution of structure functions.
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Following the general method of Ref. [22], I introduce a
rescaled on-shell momentum, p̂ = p/�. Other low-energy
variables are treated similarly, and I then define the rescaled
potential as

V̂S(p̂, λ̂,�) = MN�

2π2
(�R)σ−1|F (�λ̂R)|2VS(�p̂,�λ̂,�,R).

(60)
Inserting (60) and (59) into the differential equation (58) gives
the RG equation for V̂S :

�
∂V̂S

∂�
= p̂

∂V̂S

∂p̂
+ λ̂

∂V̂S

∂λ̂
+ σ V̂S + |N (λ̂)|2

1 − p̂2
V̂ 2

S . (61)

Since the function |F (�λ̂R)|2 depends on the product �λ̂, its
derivatives cancel in this equation. The evolution of V̂S thus
depends only on the power-law part of the DW’s.

Note that in Eq. (60) I have implicitly demanded VS depend
on R in such a way that the rescaled potential is independent
of R. This implies that |ψL(p,R)|2VS is also independent of R,
and hence it ensures that scattering observables do not depend
on this arbitrary radius. This is very similar to the philosophy
adopted by Valderrama and Arriola [16,24,25], except that
there the coordinate-space regulator is the only one. However,
the complicated dependence of F (λR) on R means that the
scaling behavior of the terms in the potential cannot easily
be determined from this condition. In the present approach,
the radial regulator separates off the regime of nonperturbative
short-distance physics, while the momentum cutoff � is used
to analyze the scale dependence. For this to work, R must be
in the region where the DW’s ψL(p,R) have reached their
energy-independent asymptotic form, at least for p � �.

The starting points for analyzing the scale dependence of
the potential are the fixed points of the RG, solutions to Eq. (61)
that are independent of �. Expanding V̂S around one of these
points and keeping only linear terms in the RG equation, we get
an equation whose eigenfunctions scale with definite powers of
�. Since the rescaling means that the power of � counts the net
power of all low-energy scales in each term, these eigenvalues
determine the power counting for the terms in the potential. For
example, in the case of a pure short-range potential [21], the
power counting for the expansion around the trivial fixed point
is just the one originally proposed by Weinberg [1]. There is
also a nontrivial fixed point, which describes a system with
an infinite scattering length. The expansion around this point
can be organized according to the power counting developed in
Refs. [7–9]. The terms in this are in one-to-one correspondence
with the terms in the effective-range expansion [10,11].

The form of the RG equation above can easily be used to
analyze scale dependences in the vicinity of the trivial fixed
point, V̂S = 0. To find and study nontrivial fixed points, it
is more convenient to convert it into a linear equation for
1/V̂S [22]:

�
∂

∂�

(
1

V̂S

)
= p̂

∂

∂p̂

(
1

V̂S

)
+ λ̂

∂

∂λ̂

(
1

V̂S

)

− σ
1

V̂S

− |N (λ̂)|2
1 − p̂2

. (62)

The detailed forms of the fixed-point solutions to this equation
are not necessary to determine the power countings for
perturbations around them. If needed, they can be found by
applying the methods of Refs. [22,23,44]. These rely on the
fact that the basic loop integral from the Lippmann-Schwinger
equation satisfies the �-independent version of Eq. (62). This
integral contains a piece that is a nonanalytic function of
p̂/λ̂. Cancelling off this piece then leaves a well-behaved
solution, V̂S0, which is analytic in the low-energy variables, p̂

and λ̂.
So far I have discussed only energy-dependent perturba-

tions. More generally, as an off-shell quantity, the short-range
effective potential can also depend on momenta. This is
equivalent to including terms with spatial derivatives in VS .
For the expansion of a pure short-range potential around the
trivial fixed point, the power counting is the same for both
energy- and momentum-dependent terms. Hence, one can “use
the equation of motion,” to exchange one dependence for the
other [45].

The expansion around a nontrivial fixed point is more
complicated. There, the equation of motion involves the fixed-
point potential (which can include both long- and short-range
pieces) and so purely momentum-dependent terms are not
eigenfunctions of the linearized RG equation, in contrast to
the energy-dependent ones discussed above. The coefficients
of the latter terms are directly related to on-shell scattering
observables through an effective-range expansion, as discussed
in Refs. [21,22]. There are also terms with mixed momentum
and energy dependences that scale with definite powers of
�. However, these affect only the off-shell behavior of the
scattering amplitude. Furthermore, they are of higher order
than the corresponding energy-dependent terms [21]. Hence,
if one expands a momentum-dependent term in eigenfunctions
of the RG, the scaling with � of the dominant piece is governed
by the eigenvalue of the corresponding energy-dependent term.
This is why the analyses of Refs. [7–9], using momentum-
dependent potentials, arrive at the same power counting as
Ref. [21], which uses energy-dependent ones.

A. Central OPE

The first step in constructing any EFT is to identify
all the important low-momentum scales. To illustrate the
choices involved in the nucleon-nucleon system, I consider
first the central piece of the OPE potential and summarize the
relevant results from Ref. [22]. For scattering at energies of
∼100 MeV, the relative momentum and the pion mass
obviously form two of these scales. For the central Yukawa
potential, we can construct the scale απ = m2

π/λπ � 70 MeV.
In strict chiral power counting, this would be of order Q2, since
it contains two powers of mπ . However, if we choose to treat
λπ as an additional low-energy scale, then απ is promoted to
order Q.

To see the consequences of this in the context of the RG for
the 1S0 channel, we can multiply the effective Hamiltonian by
MN and define the dimensionless potential

V̂πC(r) = MNVπC(r)

�2
. (63)
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Then we need to express all low-energy scales in units of �. If
we regard λπ as a high-energy scale, then we define a rescaled
on-shell momentum by p̂ = p/�, and similarly m̂π = mπ/�

and r̂ = �r .8 The resulting rescaled potential

V̂πC(r̂) = −�
m̂2

π

λπ

e−m̂π r̂

r̂
, (64)

is of order �, and hence is an irrelevant perturbation in the RG
sense that it vanishes as � → 0. This is the choice made in
the KSW scheme. In contrast, if we treat λπ as a low-energy
scale and express it in units of �, writing λπ = �λ̂π , then the
rescaled potential is independent of � and so forms part of
any fixed point of the RG. In Weinberg’s power counting [1],
this choice means that the potential (in momentum space) is
of order 1/Q.9 It must thus be iterated to all orders when
solving the Schrödinger equation, along with the leading
contact interaction, and so this choice corresponds to the WvK
scheme.

In the 1S0 channel, the DW’s of the Yukawa potential tend
to constants as R → 0 and so have the short-distance form

ψL(p,R) ∼ N (απ/p,mπ/p). (65)

This corresponds to setting σ = 1 and F (λR) = 1 in Eq. (59)
above. The resulting RG equation for V̂S is given by Eq. (61),
with σ = 1 and three low-energy scales, p̂, α̂π , and m̂π .

The expansion of the potential around the trivial fixed point
has the form

V̂S =
∑
k,m,n

Ckmn�
ρm̂2k

π α̂m
π p̂2n. (66)

The RG eigenvalues of these terms are ρ = 2k + m + 2n + 1
where k, m, and n are nonnegative integers. The corresponding
power counting assigns them orders Qd , where d = ρ − 1
[21,22]. As in the case of a pure short-range potential, their
eigenvalues start at ρ = 1 and so they are all irrelevant. This
would be the appropriate power counting if all short-range
interactions in the 1S0 channel were weak.

In the RG framework, the WvK treatment of this channel
corresponds to an expansion of the short-distance potential
around the nontrivial fixed point V̂S0. This can be written in
the form

1

V̂S

= 1

V̂S0
−

∑
k,m,n

Ckmn�
ρm̂2k

π α̂m
π p̂2n. (67)

The RG eigenvalues of these terms are ρ = 2k + m + 2n − 1,
where k,m, and n are nonnegative integers. This is similar
to the expansion around the nontrivial fixed point for a pure
short-range potential [7,21] in that the leading perturbation is
a relevant one, with eigenvalue ρ = −1. The terms are in one-
to-one correspondence with the terms in a DW or “modified”
effective-range expansion [10,47–49]. In it, all rapid energy
dependence associated with the low-energy scales of OPE is

8This is just the coordinate-space version of the rescaling discussed
above.

9An alternative way to arrive at this result is to assign the nucleon
mass an order 1/Q in the power counting [1,46]. This also leads to
λπ being identified as a low-energy scale of order Q.

factored out, to leave an amplitude whose energy dependence
is controlled only by scales from the short-range physics.

In this channel, we therefore have a choice between the
two schemes, both of which lead to consistent expansions of
the low-energy physics. The KSW scheme suffers from poor
convergence because of the smallness of λπ ; while the WvK
one, by treating λπ as a low-energy scale, converges better
but lacks a clear connection with ChPT. The most immediate
signal of the latter problem is the contact interaction needed
to renormalize the logarithmic divergence produced by the
1/r singularity of the potential. This is proportional to απ ,
which contains two powers of mπ in the chiral expansion
but which must be treated as a single small scale in the the
WvK scheme [22]. This is discussed by Beane et al. [13],
who conclude that the KSW scheme should be used in the 1S0

channel. However, it is worth stressing that the problem is a
lack of consistency with the chiral power counting for other
effective operators, not an internal inconsistency in the DW
effective-range expansion.

B. Tensor OPE

The nonperturbative nature of the tensor piece of OPE at
short distances means that the RG analysis is rather different
than that for the central piece just discussed. In Sec. II, we
saw that the wave functions in all partial waves (and for both
attractive and repulsive potentials) have the same power-law
dependence on x = pr at short distances. If we choose R to be
small enough that it lies in the asymptotic WKB region, then
the uncoupled DW’s can all be written in the form

ψL(p,R) ∼ N (λπ/p)(pR)−1/4F (λπR), (68)

where F (λπR) is the non-power-law part of the wave function.
In the isospin-triplet waves, where the tensor potential is
repulsive, this function is

F (λπR) = exp

[
−2

√
2

λπR

]
. (69)

In the isospin-singlet channels, we have

F (λπR) = cos

[
2

√
6

λπR
+ γ

]
, (70)

where γ is an energy-independent phase. Here, for simplicity,
I will continue to consider the chiral limit of the tensor OPE
potential. Allowing for a finite mπ will not alter the form
of the short-distance wave functions, but it will introduce a
dependence on mπ/p into the normalization constants N .

For the coupled channels, we have two independent
solutions which satisfy the two boundary conditions as needed
to generate an orthognal set of DW’s, namely, that as r → 0 the
exponential piece should be regular and the oscillatory piece
should have an energy-independent phase γ . These solutions
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can be written as

ψLi(p,R) ∼ Ni+(λπ/p)(pR)−1/4F+(λπR)e+
+Ni−(λπ/p)(pR)−1/4F−(λπR)e−, i = 1, 2,

(71)

where the short-distance forms of the wave functions are

F+(λπR) = exp

[
−2

√
κ+
x

]
,

(72)

F−(λπR) = cos

[
2

√
κ−
x

+ γ

]
,

and κ± and e± are the eigenvalues and eigenvectors of the
potential matrix Kj , defined in Eqs. (54) and (55).

Matrix elements of the short-range potential between DW’s
can be written as

〈ψLi |VS |ψLk〉 =
∑

α,β=±
Niα(λπ/p)∗Fα(λπR)∗

×VSαβ (p, λπ,�,R)Fβ (λπR)Nkβ(λπ/p),

(73)

where the strength has been expressed as a matrix
VS(p, λπ ,�,R) using the basis of the eigenvectors e±.

By analogy with the single-channel case, I define a rescaled
potential V̂S as a matrix with elements

V̂Sαβ = MN�

2π2
(�R)−1/2Fα(λπR)∗VSαβ (p, λπ ,�,R)Fβ (λπR).

(74)
It is also convenient to define the matrix N(λπ/p) with
elements

Nαi = Niα(λπ/p). (75)

Using this in the two-component version of Eq. (58) leads to
the RG equation for V̂S ,

�
∂V̂S

∂�
= p̂

∂V̂S

∂p̂
+ λ̂π

∂V̂S

∂λ̂π

+ 1

2
V̂S

+ 1

1 − p̂2
V̂SN(λ̂π )N(λ̂π )†V̂S. (76)

Apart from the additional matrix structure, this equation
has the same form as the RG equation (61) that governs
the potential in the uncoupled channels. In particular, the
coefficient σ , which arises from the power-law behavior of
the wave functions at short distances, is the same in all cases
(attractive, repulsive, and coupled). This means that the scaling
behaviors of perturbations are the same in all cases, although
obviously the forms of any nontrivial fixed points are different.
In writing down these equations, I have ignored the possibility
of bound states in the attractive channels. I discuss below the
modifications needed to take account of these, but they do not
affect the scaling behavior.

As always, each of these RG equations has a trivial fixed-
point solution V̂S = 0. The expansion around this has the form

V̂S =
∑
m,n

Cmn�
ρλ̂m

π p̂2n, (77)

where n and m are nonnegative integers, and the RG
eigenvalues of the terms are ρ = m + 2n + 1

2 . They are all
irrelevant perturbations, in the sense that their eigenvalues are
positive, and so the fixed point is stable. The appearance of
noninteger anomalous dimensions should not be surprising in
the context of the RG. The version developed in Ref. [22]
shows that scaling is controlled by the power-law behavior of
the wave functions at short distances and in general this is
noninteger for potentials with an inverse-power-law form.10

In the present case, half-integer values appear because |ψ |2 ∼
(pR)−1/2.

For comparison, the terms in a pure short-range potential
describing weak scattering in an S wave have RG eigenvalues
ρ = 2n + 1 [21]. From this we see that the corresponding
terms in the presence of a 1/r3 potential have eigenvalues
that are smaller by subtraction of 1/2, and so they vanish
more slowly as � → 0. This means that the effects of these
interactions have been enhanced by the 1/r3 potential. (In the
language of the RG, they are more “relevant.”) If we translate
these results into the more usual power counting, we find that
these terms have orders Qm+2n−1/2, and so they have been
promoted by half an order compared with the power counting
obtained from naive dimensional analysis (Qm+2n).

In the S, P , and D waves, the radii at which the OPE and
centrifugal potentials become comparable are of the order of
1 fm. By choosing the factorization radius R to lie significantly
inside this, we can ensure that the short-range potential acts in a
region where the wave functions have reached their asymptotic
WKB form for the 1/r3 potential. In the 3P1 and 3D2 channels,
for example, this occurs for radii of the order of 0.1 fm or less.
At these distances, the wave function in the 3P1 channel is
highly suppressed by the repulsive 1/r3 potential. Somewhat
larger radii, of the order of 0.4 fm, can also be used since the
wave functions still have energy-independent forms,11 at least
for energies up to about 250 MeV, but even here the 3P1 wave
function is already small, down by a factor of 5–10 compared
to its size in the region 0.7–1 fm.

The corresponding short-range potential must therefore be
enhanced by a large numerical factor if we choose R less than
0.4 fm. However, one should remember that the potential is
not a physical quantity. In any observable, VS always appears
multiplied by two short-distance wave functions. Indeed the
radius R is arbitrary, and the form of the R dependence
of VS was chosen to ensure that scattering observables are
independent of it. It is the size of the physical effects of a term

10Indeed, other examples of noninteger anomalous dimensions have
recently been found in the context of three-body systems [50].
11By neglecting the x2 term on the left-hand side and changing

variables to y = √
κ/x, Eq. (6) can be put into the form of Bessel’s

equation. This shows that the energy-independent solutions can be
expressed in terms of order-2l + 1 Bessel functions of y. For large y,
these tend to the asymptotic WKB expressions discussed above.
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in VS that matters and, in particular, whether these require that
it be iterated to all orders or allow it to be treated perturbatively.
Such questions are answered by the power counting that the
RG analysis provides.

Note that despite also using a radial cutoff, the approach
here is quite different from that of Valderrama and Arriola [16,
24,25]: those authors consider the limit as their radial cutoff
tends to zero, and so they set all irrelevant perturbations to
zero. As a result, their predictions for scattering observables
just depend on the long-range pion-exchange potential and a
small number of short-distance parameters associated with any
relevant or marginal terms.

The results above apply to all partial waves where tensor
OPE is treated nonperturbatively. Hence in waves with nonzero
orbital angular momentum, where the leading terms are naively
of order Q2l , the orders of these terms are much lower
than dimensional analysis would suggest. This agrees with
the conclusion of Nogga, Timmermans, and van Kolck [15]
that, based on their numerical analysis, short-range terms
must be promoted in channels where the tensor potential is
attractive. The RG analysis here makes quantitative the degree
of promotion involved by determining the power counting for
all terms in the double expansion in powers of energy (p2) and
the coupling scale (λπ ). It also shows that the effect is present
in repulsive as well as attractive channels.

The scattering in the 3S1–3D1 channel is strong at low
energies, and so the trivial fixed point is not an appropriate
starting point. Instead, we need to find a nontrivial fixed point
and expand around it. This is most easily done by rewriting the
RG equation as in Eq. (62). The linear nature of this equation
makes it straightforward to find the perturbations around the
fixed point that scale with definite powers of �. The resulting
expansion is

1

V̂S

= 1

V̂S0
−

∑
m,n

Cmn�
m+2n−1/2λ̂m

π p̂2n, (78)

where n and m are again nonnegative integers. As in the case of
a pure short-range potential [21], the nontrivial fixed point is
unstable, with one negative eigenvalue. Terms in this expansion
can be related to the terms in a DW effective-range expansion,
analogously to the examples studied in Refs. [22,23]. The RG
eigenvalue for a general term in Eq. (78) is ρ = m + 2n − 1/2,
which should be compared with ρ = 2n − 1 for the pure short-
range case [21]. This shows that the terms in the expansion
here have been demoted by half an order (that is, they are less
important) compared with the corresponding terms without the
long-range potential.

Although strictly the RG equation (61) only applies to
channels where the tensor force is repulsive, the scaling
behavior is in fact the same for the attractive and coupled
channels. The only difference is that attractive 1/r3 potentials
give rise to deeply bound states that lie outside the domain of
our EFT. We should therefore cut them off at E = −�2/MN ,
as in the case of the attractive inverse square potential [23].
This adds δ-function terms to the RG equation at the values of
� where bound states fall outside the cutoff. These lead to step
discontinuities in V̂S at these points, which can be thought of
as jumps to different branches of the fixed-point potential V̂S0.

The existence of multiple branches of the potential is a
consequence of the oscillatory nature of the short-distance
wave functions. In order to make these well defined, we had to
choose a particular self-adjoint extension of the long-distance
Hamiltonian by fixing the phase of these oscillations. As in
the 1/r2 case, the energy-independent short-range interaction
has the effect of changing the self-adjoint extension [23].
However, in that example, the scale-free nature of the potential
and the associated Efimov effect [51] (an infinite tower of
geometrically spaced bound states) mean that the different
choices lie on a limit cycle of the RG. As a result, the leading
short-range term forms a marginal perturbation which changes
the starting point on that cycle. In contrast, only a discrete set of
extensions of the 1/r3 Hamiltonian lead to scale-free systems
with bound states at zero energy. The different branches of V̂S0

correspond to this set of extensions.
The use of the DW basis in this RG analysis makes it

straightforward to expand the potential in terms of pertur-
bations that scale with definite powers of �. In Ref. [15]
the cutoff was applied to a plane-wave basis. Such a cutoff
has two effects: it regulates the short-distance interaction,
and it removes the singularity of the long-range potential
at the origin. The second aspect means that changing the
cutoff has the effect of changing the self-adjoint extension
that determines the long-range behavior of the DW’s. After
fitting to low-energy scattering observables, the resulting
short-distance potential displays dramatic oscillations due
to the changing number of bound states of the long-range
potential. Similar oscillations are also seen with the radial
cutoff of Ref. [25]. However, with care, it should still be
possible to determine the power counting using such cutoffs,
as illustrated by the analysis of attractive three-body systems
in Ref. [52].

In spin-triplet channels without low-energy bound or virtual
states (in other words, all except 3S1–3D1), we can define the
DW basis by picking an initial extension that does not produce
a low-energy bound or virtual state, and then we can expand
the short-range potential around the trivial fixed point. The
terms in this expansion are all irrelevant. This implies that,
provided we pick an initial extension that gives weak low-
energy scattering, any dependence of the low-energy phase
shifts on this choice must be small. Otherwise, the leading
irrelevant perturbation could not be equivalent to a change in
the extension.

This weak dependence of scattering observables on the
choice of extension, at least well away from the ones
that generate low-energy bound states, can be seen in the
numerical results of Ref. [15], particularly in Figs. 10 and 12.
These contain long “plateau regions” where the short-distance
interactions are small and only weakly dependent on �. These
values of the cutoff correspond to extensions that generate only
deeply bound states, outside the scope of the EFT. In contrast,
there are also narrow ranges of � where the regulated tensor
potential produces a low-energy bound or virtual state. To
describe the observed weak scattering, the potential in these
regions must be supplemented by the nontrivial fixed point
and its relevant (unstable) perturbation, hence the very large
counterterms needed.
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The results so far can be applied to the S, P , and
D waves where, as we saw in Sec. II, the tensor OPE needs
to be treated nonperturbatively. As discussed above, the wave
functions in these channels attain their energy-independent
short-distance forms for radii of 0.4 fm or less. These forms
are controlled by the 1/r3 tensor potential, which is stronger
than the centrifugal barrier for radii smaller than about 1 fm.
In F waves and above, in contrast, the OPE and centrifugal
potentials become comparable at radii of the order of 0.1–
0.2 fm or less. The asymptotic forms of the waves controlled
by the tensor potential are thus reached only for radii much
less than 0.1 fm, far beyond the domain of validity of our EFT.
Moreover, the amplitudes of the wave functions for such small
radii will be strongly suppressed by the centrifugal barrier, at
least for momenta of the order of mπ .12 In effect, the strong
centrifugal barrier in high partial waves “protects” low-energy
waves from probing the nonperturbative region.

We can take advantage of this by choosing our factorization
scale R for the high partial waves to be of the order of 0.4 fm,
so that it lies in the region where the centrifugal potential
dominates over both the tensor OPE and the on-shell energy.
This allows us to treat OPE as a perturbation and to expand
the DW’s in Eq. (58) in powers of VπT . In this region, the
waves still have the rl form produced by the centrifugal barrier
and so scaling behavior of the short-range potential is the
same as that in the presence of the 1/r2 centrifugal potential
alone [22]. In particular, the resulting power counting is just the
usual one given by naive dimensional analysis. Of course, at
high enough energies, the waves will penetrate the barrier and
this perturbative treatment will break down. However, in the
high partial waves, the results in Sec. II C show that this only
happens at scales that lie outside the domain of our low-energy
effective theory.

IV. CONCLUSIONS

The chiral limit of the tensor OPE potential has a 1/r3

form. In this work, I have studied it using techniques developed
in atomic physics for solving the Schrödinger equation with
inverse-power-law potentials [17–19]. These lead to analytic
solutions constructed as expansions in Bessel functions whose
orders satisfy an eigenvalue equation. In each channel, there is
a critical value of the product of the momentum and coupling
strength above which these eigenvalues become complex. This
sets a limit on the range of energies for which the tensor
potential can be treated perturbatively. These values are the
same for both attractive and repulsive 1/r3 potentials.

I have determined the critical dimensionless couplings
for the tensor interaction in low-lying partial waves. In the
3S1–3D1 and 3P0 channels, the corresponding breakdown
scales are ∼mπ or less. In the other P and D waves, the
scales are of the order of 400 MeV. These results imply that

12The only exception would be if we were to choose an extension
of the attractive 1/r3 potential that leads to a low-energy bound or
virtual state which is trapped inside the barrier. However, there is no
reason to do so in the context of nucleon-nucleon scattering in high
partial waves.

for the energies relevant to nuclear physics, OPE should be
treated nonperturbatively in these channels. They explain why
Fleming, Mehen, and Stewart [12] found that the perturbative
KSW treatment breaks down in these cases. In contrast, the
scales for the higher partial waves all lie well above 1 GeV,
and so perturbation theory should be valid for them.

In the context of the RG, the nonperturbative treatment of
OPE can be justified if we identify the scale λπ controlling
its strength as a low-energy scale. The resulting RG analysis
of the 1S0 channel, where only the central Yukawa piece
contributes, leads to power countings that are similar to those
found for pure short-range interactions. There is a nontrivial
fixed point which describes systems with strong scattering at
low energies. The terms in the expansion around this have RG
eigenvalues ρ = −1, 0,+1, . . . and so are of order Qd , where
d = ρ − 1 = −2,−1, 0, . . . [22]. This is similar to the power
counting for the expansion around the nontrivial fixed point for
pure short-range forces [7,21]. In both cases, the terms in the
expansion correspond directly to terms in an effective-range
expansion.

Here I have used this RG method to study the scaling
behavior in the spin-triplet channels. This is controlled by
the power-law dependence of the DW’s near the origin which,
in turn, follows from the singularity of the long-range potential
at the origin. It is the same for attractive and repulsive
1/r3 potentials. In the S-, P-, and D-wave channels, where
the tensor OPE force needs to be treated nonperturbatively,
the expansion around the trivial fixed point leads to RG
eigenvalues ρ = 1

2 , 3
2 , 5

2 , . . ., corresponding to orders Qd with
d = − 1

2 , 1
2 , 3

2 , . . .. These are promoted by half an order
compared with naive dimensional analysis in an S wave and
by many more orders in higher partial waves. This provides a
quantitative measure of the effect observed in Ref. [15].

In the 3S1–3D1 channel, we need to expand around the
nontrivial fixed point. The corresponding RG eigenvalues are
ρ = − 1

2 , 1
2 , 3

2 , . . ., and so there is one relevant perturbation.
This is similar to the pure short-range case, except that the
terms in the expansion have been demoted by half an order.

Finally, in the higher spin-triplet waves, one can treat
the tensor OPE potential perturbatively at low energies. The
corresponding scaling behavior is determined by the region
where the centrifugal barrier dominates, and so the power
counting is just that given by naive dimensional analysis.

These results show that it is possible to set up a consistent
EFT embodying the WvK scheme where OPE is treated
nonperturbatively in low partial waves. However, as already
remarked, a central element of this is the identification of λπ

as a low-energy scale. Since this scale is built out of quantities
that are treated as high-energy scales in ChPT, this analysis
leaves open the question of how to make this theory consistent
with chiral expansions of other effective operators, such as
those for EM or weak couplings. Further work is needed to
address this problem.
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[4] C. Ordoñez, L. Ray, and U. van Kolck, Phys. Rev. C 53, 2086
(1996).

[5] S. R. Beane, M. Malheiro, D. R. Phillips, and U. van Kolck,
Nucl. Phys. A656, 367 (1999).

[6] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003).
[7] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424,

390 (1998); Nucl. Phys. B534, 329 (1998).
[8] P. F. Bedaque and U. van Kolck, Phys. Lett. B428, 221 (1998).
[9] U. van Kolck, Nucl. Phys. A645, 273 (1999).

[10] H. A. Bethe, Phys. Rev. 76, 38 (1949).
[11] R. G. Newton, Scattering Theory of Waves and Particles

(Springer, New York, 1982).
[12] S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Phys. A677, 313

(2000).
[13] S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck,

Nucl. Phys. A700, 377 (2002).
[14] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J.

de Swart, Phys. Rev. C 48, 792 (1993).
[15] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev.

C 72, 054006 (2005).
[16] M. Pavón Valderrama and E. Ruı́z Arriola, Phys. Rev. C 72,

054002 (2005).
[17] M. J. Cavagnero, Phys. Rev. A 50, 2841 (1994).
[18] B. Gao, Phys. Rev. A 58, 1728 (1998).
[19] B. Gao, Phys. Rev. A 59, 2778 (1999).
[20] K. G. Wilson and J. G. Kogut, Phys. Rep. 12, 75 (1974).
[21] M. C. Birse, J. A. McGovern, and K. G. Richardson, Phys. Lett.

B464, 169 (1999).
[22] T. Barford and M. C. Birse, Phys. Rev. C 67, 064006 (2003).
[23] T. Barford and M. C. Birse, J. Phys. A. 38, 697 (2005).
[24] M. Pavón Valderrama and E. Ruı́z Arriola, Phys. Lett. B580,

149 (2004); Phys. Rev. C 70, 044006 (2004).
[25] M. Pavón Valderrama and E. Ruı́z Arriola, nucl-th/0506047.
[26] H. Sadeghpour et al., J. Phys. B 33, R93 (2000).
[27] W. M. Frank, D. J. Land, and R. M. Spector, Rev. Mod. Phys.

43, 36 (1971).

[28] W. Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941).
[29] P. M. Morse and H. Feshbach, Methods of Theoretical Physics,

Part I (McGraw-Hill, New York, 1963), pp. 555–562.
[30] S. Fubini and R. Stroffolini, Nuovo Cimento 37, 1812 (1965);

R. Stroffolini, Nuovo Cimento A 2, 793 (1971).
[31] G. Esposito, J. Phys. A 31, 9493 (1998).
[32] N. A. W. Holzwarth, J. Math. Phys. 14, 191 (1973).
[33] D. B. Khrebtukov, J. Phys. A 26, 6357 (1993).
[34] C. M. Bender and S. A. Orszag, Advanced Mathematical

Methods for Scientists and Engineers (Springer, New York,
1999).

[35] S. Wolfram, Mathematica 5 (Wolfram Media, Champaign,
2003).

[36] L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-
relativistic Theory (Butterworth-Heinemann, Oxford, 1958),
Sec. 132 and Problem 132.4.

[37] J. Shakeshaft, J. Phys. B 5, L115 (1972).
[38] S. R. Beane, P. F. Bedaque, L. Childress, A. Kryjevski,

J. McGuire, and U. van Kolck, Phys. Rev. A 64, 042103
(2001).

[39] M. Bawin and S. A. Coon, Phys. Rev. A 67, 042712 (2003).
[40] E. Braaten and D. Phillips, hep-th/0403168.
[41] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev.

Lett. 82, 463 (1999); Nucl. Phys. A646, 444 (1999); A676, 357
(2000).

[42] K. G. Wilson, talk presented at the Institute for Nuclear Theory,
Seattle, 2000 (unpublished); R. F. Mohr, Ph.D. thesis, Ohio
State University, 2003, nucl-th/0306086.

[43] E. Braaten and H.-W. Hammer, Phys. Rev. Lett. 91, 102002
(2003).

[44] T. Barford, Ph.D. thesis, University of Manchester, 2004, nucl-
th/0404072.

[45] S. Scherer and H. W. Fearing, Phys. Rev. D 52, 6445 (1995);
H. W. Fearing, Phys. Rev. Lett. 81, 758 (1998).
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