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Calculating the nuclear mass in the very high angular momentum regime
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Macroscopic-microscopic methods are applied in the high-spin regime to calculate the nuclear binding energy
(“mass”) as a function of proton number, neutron number, and angular momentum. Masses at high spin are
calculated using the cranked Nilsson-Strutinsky model together with two different liquid drop models, the Lublin-
Strasbourg drop model and the finite range liquid drop model. When comparisons are made with experimental
data, a similar agreement between theory and experiment is obtained as for ground-state masses.
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A fundamental property of nuclei is their mass or,
equivalently, their binding energy B. The variation of the
nuclear mass with proton and neutron number will reveal the
shell effects, which are closely related to the magic numbers
and the extra binding associated with these numbers. It will
also give some general idea about which regions of nuclei are
deformed and whether some specific particle numbers give
rise to extra binding for deformed nuclear shapes.

In recent years, it has become possible to study a large
number of nuclei up to very high angular momenta. A
natural extension is then to study the variation of the total
nuclear energy as a function of the angular momentum I,
that is, to extend the investigations of the binding energy
to three dimensions, B(Z,N, I ). Such studies were applied
to relatively low spin states long ago [1] when especially
so-called backbending plots in gauge space were considered.
Thus, from differences in the binding energy taken at constant
spin I, it was possible to conclude for example that the borders
between spherical and deformed nuclei depend on the particle
number. More recently, the total binding energy of the highly
deformed bands in Nd isotopes has been used to learn about
the pairing gap at high spins [2].

The absolute energy can in principle be calculated in
standard high-spin calculations based on the cranking model.
However, to our knowledge, only some preliminary compar-
isons between experiment and macroscopic rotating liquid
drop energies have been presented [3,4], but no attempts
have been made to describe the binding energy of high-spin
states in full calculations including the shell energy (or in
cranked Hartree-Fock or relativistic mean-field calculations).
Therefore, it is our purpose to introduce such calculations,
based on the rotating liquid drop + shell correction energies.
They will be applied to a representative selection of nuclei
with mass numbers in the range A ≈ 20−200, whose level
schemes are known up into the unpaired regime and which
have been successfully interpreted in calculations.

In experimental studies of high-spin spectra, the natural
quantity to consider is of course the excitation energy relative
to the ground state. This is also a relevant quantity when
describing the structure of low- and intermediate-spin states
formed at similar deformations as the ground state. Going to
higher spins, however, quite different deformations or coupling
schemes might develop and to learn about the structure in
this spin regime, the measured excitation energy is no longer

useful, because it will depend as strongly on the (unrelated)
low-spin properties, where large shell effects are often seen, as
on the high-spin properties. Therefore, for systematic studies
over all spin values and especially in the high-spin regime,
it appears necessary to use a reference not dependent on
the ground-state mass. A natural choice is then the absolute
binding energy B(Z,N, I ).

In the macroscopic-microscopic approach (see, e.g.,
Ref. [5]), the total nuclear energy is calculated as the sum of
the liquid drop energy Eld, the shell correction energy Eshell,
and the pairing correction energy δEpair = Epair − 〈Epair〉. The
ground-state energy is then obtained as the minimum over
deformation of this sum, that is,

Etot(Z,N) = min
εi

[Eld(Z,N, εi)

+Eshell(Z,N, εi) + δEpair(Z,N, εi)], (1)

where εi indicates the deformation coordinates. This formula
can be generalized to include angular momentum I by using the
principal-axis cranking model and the shell-correction method
at high angular momenta (see, e.g., Ref. [6]). In a first step
this is done only for high-spin states where pairing can be
neglected.

In analogy with Eq. (1) the total energy at spin I is then
obtained as

Etot(Z,N, I ) = min
εi

[Erld(Z,N, I, εi) + Eshell(Z,N, I, εi)] .

(2)

The smoothly varying energy Erld is the rotating liquid drop
energy, which is assumed to be of standard form [6],

Erld(Z,N, I, εi) = Eld(Z,N, εi) + h̄2I (I + 1)

2Jrig.(Z,N, εi)
, (3)

where Eld is the static liquid drop energy and Jrig. is the rigid-
body moment of inertia. The shell energy is evaluated from the
energy eigenvalues of the cranked single-particle Hamiltonian,
hω = h − ωjx , where, for each angular momentum I (and each
many-body configuration), the rotational frequency is chosen
to give the correct I value, where I is defined as the sum of the
expectation values of jx [7].

Although nuclear ground-state masses have mainly been
calculated using the folded-Yukawa potential [5], we will use
the modified oscillator potential for the present application,
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because it is only in this model (referred to as cranked Nilsson-
Strutinsky (CNS) [7,8]) that systematic high-spin calculations
have been carried out for nuclei in essentially all mass regions.
The main advantage of this model is the unique possibilities
to fix configurations in the high-spin regime and follow their
evolution in deformation space (ε2, ε4, γ ) as spin increases.
This in turn relies on the use of a rotating harmonic oscillator
basis, making it possible to treat the main oscillator quantum
number in this basis as pure.

All kinds of different bands have been observed in the very
high spin regime. Although the deformation of superdeformed
or highly deformed bands is in general very stable, most bands
at normal deformation show tendencies to terminate at very
high spins, thus changing their deformation in the direction
toward rotation around the symmetry axis (γ = 60◦) or in
many cases even terminating in a noncollective aligned state.
Since the model treats states of single-particle character on the
same footing as collective states, it is well suited for describing
such a transition [7,8]. As concluded in a recent review [9], the
model “appears to be extremely successful in the identification
and classification of such terminating bands, producing results
that are in very good quantitative agreement with data.” It is
only for heavy nuclei (i.e., mainly in the rare-earth region) that
normal-deformed bands do not show any noticeable tendencies
to terminate even at the highest spin values observed. As
exemplified for 162Er [10] in the following, our model is
also well suited for describing such bands. One could also
note that many of the basic ideas for the interpretation of
superdeformed (SD) bands have been introduced using the
CNS model (see, e.g., Refs. [9,11]).

To keep the number of parameters as small as possible,
we have used the so-called A = 110 parameters [7] for all
nuclei. These parameters have been optimized for nuclei with
A = 100–150 but should be approximately applicable for all
mass numbers.

For the static liquid drop energy Eld [see Eq. (3)], we
will consider two different macroscopic models that have
recently been applied to large-scale mass calculations, namely
the finite range liquid drop model (FRLDM) [5] and the
Lublin-Strasbourg drop (LSD) model [12]. The latter is a
recent version of the classical Myers-Swiatecki expressions
[13], where an A1/3 curvature term has been added. Both these
models have been fitted to the known masses for Z,N � 8
nuclei, giving rms errors in the range 0.6–0.8 MeV, with a
somewhat better accuracy for the LSD model, where empirical
[13] instead of microscopic shell corrections have been used
for Z,N � 28.

Comparing Eqs. (1) and (2), we note that we should remove
〈Epair〉 in the liquid drop energy if it is assumed that the full
pairing energy, Epair = 〈Epair〉 + δEpair, is negligible at high
spin. Furthermore, in the FRLDM fit, a zero-point energy
for vibrations in the elongation direction is included. A new
fit to ground-state masses using the FRLDM was therefore
performed with 〈Epair〉 removed from the macroscopic energy
and with no explicit zero-point energy. The rms error of the
new fit is essentially the same as in the old fit. With this in
mind we will not include any explicit zero-point energy in
the present applications. This is also based on the fact that
most states are triaxial at high spin (cf. Fig. 4), indicating that

it would be inconsistent to correct only for vibrations in the
elongation direction. At spherical shape the difference between
the old and the new fit is a smooth analytic function in Z and
N and because the LSD fit is based on the FRLDM fit, it is
compensated by the same function.

The average moment of inertia Jrig. [see Eq. (3)] is
calculated for rotation around a principal axis for a rigid body
with a radius parameter r0 and a diffuse surface introduced in
the form of a Yukawa folding function with range a [14]. The
parameters r0 and a are obtained by a fit to experimentally
determined nuclear charge density distributions. We fit the
rms value of the radius 〈r2〉1/2(ε2, r0, a) to the values given
in Ref. [15] for 116 nuclei with A>16. The quadrupole
deformations of the ground states are taken from Ref. [5].
The result of the fit is r0 = 1.1599 fm and a = 0.5984 fm and
the standard deviation of the errors is s = 0.0454 fm.

Figure 1 illustrates the total energy for a few nuclei as a
function of spin. It is drawn using the LSD model for the
static liquid drop energies and radius constants r0 = 1.16 fm
and a = 0.6 fm obtained from the fit just described. For each
nucleus the energy of the corresponding rotating liquid drop
has been subtracted. This is a straightforward generalization
of “standard” mass plots (e.g., Figs. 1 and 2 of Ref. [5]), which
gives a convenient scaling when comparing the microscopic
energy for different nuclei or when comparing theory and
experiment. Low values indicate that states are built at a
relatively low energy cost, arising from a reduced level density
around the Fermi surface.
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FIG. 1. (Color online) Experimental (top panel) and theo-
retical (middle panel) microscopic energies and their differ-
ence (lower panel) for some well-established high-spin bands
in A = 109–158 nuclei. The LSD model and a diffuse surface
(r0 = 1.16 fm, a = 0.6 fm) has been used when calculating the first
and second terms, respectively, of Eq. (3). Calculated states where
all valence nucleons have their spin vectors aligned with the axis of
rotation (terminating states) are encircled.
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The yrast line for 109Sb [7] in Fig. 1 is drawn starting
from low spins where the difference between calculations and
experiment should be an approximate measure of the pairing
energy, which is not included in the calculations. The high-spin
bands in 109,110Sb are observed to termination at I = 41.5 and
I = 45, respectively [7]. The configuration assignment for
the 109Sb band is supported by unpaired cranked relativistic
mean-field (CRMF) calculations [16], where, however, it was
only possible to follow the band to the I = 39.5 state. The
energy curves in Fig. 1 reveal that the observed and calculated
differences relative to the rotating liquid drop energy are
essentially identical for the two bands in 109Sb and 110Sb.
This is a strong indication that the energy of the neutron
h11/2 orbital, which is filled in 110Sb and empty in 109Sb,
is properly described in the calculations. The band in 113I
(band 1 of Ref. [17]) has a higher terminating spin value
at Iπ = 54.5+ and is observed up to I = 50.5. The favored
terminations in 158Er at Iπ = 43−, 49− [18] show more typical
single-particle features than the unfavored terminations in,
for example, 109,110Sb. The 156Dy band [19], which is yrast
only at the highest spin values, is observed to a tentative
termination at I = 62. The band drawn for 152Dy is the only
superdeformed band in the A = 150 region whose absolute
excitation energy is known [20]. Its interpretation is the same
in different calculations based, for example, on the modified
oscillator (CNS) [11,21], the Woods-Saxon potential [22], the
Skyrme HFB [23], or the CRMF [24].

To extend the comparison of Fig. 1 to a larger mass
region, we compare calculated and experimental energies for
additional nuclei in Fig. 2, where different versions of the
rotating liquid drop formula are used. The band observed to
terminate at 8+ in 20Ne [25] is built with two valence protons
and two valence neutrons in orbits of d5/2 character [26].
Cranked Nilsson-Strutinsky calculations on this band have
been discussed, for example, in Ref. [27] and reviewed in [7].
The band in 36Ar is the so-called superdeformed band, which
is interpreted in CNS as well as shell-model calculations as
having identical proton and neutron configurations with a
total of four particles in orbits of f7/2 character [28]. The
additional bands included are the highest spin terminating
states in 59Cu [29] and 62Zn [7,30], the SD band in 59Cu [29],
two more negative-parity bands in 156Dy [19], and the SD
band in 194Hg [31]. These references are those where the
bands have been discussed in the CNS formalism except for
194Hg, which has not been described in this model previously
but where we get the high-j π (i13/2)4ν(j15/2)4 configuration
in agreement with standard interpretation based on different
models [32–34].

With the same parameters used in Fig. 1 and in the
lower panel of Fig. 2, those data points that are repeated
are identical. These parameters describe the data with good
accuracy. Typical errors are in the range of ±1 MeV. Note
especially that, from the data set considered here, the general
trend as a function of mass number appears correct. This is
contrary to the results in the upper panel, where in the static
liquid drop energy, the LSD model has been replaced by the
FRLDM. This results in systematic differences for light nuclei,
where the calculated energies are lower than the experimental
energies. Thus, the FRLDM predicts results similar to those
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FIG. 2. (Color online) Difference in total energy between theory
and experiment for the highest spin states of 10 nuclei with masses in
the range A=20–194. In the lower panel, the same parameters as in
Fig. 1 have been used whereas the FRLDM model has been used for
the static liquid drop energy in the upper panel and the rigid moment
of inertia has been calculated with a sharp surface in the middle panel.

of the LSD model for heavy nuclei but substantially lower
total energies for 20Ne, 36Ar, and 59Cu. One reason for this is
that the two models are fitted to different shell corrections for
Z<29 and N <29. Another reason is that for light nuclei the
two models have different deformation dependencies, with the
FRLDM being softer in the ε2 and ε4 directions. Therefore
for light nuclei the FRLDM generally predicts somewhat
larger ε2 deformations and in some cases the ε4 deformations
are so large that the corresponding shapes appear unrealistic
(cf. Ref. [35]).

The only difference between the two lower panels in Fig. 2
is that a sharp surface is used when calculating the rigid-body
moment of inertia in the middle panel whereas a diffuse surface
is used in the lower panel. The radius in the sharp-surface case
is chosen as the value used to calculate the Coulomb energy in
the LSD formula, r0 = 1.21725 fm, corresponding to a rigid
moment of inertia of a sphere, which is about the same as in
the diffuse surface case for A≈140. In general, the differences
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FIG. 3. (Color online) Same difference as in the lower panel of
Fig. 2 for six additional nuclei in the mass range A=72–175.

between the two lower panels are not as great for heavy nuclei
but become more pronounced for light nuclei. For example,
the “diffuse moment of inertia” for spherical shape is around
13% bigger for A = 36 and more than 20% bigger for A = 20.
Considering the trends in Fig. 2 and the physical understanding
of the moment of inertia, we will from now on choose the LSD
model for Eld with Jrig. calculated with a diffuse surface.

To get a wider selection, high-spin states of six more nuclei
are considered in Fig. 3. They include the normal-deformed
bands in the N = Z nucleus 72Kr and in 84Zr, which have
recently been extended to I = 30 [36] and to I = 34 [37],
respectively, and the SD band in the latter nucleus, which has
been connected [37] to the normal-deformed configurations.
Calculations for the high-spin bands in 72Kr using both
the CNS and CRMF models are performed in Ref. [38]
where it is found that both models give very similar results.
The absolute spins of one band in 72Kr are not known but the
relative energies and comparisons with calculations strongly
suggest the present interpretation [39]. The normal-deformed
and superdeformed structures of 84Zr have recently been
discussed within the CNS [40] and the Woods-Saxon TRS
approach [41], respectively. The respective configurations,
which were also predicted [42] long ago, are identical to those
used in Fig. 3. The band in 136Nd [2] is a highly deformed
triaxial band. For 158Er a few more states are included than in
Fig. 1, demonstrating that states of small or no collectivity
are described with similar accuracy as collective states in our
formalism. Finally, 162Er [10] and 175Hf [43] are the only
deformed nuclei in the rare-earth region with collective bands
observed up to I = 60. For the 175Hf band, we calculate
the same high-spin configuration as suggested in Ref. [43],
π (h9/2)2 (i13/2)2 ν(i11/2)2 (j15/2)1.

As seen in Fig. 4, our selection of states covers a large region
of the (ε2, γ ) plane, thus testing the mass model for a much
wider selection of deformations than ground-state masses
where mainly spherical and prolate deformations (γ = 0)
with ε2 <∼ 0.3 are relevant. A new feature is the large shape
changes within specific bands so that different regions of
deformation space are covered for one specific configuration.
The importance of these deformation changes is illustrated, for
example, in Fig. 30 of Ref. [7]. Indeed, from this figure one
can conclude that if deformation changes were not properly
taken care of, the difference curve for 109Sb in the lower panel
of Fig. 1 would look very different with fluctuations of the
order of 1 MeV over a limited (�I <10h̄) spin range.

The new test of mass models introduced here could be
compared with the calculation of fission barriers where the
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FIG. 4. (Color online) Calculated deformations of high-spin
states for eight nuclei from Figs. 2 and 3, shown in the same spin
interval as in those figures. Spin increases when going from right to
left.

height of 28 barriers is commonly used to test the deformation
dependence [5]. However, whereas the fission barrier test is
mainly limited to heavy nuclei at large prolate deformation,
there is no real limit on the possibilities of observing high-
spin states at different deformations and comparing with
calculations. Thus, especially for light nuclei, the study of
the total nuclear energy at finite spin values will open new
possibilities to perform systematic tests of different mass
models and their deformation dependence. Of course, pairing
and its decrease with angular momentum should then be
included, making it possible to study the full (N,Z, I ) space.

The rotational bands shown in Figs. 2 and 3 include most
bands observed up into the unpaired regime and are rather
evenly distributed over different mass numbers. The main
omission are high-spin bands in the A = 60, A = 110, and
A = 155–160 regions, but typical bands in these regions are
already included and the additional bands would thus not add
much information concerning the general agreement between
calculations and experiment. Collective bands with A>160
show the typical features of unpaired rotation only when
approaching I = 60. Therefore we only consider such bands
observed in this spin range, with the exception of the SD band
of 194Hg where pairing is probably of some importance even
at the highest spins (see, for example, Refs. [33,34]).

For the 102 high-spin states included when using the LSD
model, the rms value of the difference between calculated
and experimental masses at high spin becomes 0.856 MeV.
Considering that this agreement is obtained with no specific fit
of parameters suggests that high-spin states can be described
with the same or maybe even better accuracy than ground-state
masses.

The fact that the absolute energy at fixed spin varies
smoothly as a function of particle number (cf. [4]) makes
it possible to get reliable estimates of spin values or to test
tentative spin assignments. For example, if the spin values
of the band shown for 110Sb in Fig. 1 were wrong by 1h̄, it
would show up as a difference between the 109Sb and 110Sb
bands of more than 1 MeV in the lower panel (and also a
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similar difference in the upper panel). Such discontinuities
become much more accentuated at high spin where each unit
of angular momentum corresponds to a much higher energy
than for I ≈ 0 [Eγ (�I = 1) ∼ I/Jrig.]. Another advantage is
that the absence of pairing at high spin makes it straightforward
to compare odd, odd-odd, and even nuclei on the same
scale. Note also that the position of single-particle orbitals
could be tested from similar comparisons. For example, the
comparison of the 109Sb and 110Sb bands is a direct test of
the single-particle energy of the third h11/2 neutron orbital
as previously mentioned. Another interesting application is
the calculation of particle decay energies at high spin values,
which are easily obtained from the present formalism.

In summary, we have introduced an absolute energy scale
for high-spin calculations and shown that the mass in the

high-spin regime is well described using the CNS approach
combined with the LSD model. This makes it possible to
investigate systematic trends in the total energy at high
spin, for example, comparing regions where the angular
momentum is built mainly from collective rotation and
mainly from single-particle excitations, respectively. Com-
parisons between neighboring nuclei makes it possible to
test spin assignments and positions of specific single-particle
orbitals.
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