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Global properties of the Skyrme-force-induced nuclear symmetry energy
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A novel concept for the nuclear symmetry energy (NSE) is corroborated by large scale calculations. The paper
firmly demonstrates that within the local density approximation, the value of the NSE coefficient, asym(A), depends
on two basic ingredients: the mean-level spacing, ε(A), and the effective strength of the isovector mean-potential,
κ(A). Surprisingly, our results reveal that these two basic ingredients of asym are almost equal after rescaling
them linearly by the isoscalar and the isovector effective masses, respectively. This result points towards a hidden
and hitherto unresolved fundamental property of the effective nuclear interaction. In addition, our analysis
yields naturally the ratio of the surface-to-volume contributions to asym with a value of ∼1.6, consistent with
hydrodynamical estimates for the static dipole polarizability as well as the neutron-skin. Although the present
study is restricted to energy density functionals obtained from Skyrme forces the method is general and can easily
be applied to more general local energy density functionals and nonnuclear bifermionic systems.
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The knowledge of the nuclear equation of state (EOS) for
neutron-rich systems is of fundamental importance for nuclear
physics and nuclear astrophysics. The stability of neutron-
rich nuclei, the r-process nucleosynthesis, the structure of
neutron star, and the simulations of supernovae-collapse
depend sensitively on the EOS and, in particular, on the
nuclear symmetry energy (NSE). In all standard text books of
nuclear physics, the NSE strength is divided into a kinetic and
potential term, see, e.g., Ref. [1]. For modern formulations
of the nuclear many body problem based on Hohenberg-
Kohn-Sham local energy density functional (LEDF) formalism
this division becomes artificial and obscures the physical
origin of the NSE. Indeed, a direct microscopic calculations
show that the kinetic energy, �Ekin(N − Z) = Ekin(N − Z) −
Ekin(N − Z = 0), calculated along various isobaric A = const
chains does by no means correlate with N − Z as depicted in
Fig. 1, see also Ref. [2]. In addition, the division of the NSE

into volume and surface contribution (and eventually higher
order) are difficult to reconcile microscopically with a kinetic
energy dependence, whereas they are naturally embedded in
our approach.

Leaving stereotype expressions behind, we define two
basic ingredients for the NSE strength asym(A): the mean-level
spacing, ε(A), and the effective strength of the isovector
mean-potential, κ(A), see Ref. [3]. Since ε(A) is a well
defined quantity with well known asymptotic limit, having
volume (A−1) and surface (A−4/3) parts, our large scale study
of the A-dependence offers a natural series of cross-checks
for this novel interpretation of the origin of the NSE and, in
turn, provides the basic constraints for κ(A) and the LEDF. In
particular, our analysis reveals the striking property m∗

0
m

ε(A) ≈
m∗

1
m

κ(A), that holds for velocity-dependent interactions having
isoscalar m∗

0 and isovector m∗
1 effective masses, respectively.

Since this result emerges from entirely different Skyrme forces
(SF) with respect to parameters and constraints, it indicates an
underlying fundamental property of the effective NN forces,
that remains to be explained.

The main objective of this work is to study the symmetry
energy, notwithstanding, that a proper understanding is crucial
in order to reach a consensus on the existing variety of SF

parameterizations, or to constrain the coupling constants of a
more general LEDF. Our results point toward a deeper relation
between the average level spacing and the strength of the mean
isovector potential which has not been addressed hitherto. We
focus our investigation on the nuclear case and study Skyrme
forces only because it belongs to the best studied functionals
in nuclear physics. However, the concept can easily be applied
to any EDF, see e.g., Ref. [4], and is not restricted to nuclear
phenomena alone but can be employed to any bifermionic
system. In particular, it may be of relevance for the fast
developing field of ultracold Fermi gases.

In asymmetric infinite nuclear matter (INM), in the vicinity
of the saturation density, ρ0, the EOS (the energy-density per
particle) is conveniently parametrized using the following
Taylor expansion:

EI (ρ)

A
≈ −aV + K∞

18ρ2
0

(ρ − ρ0)2 + . . . +
[
asym + p

ρ2
0

× (ρ − ρ0) + �K∞
18ρ2

0

(ρ − ρ0)2 + . . .

]
I 2 + . . . ,

(1)

where I ≡ |N − Z|/A. The isoscalar INM saturation density
ρ0, and the values of the volume binding energy aV , the in-
compressibility parameter K∞, and the asymmetry energy asym

serve as primary constraints for microscopic nuclear models.
For modern Skyrme force parameterizations which are subject
of the present work ρ0 ≈ 0.16 fm−3, aV ≈ −15.9 ± 0.2 MeV,
asym ≈ 32 ± 2 MeV, and K∞ ≈ 225 ± 25 MeV. Higher-order
curvature corrections to the NSE, p,�K∞, are rather poorly
constrained.

Integrating out the r-dependence from the energy-density
leads then to the semiempirical mass formula (LD) which is
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FIG. 1. The kinetic energy �Ekin(N − Z) = Ekin(N − Z) −
Ekin(N − Z = 0) versus N − Z calculated along isotopic chains
ranging from A = 20 till 88, see legend. The calculations have
been done using the Skyrme-Hartree-Fock approach. Note, that
�Ekin(N − Z) does not show the parabolic behavior �Ekin(N −
Z) ∼ (N − Z)2 characteristic for the NSE . This clearly proves that
for microscopic calculations that reproduce the binding energy, the
kinetic energy is not the proper source for the symmetry energy. This
is also in contradiction to the Fermi gas model.

conventionally written as

E

A
= −aV + aS

A1/3
+

[
a(V )

sym − a(S)
sym

A1/3
+ . . .

](
I 2 + λ

I

A

)
+ . . . ,

(2)

where aS and a(S)
sym are coefficients defining contributions from

the surface energy and the surface part of the symmetry energy,
respectively. There is at present no consensus concerning the
magnitude, λ, as well as origin of the term linear in ∼I, which
is often called the Wigner energy. Another controversy exists
concerning the surface contribution to the NSE. The values
of the surface-to-volume ratio rS/V = a(S)

sym/a(V )
sym quoted in

the literature vary strongly. For example, Danielewicz [5]
estimates it to be 2.0 � rS/V � 2.8, the mass formula of Ref. [6]
yields rS/V ≈ 1.6 while the hydrodynamical-type models that
include properly polarization of the isovector density predict
rS/V ≈ 2 [7].

In our previous letter [3] we have demonstrated that the
Skyrme-Hartree-Fock (SHF) symmetry energy behaves rather
unexpectedly according to the formula:

E(SHF)
sym = 1

2ε(A, Tz)T
2 + 1

2κ(A, Tz)T (T + 1), (3)

where ε(A, Tz) ≈ ε(A) and κ(A, Tz) ≈ κ(A) denote the mean-
level spacing at the Fermi energy in isosymmetric nuclei and
effective strength of the isovector mean-potential, respectively.
More precisely, κ is related to the isovector part of the SF

induced LEDF (S-LEDF) H(r) = ∑
t=0,1 Ht (r):

Ht = C
ρ
t ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+CJ
t

↔
J 2

t + C∇J
t ρt∇ · J t . (4)

Definitions of all local densities and currents ρ, τ,
↔
J as well

as the explicit expressions for coupling constants Ct can be
found in numerous references and we follow the notation used
in Ref. [8]. Due to the isoscalar-density dependence of the SF,
the coupling constants C

ρ
t [ρ0] of the S-LEDF are functionals of

ρ0, giving rise to the isoscalar rearrangement mean-potential

U0 = ∑
t=0,1

∂C
ρ
t

∂ρ0
ρ2

t . Since our procedure of extracting ε and κ

involves setting the C1 ≡ 0, see Ref. [3], part of the U0 related
to the C

ρ

1 is formally treated as being related to the isovector
degrees of freedom. Note that this separation is consistent with
the way the symmetry energy constraint is superimposed on
the SF.

We determine the global mass dependence of the SHF values
of ε(A) and κ(A) by means of a systematic calculation covering
all even-even nuclei having 20 � A � 128 from N = Z to
almost the neutron drip line. Coulomb and pairing effects are
disregarded, i.e., the emphasis is on the strong interaction
acting in the particle-hole channel. The calculations are
performed for a set of different SF parametrizations as the
SkP [9], SkXc [10], Sly4 [11], SkO [12], SkM∗ [13], and
SIII [14], using the SHF code HFODD of Dobaczewski et al. [8].

The procedure used to extract ε(A, Tz) and κ(A, Tz) follows
exactly the one outlined in Ref. [3]. First, we set all the
isovector coupling constants C1 ≡ 0 in the S-LEDF (4) and
extract ε(A, Tz) by comparing calculated excitation energy
�E

(t=0)
SHF (A, Tz) ≡ E

(t=0)
SHF (A, Tz) − E

(t=0)
SHF (A, 0) to

�E
(t=0)
SHF (A, Tz) = 1

2ε(A, Tz)T
2. (5)

In the next step, we compute the total SHF binding energy
ESHF(A, Tz) and compare

�ESHF(A, Tz) − �E
(t=0)
SHF (A, Tz) = 1

2κ(A, Tz)T (T + 1), (6)

in order to determine κ(A, Tz).
For each A and small Tz, the values of ε(A, Tz) oscillate

quite rapidly. However, they clearly tend to stabilize for Tz � 8
where ε(A, Tz) ≈ ε(A). The values of κ(A, Tz) appear to
stabilize faster and κ(A, Tz) ≈ κ(A) essentially already for
Tz � 4. It should be mentioned that in the case of the SkO
parametrization the formula (6) does work only approximately.
For this force we observe a clear enhancement in the linear
term, ∼T. This effect is, however, much weaker than the
analogous effect found recently within relativistic mean field
[4], where it restores the Esym ∼ T (T + 1) dependence of the
total NSE.

For further quantitative analysis of the mass dependence
of the NSE we use the mean values of ε̄(A) and κ̄(A). These
averages over Tz at fixed A are calculated using the following
restricted set of nuclei: Tz � 4 for A = 20; Tz � 6 for A = 24;
and Tz � 8 for A � 28. By using a restricted set of nuclei we
smooth out both ε̄(A) and κ̄(A) curves in order to diminish the
possible influence of shell structure.

The ε̄ and κ̄ curves are presented in Fig. 2. The figure shows
several universal features which appear to be independent of
the type of the SF parametrization: (i) strong dependence of
ε̄(A) on kinematics (shell effects); (ii) almost no dependence
of κ̄(A) on kinematics; (iii) clear surface (∼ 1

A4/3 ) dependence
reducing the dominant volume term (∼ 1

A
) in both ε̄(A) and

κ̄(A).
Indeed, the values of ε̄(A) show characteristic kinks close

to double-(semi)magic A-numbers. These kinks are magnified
when all the calculated nuclei are used (no smoothing) to
compute ε̄(A), but without affecting qualitatively the overall
profile of the curve. On the other hand, κ̄(A) is almost perfectly
smooth with barely visible traces of shell structure. It confirms
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FIG. 2. The isoscalar effective mass scaled values of ε̄∗(A) ≡
m∗

0
m

ε̄(A) (stars) and κ̄(A) (circles) calculated using the SHF method
with SLy4 parametrization. Open symbols denote ε̄∗(A) and κ̄(A)
averaged over all the calculated nuclei. Filled symbols mark smoothed
values of ε̄∗(A) and κ̄(A) calculated using a restricted set of data.
Vertical arrows indicate major shell gaps. Note the strong influence
of shell structure on ε̄∗(A) and the smooth behavior of κ̄(A).

our earlier conclusion [3] that the gross features of the Skyrme
isovector mean potential can be almost perfectly quantified
by a smooth curve parametrized by a small number of global
parameters.

In the analysis of a leptodermous expansion of ε̄(A)
and κ̄(A) we consider volume (V) and surface (S) terms
assuming that: ε̄(A) = εV /A − εS/A

4/3 and κ̄(A) = κV /A −
κS/A

4/3. The values of the isoscalar-effective-mass-scaled
expansion coefficients ε∗

V , ε∗
S as well as the values of the

isovector-effective-mass-scaled expansion coefficients κ∗
V , κ∗

S

are collected in Table I. First of all, let us observe that the
calculated value of ε∗

V ≈ 100 MeV corresponds to the pure
Fermi gas estimate εFG. This result can be understood based on
the analytical expression for the Skyrme force NSE coefficient
in the limit of symmetric INM, a(∞)

sym , provided that the standard
textbook formula is rewritten in the following way:

a(∞)
sym = 1

8
εFG

(
m

m∗
0

)
+

[(
3π2

2

)2/3

Cτ
1 ρ5/3 + C

ρ

1 ρ

]

≡ 1

8
[ε(∞) + κ(∞)], (7)

80

100

120

140

160

180

80 100 120 140 160 180

SLy4

SLy4SkXc

SkXc
SkP

SkP

volume
surface

SkM*

SkM*

SkO

SkO

εV,* εS
* [MeV]

κ V
,

*
κ S

[M
eV

]
*

SIII

SIII
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S expansion

coefficients. Note, that except for the SIII and SkM∗ interactions,
which are not constrained properly, the expansion coefficients are
equal, see also Table I.

where Cτ
1 and C

ρ

1 define the isovector part of the S-LEDF,
see Eq. (4). Equation (7) clearly separates the contributions
from the isovector and isoscalar part and relates the latter
to the single particle energies in INM, εp = p2

2m
+ 	( p, εp) =

p2

2m∗
0
, with a self-energy term, 	( p, εp), that describes the

interaction with the nuclear medium incorporated into the
isoscalar effective mass. Hence, Eq. (7) further supports our
interpretation of the NSE strength.

The most striking result of our analysis is the near-equality
of ε̄∗ ≈ κ̄∗ occurring for all modern parametrizations, see
Table I and Fig. 3. Indeed, ε̄∗ differs from κ̄∗ only for old
parametrizations like the SIII and SkM∗. This result confirms
the rather loose claims often appearing in textbooks that
“the kinetic energy [εFG] and the isovector mean-potential
contribute to the asym in a similar way” is indeed correct but
only after disregarding non-local effects. To our knowledge,
it has never been discussed why these apparently independent
quantities should be similar.

The most important and challenging question is whether
the relation ε̄∗ ≈ κ̄∗ is purely accidental, reflects a certain
symmetry of the SHF solution or pertains to a fundamental
property of the effective NN interactions. It is probably not

TABLE I. The table includes: the isoscalar, m∗
0/m, and the isovector, m∗

1/m, effective masses; the volume, ε∗
V (κ∗

V ), the surface ε∗
S(κ∗

S ),

and the ratios rε = ε∗
S/ε

∗
V (rκ = κ∗

S /κ∗
V ) of the expansion coefficients scaled by the isoscalar ε̄∗(A) and the isovector κ̄∗(A) ≡ m∗

1
m

κ̄(A) effective
masses, respectively; the ratios of volume r∗

V = ε∗
V /κ∗

V and surface r∗
S = ε∗

S/κ
∗
S expansion coefficients and the INM estimate r∗

(∞) = ε∗
(∞)/κ

∗
(∞);

the INM estimate a(∞)
sym and the calculated values a(V )

sym, a(S)
sym and rS/V = a(S)

sym/a(V )
sym of the symmetry energy coefficient as defined in Eq. (2). The

values of ε∗
V (S), κ

∗
V (S), a

(∞)
sym , a(V )

sym, and a(S)
sym are given in MeV.

m∗
0/m m∗

1/m ε∗
V ε∗

S rε κ∗
V κ∗

S rκ r∗
V r∗

S r∗
(∞) a(∞)

sym a(V )
sym a(S)

sym rS/V

SLy4 0.695 0.800 94.5 147.5 1.56 94.7 137.5 1.45 1.00 1.07 1.07 32.0 31.8 48.0 1.51
SkXc 1.006 0.752 108.6 164.3 1.51 107.6 165.2 1.54 1.01 0.99 0.88 30.1 31.4 47.9 1.53
SkP 1.000 0.741 108.8 175.1 1.61 106.0 163.1 1.54 1.03 1.07 0.95 30.0 31.5 49.4 1.57
SkO 0.896 0.852 107.2 166.2 1.55 110.6 176.1 1.59 0.97 0.94 0.79 32.0 31.2 49.0 1.57
SkM∗ 0.789 0.653 106.3 180.9 1.70 71.4 107.3 1.50 1.49 1.69 1.37 30.0 30.5 49.2 1.61
SIII 0.763 0.655 97.5 143.8 1.47 75.2 103.2 1.37 1.30 1.39 1.34 28.2 30.3 43.3 1.43
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surprising that it does not hold explicitely in the INM limit,
since the analytical formula (7) does not contain any scaling
of the isovector effective mass, m∗

1. Indeed, Eq. (7) relates
to the translationally invariant medium while m∗

1 defines
the enhancement of the energy weighted sum rule for the
translational symmetry violating (finite nucleus) dipole mode.

On the other hand, it is rather hard to believe that by
complete accident four modern parametrizations would behave
synchronously in the isovector channel, correlating ε̄∗ and
κ̄∗, particularly that these forces have been fitted to the data
in a truely different manner. Looking into the key isovector
coupling constants C

ρ

1 and Cτ
1 one immediately observes that

they vary in an entirely irregular fashion from force to force.
The C

ρ

1 increases by a factor of five when going from SLy4
to SkP or SkXc while for the momentum term Cτ

1 even the
sign appears to be not established, see Fig. 4. In spite of
that C

ρ

1 and Cτ
1 appear to be linearly correlated as shown

in Fig. 4. This result and the near-equality ε̄∗ ≈ κ̄∗ indicates
that isovector part of the LEDF is neither well understood nor
well constrained. To find an explanation of, in particular, the
later result will be therefore a challenge for further studies
especially that, in our opinion, such an explanation cannot
be done at the level of effective theory operating exclusively
with coupling constants fitted to the data. Indeed, violation
of ε̄∗ ≈ κ̄∗ correlation by older parametrizations like SkM∗
or SIII suggests that this near equality reflects the nature of
the effective interaction in nuclei rather than some hidden
symmetry of the SHF solution.

Our interpretation of ε(A) can be further tested by eval-
uating rε = εS/εV using the semi-classical approximation
[15]. The appropriate formula which takes into account the
diffuseness of the potential, see Ref. [16]:

ε(A) ∼ g(εF )−1 ∼ 1

A

(
1 − π

4kF

SM

VM

+ . . .

)
, (8)

where g(εF ) is the level density at the Fermi energy, kF ≈
1.36 fm−1 while VM and SM denote volume and surface
matter-distribution, respectively. Assuming spherical geom-
etry SM

VM
≈ 3

roA1/3 and adopting for ro ≈ 1.14 fm, i.e. the value
consistent with the standard Skyrme force saturation density
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FIG. 4. The values of C
ρ

1 versus the kinematic effective mass
defined as (m̃∗

1)−1 ≡ 2m

h̄2 Cτ
1 ρ for the SF used in this work. Solid line is

a result of a linear fit which is shown in the legend.

ρ0 ≈ 0.16 fm−1, one obtains rε ≈ 3π
4kF ro

≈ 1.52 which is
indeed very close to the calculated ratios, see Table I.

The SHF models yield rS/V ∼ 1.6 in accordance with the
LD ratio [6]. The static dipole polarizability (SDP) αD [σ (ω)
denotes the photoabsorption cross-section],

σ−2 ≡
∫

σ (ω)

ω2
dω ≡ 2π2 e2

h̄c
αD, (9)

provides an independent cross-check of the ratio rS/V . Indeed,
using the so-called hydrodynamical model a simple estimate
for αD can be derived [7]:

αD ≈ α
(M)
D

(
1 + 5

3

rS/V

A1/3
+ . . .

)
, (10)

where α
(M)
D = 1

24
〈r2〉
a

(V )
sym

is the so-called Migdal SDP value [17]

which is valid for large systems with negligible surface contri-
bution. Using 〈r2〉 = 3

5R2A where R = 1.2A1/3 fm and a(V )
sym =

30 MeV one obtains, in the Migdal’s limit, σ
(M)
−2 A−5/3 ≈

1.73 µb/MeV. Using this estimate and the experimental value
of σ

(exp)
−2 A−5/3 ≈ 2.7 ± 0.2 µb/MeV which is almost constant

for A � 100 [18], one obtains rS/V ∼1.65, consistent with our
estimates based on the SHF calculations.

The neutron skin thickness

δr2 ≡
∫

r2ρ1dτ = 〈
r2
n

〉 − 〈
r2
p

〉
= 12

N − Z

A
αDa(V )

sym

[
1 − rS/V

A1/3

]
(11)

is yet another quantity which sensitively depends on isovector
properties. Using an explicit expression for αD one obtains the
hydrodynamical model formula for the relative neutron skin
thickness,

δr2
R ≡ δr2

〈r2〉 ≈ N − Z

A

{
1 + 2

3

rS/V

A1/3
− . . .

}
, (12)

FIG. 5. The relative difference between the values of neutron
skin thickness calculated using SHF model, δr2

R

(SHF), and the values,
δr2

R

(hydro), estimated from the hydrodynamical expression (12) taken at
rS/V = 1.6. Note, that the relative difference (width) does not exceeds
±2% supporting the consitency of our approach.

011301-4



RAPID COMMUNICATIONS

GLOBAL PROPERTIES OF THE SKYRME-FORCE- . . . PHYSICAL REVIEW C 74, 011301(R) (2006)

which does not depend on asym but only on the ratio rS/V .
The estimate (12) taken for rS/V = 1.6 provides again a very
consistent results with our microscopic SHF calculations as
shown in Fig. 5. Unfortunately, neutron rms radii are even
today rather poorly known and can therefore not be used to
constrain the LEDF or the EOS, see however Ref. [19]. It is
worth noticing that the expansion (12) differs qualitatively
from the semiempirical formulas used in the literature, see
Refs. [20,21].

In summary, the global mass dependence of the NSE strength
asym(A) and its two basic ingredients related to the mean-level
spacing, ε(A), and to the mean-isovector potential, κ(A) is
studied in detail within the SHF theory. Our interpretation of the
symmetry energy enables us to unambiguously establish the

surface-to-volume ratio of asym(A), rS/V ≈ 1.6 in agreement
with the LD value of Ref. [6]. This ratio is consistent with
simple hydrodynamical estimates for the SDP and neutron
skin thickness. The most striking results of our calculations is
the near-equality of ε̄∗ ≈ κ̄∗ revealing that contribution to asym

due to the mean-level spacing and due to the mean-isovector
potential are similar but only after disregarding nonlocal
effects. This indicates a fundamental property of the nuclear
mean field that requires further studies.
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