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Coefficients and terms of the liquid drop model and mass formula
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The coefficients of different combinations of terms of the liquid drop model have been determined by a least
square fitting procedure to the experimental atomic masses. The nuclear masses can also be reproduced using
a Coulomb radius taking into account the increase of the ratio R0/A

1/3 with increasing mass, the fitted surface
energy coefficient remaining around 18 MeV.
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To predict the stability of new nuclides both in the
superheavy element region and the regions close to the proton
and neutron drip lines continuous efforts are still needed to
determine the nuclear masses and therefore the binding ener-
gies of such exotic nuclei. Within a modelling of the nucleus
by a charged liquid drop, semimacroscopic models including
a pairing energy have been first developed to reproduce the
experimental nuclear masses [1,2]. The coefficients of the
Bethe-Weizsäcker mass formula have been determined once
again recently [3]. To reproduce the nonsmooth behavior of
the masses (due to the magic number proximity, parity of
the proton, and neutron numbers, . . .) and other microscopic
properties, macroscopic-microscopic approaches have been
formulated, mainly the finite-range liquid drop model and the
finite-range droplet model [4]. Nuclear masses have also been
obtained accurately within the statistical Thomas-Fermi model
with a well-chosen effective interaction [5,6]. Microscopic
Hartree-Fock self-consistent calculations using mean fields
and Skyrme or Gogny forces and pairing correlations [7,8]
as well as relativistic mean field theories [9] have also been
developed to describe these nuclear masses. Finally, nuclear
mass systematics using neural networks have been undertaken
recently [10].

The nuclear binding energy Bnucl(A,Z) which is the energy
necessary for separating all the nucleons constituting a nucleus
is connected to the nuclear mass Mn,m by

Bnucl(A,Z) = ZmP + NmN − Mn.m(A,Z). (1)

This quantity may thus be easily derived from the experimental
atomic masses as published in Ref. [11] since

Mn.m(A,Z) = Ma.m(A,Z) − Zme + Be(Z) (2)

while the binding energy Be(Z) of all removed electrons is
given by [12]

Be(Z) = aelZ
2.39 + belZ

5.35, (3)

with ael = 1.44381 × 10−5 MeV and bel = 1.55468 ×
10−12 MeV.

The fission, fusion, cluster and α decay potential barriers
are governed by the evolution of the nuclear binding energy
with deformation. It has been shown that four basic terms
are sufficient to describe the main features of these barriers
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[13–18]: the volume, surface, Coulomb, and nuclear proximity
energy terms while the introduction of the shell and pairing
energy terms is needed to explain structure effects and
improve quantitatively the results. Other terms have been
proposed to determine accurately the binding energy and other
nuclear characteristics: the curvature, A0, proton form factor
correction, Wigner, Coulomb exchange correction, . . . , energy
terms [4].

The purpose of the present work is to determine the coef-
ficients of different combinations of terms of the liquid drop
model by a least square fitting procedure to the experimentally
available atomic masses [11] and to study whether nuclear
masses can also be reproduced using, for the Coulomb energy,
a radius which takes into account the small decrease of the
density with increasing mass and to determine the associated
surface energy coefficient. The theoretical shell effects given
by the Thomas-Fermi model (seventh column of the table in
Refs. [5] and [6]) have been selected since they reproduce
nicely the mass decrements from fermium to Z = 112 [19].
They are based on the Strutinsky shell-correction method and
given for the most stable nuclei in the Appendix. The masses
of the 1522 nuclei verifying the two following conditions have
been used: N and Z higher than 7 and the one standard deviation
uncertainty on the mass lower than 100 keV [11].

The following expansion of the nuclear binding energy has
been considered:

Bnucl = av(1 − kvI
2)A − as(1 − ksI

2)A2/3 − 3

5

e2Z2

R0

+Epair − Eshell − akA
1/3 − a0A

0 − fp

Z2

A
− W |I |.

(4)

The nuclear proximity energy term does not appear since
its effect is effective only for necked shapes but not around
the ground state. The first term is the volume energy and
corresponds to the saturated exchange force and infinite
nuclear matter. In this form it includes the asymmetry energy
term of the Bethe-Weizsäcker mass formula via the relative
neutron excess I = (N − Z)/A. The second term is the surface
energy term. It takes into account the deficit of binding energy
of the nucleons at the nuclear surface and corresponds to semi-
infinite nuclear matter. The dependence on I is not considered
in the Bethe-Weizsäcker mass formula. The third term is the
Coulomb energy. It gives the loss of binding energy due to the
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TABLE I. Dependence of the energy coefficient values (in MeV or fm) on the selected term set including or not the pairing and theoretical
shell energies and root mean square deviation. The Coulomb energy is determined by ac

Z2

A1/3 with ac = 3e2/5r0.

av kv as ks r0 ak a0 fp W Pairing Shell σ

15.7335 1.6949 17.8048 1.0884 1.2181 — — — — n n 2.92
15.6335 1.6810 17.2795 0.8840 1.2208 — — — — n y 1.26
15.6562 1.6803 17.3492 0.8710 1.2181 — — — — y y 0.97
15.2374 1.6708 15.4913 0.9223 1.2531 — 7.3742 — — y y 0.92
14.8948 1.6686 12.8138 1.0148 1.2721 7.6659 — — — y y 0.88
15.4443 1.9125 16.5842 2.4281 1.2444 — — — 44.2135 y y 0.70
15.5424 1.7013 18.0625 1.3175 1.2046 — — −1.40745 — y y 0.68
15.4496 1.8376 17.3525 2.0990 1.2249 — — −0.93794 27.2843 y y 0.584
15.5518 1.8452 18.015 2.0910 1.2176 −1.1207 — −0.97833 28.4963 y y 0.582
15.5293 1.8462 17.7376 2.1163 1.2182 — −1.5576 −0.96851 28.6061 y y 0.581
14.8497 1.8373 11.2996 2.7852 1.2505 20.9967 −25.7261 −0.6862 26.4072 y y 0.57

repulsion between the protons. In the Bethe-Weizsäcker mass
formula the proportionality to Z(Z − 1) is assumed.

The pairing energy has been calculated using

Epair = −ap/A1/2 for odd Z, odd N nuclei,

Epair = 0 for odd A, (5)

Epair = ap/A1/2 for even Z, even N nuclei.

The ap = 11 value has been adopted following first fits. Other
more sophisticated expressions exist for the pairing energy
[4,6].

The sign for the shell energy term comes from the adopted
definition in Ref. [5]. It gives a contribution of 12.84 MeV
to the binding energy for 208Pb for example. The curvature
energy akA

1/3 is a correction to the surface energy appearing
when the surface energy is considered as a function of local
properties of the surface and consequently depends on the
mean local curvature. The a0A

0 term appears when the surface
term of the liquid drop model is extended to include higher
order terms in A−1/3 and I. The last but one term is a proton
form-factor correction to the Coulomb energy which takes
into account the finite size of the protons. The last term is
the Wigner energy [4,20] which appears in the counting of
identical pairs in a nucleus, furthermore it is clearly called for
by the experimental masses.

In Table I the improvement of the experimental data
reproduction when additional terms are added to the three basic
volume, surface and Coulomb energy terms is displayed when
the nuclear radius is calculated by the formula R0 = r0A

1/3.
The root-mean-square deviation, defined by

σ 2 = �
[
MT h − MExp

]2

n
, (6)

has been used to compare the efficiency of these different
selected sets of terms.

To follow the nonsmooth variation of the nuclear masses
with A and Z the introduction of the shell energy is obviously
needed as well as that of the pairing term though its effect is
smaller. The curvature term and the constant term taken alone
do not allow to better fit the experimental masses while the
proton form factor correction to the Coulomb energy and the

Wigner term have separately a strong effect in the decrease
of σ . When both these two last contributions to the binding
energy are taken into account σ = 0.58 MeV which is a very
satisfactory value [4,8,20]. The addition to the proton form
factor and Wigner energy terms of the curvature energy or
constant terms taken separately or together does not allow
to improve σ . Furthermore, a progressive convergence of ak

and a0 is not obtained and strange surface energy coefficients
appear. Due to this strong variation and lack of stability of the
curvature and constant coefficient values it seems preferable
to neglect these terms since the accuracy is already correct
without them. Disregarding the last line a good stability of the
volume av and asymmetry volume kv constants is observed.
The variation of the surface coefficient is larger but as reaches
a maximum of only 18 MeV. As is well known the surface
asymmetry coefficient ks is less easy to predict. Invariably r0

has a value of around 1.22 fm within this approach.
For the Bethe-Weizsäcker formula the fitting procedure

leads to

Bnucl(A,Z) = 15.7827A − 17.9042A2/3 − 0.72404

× Z(Z − 1)

A1/3
− 23.7193I 2A + Epair − Eshell

(7)
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FIG. 1. Difference (in MeV) between the theoretical and experi-
mental masses for the 1522 nuclei as a function of the mass number.
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TABLE II. Dependence of the energy coefficient values (in MeV) on the selected term set including or not the pairing and shell energies
and the corresponding root mean square deviations. The Coulomb energy coefficient is not adjusted and is determined by 3

5
e2Z2

1.28A1/3−0.76+0.8A−1/3 .

av kv as ks ak a0 fp W Pairing Shell σ

15.9622 1.7397 18.0108 1.0627 — — — — n n 3.12
15.8809 1.7201 17.5366 0.8234 — — — — n y 1.56
15.8846 1.7256 17.5547 0.8475 — — — — y y 1.32
15.8533 1.8937 17.2793 1.9924 — — — 44.4714 y y 1.04
15.5887 1.8011 18.194 1.7271 — — −1.98718 — y y 0.83
15.6089 1.9136 17.9021 2.4111 — — −1.69912 32.1647 y y 0.599
15.5833 1.8988 17.726 2.3495 0.433 — −1.73074 29.8599 y y 0.598
15.5996 1.9061 17.8631 2.3757 — 0.3146 −1.71583 31.0077 y y 0.599
15.3737 1.8892 14.9364 2.5745 12.418 −16.7906 −1.71391 27.8208 y y 0.58

with σ = 1.17 MeV. That leads to r0 = 1.193 fm and kv =
1.505. The nondependence of the surface energy term on the
relative neutron excess I explains the σ value.

The formula R0 = r0A
1/3 does not reproduce the small

decrease of the density with increasing mass [20]. In previous
works [13–18] the formula

R0 = 1.28A1/3 − 0.76 + 0.8A−1/3 (8)

proposed in Ref. [21] for the effective sharp radius has been
retained to describe the main properties of the fusion, fission,
cluster and α emission potential barriers in the quasi-molecular
shape path. It leads for example to r0 = 1.13 fm for 48Ca and
r0 = 1.18 fm for 248Cm. The fit of the nuclear binding energy
by the expression (6) is reconsidered in Table II in calculating
the Coulomb energy by the formula 3

5
e2Z2

1.28A1/3−0.76+0.8A−1/3

without an adjustable parameter. The behavior of the different
combinations of terms is about the same as in Table I. It
seems also preferable to disregard the curvature and constant
contributions. Then σ takes the value 0.60 MeV to be

compared to 0.58 MeV in the first table when the Coulomb
energy contains an additional adjustable parameter.

Figure 1 shows that the difference between the theoretical
and experimental masses never exceeds 2.25 MeV and is
less than 1.15 MeV when A is higher than 100. In the
generalized liquid drop model [13,14] the selected values
are av = 15.494 MeV, as = 17.9439 MeV, kv = 1.8, and
ks = 2.6. They are close to the ones given σ = 0.60 MeV
in Table II.

As a conclusion, the most important result is that it is
possible to reproduce the nuclear masses in taken a realistic
formula for the effective sharp radius given R0/A

1/3 = 1.1 fm
for the lightest nuclei and 1.18 fm for the heaviest ones while
the surface energy coefficient remains around 18 MeV and the
surface-asymmetry coefficient around 2.5. Besides the values
of the volume, surface, and Coulomb energy coefficients the
accuracy of the fitting depends also strongly on the selected
shell and pairing energies as well as on the proton form factor
and Wigner energy terms.

APPENDIX A: TABLE III

TABLE III. Theoretical shell energy (in MeV) extracted from [5] (seventh column) at the ground state of nuclei for which the half-life is
higher than 1 kyr.

10B 11B 12C 13C 14C 14N 15N 16O 17O 18O 19F 20Ne 21Ne 22Ne
2.36 0.74 −0.69 −1.03 −0.56 −1.33 −0.87 −0.45 1.19 1.3 2.76 2.81 2.82 2.19
23Na 24Mg 25Mg 26Mg 26Al 27Al 28Si 29Si 30Si 31P 32S 33S 34S 36S
2.22 1.64 1.77 0.64 1.89 0.79 −0.26 −0.25 0.22 0.22 0.66 0.86 1.13 1.22
35Cl 36Cl 37Cl 36Ar 38Ar 40Ar 39K 40K 41K 40Ca 41Ca 42Ca 43Ca 44Ca
1.32 1.48 1.40 1.57 1.64 2.45 1.79 2.58 2.58 1.71 2.49 2.49 2.16 1.7
46Ca 48Ca 45Sc 46Ti 47Ti 48Ti 49Ti 50Ti 50V 51V 50Cr 52Cr 53Cr 54Cr
0.69 −0.82 2.43 2.44 1.95 1.44 0.81 −0.05 0.54 −0.31 0.74 −0.69 −0.38 0.74
53Mn 55Mn 54Fe 56Fe 57Fe 58Fe 60Fe 59Co 58Ni 59Ni 60Ni 61Ni 62Ni 64Ni
−1.11 0.68 −1.54 0.05 0.72 1.22 2.07 0.77 −1.58 −0.68 −0.16 0.59 1.1 1.63
63Cu 65Cu 64Zn 66Zn 67Zn 68Zn 70Zn 69Ga 71Ga 70Ge 72Ge 73Ge 74Ge 76Ge
1.86 2.33 2.53 2.89 3.16 2.99 2.94 3.79 3.71 4.13 4.08 4.19 3.82 2.53
75As 74Se 76Se 77Se 78Se 79Se 80Se 82Se 79Br 81Br 80Kr 81Kr 82Kr 83Kr
4.08 4.42 4.08 4.06 3.27 2.87 1.89 0.38 4.07 2.28 4.39 3.77 2.74 1.65
84Kr 86Kr 85Rb 87Rb 86Sr 87Sr 88Sr 89Y 90Zr 91Zr 92Zr 93Zr 94Zr 96Zr

067302-3



BRIEF REPORTS PHYSICAL REVIEW C 73, 067302 (2006)

TABLE III. (Continued.)

0.96 −0.40 1.13 −0.35 0.79 0.05 −0.97 −1.19 −1.63 −0.47 0.46 1.53 2.54 3.49
92Nb 93Nb 94Nb 92Mo 93Mo 94Mo 95Mo 96Mo 97Mo 98Mo 100Mo 97Tc 98Tc 99Tc
−0.57 0.44 1.51 −2.12 −1.07 −0.12 0.97 1.79 2.46 2.98 3.62 1.26 2.05 2.64
96Ru 98Ru 99Ru 100Ru 101Ru 102Ru 104Ru 103Rh 102Pd 104Pd 105Pd 106Pd 107Pd 108Pd
−1.11 0.57 1.36 2.00 2.54 2.98 3.49 2.44 0.63 1.83 2.39 2.80 3.08 3.34
110Pd 107Ag 109Ag 106Cd 108Cd 110Cd 111Cd 112Cd 113Cd 114Cd 116Cd 113In 115In 112Sn
3.42 2.20 2.91 0.31 1.35 2.11 2.42 2.52 2.61 2.50 2.26 1.83 1.97 0.37
114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 120Sn 122Sn 124Sn 126Sn 121Sb 123Sb 120Te 122Te
0.81 1.03 0.94 0.96 0.75 0.70 0.19 −0.99 −2.51 −4.36 0.76 −0.16 2.08 1.55
123Te 124Te 125Te 126Te 128Te 130Te 127I 129I 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe
1.30 0.66 0.25 −0.62 −2.46 −4.74 0.35 −1.29 1.01 0.48 −0.31 −1.11 −2.36 −4.92
136Xe 133Cs 135Cs 132Ba 134Ba 135Ba 136Ba 137Ba 138Ba 137La 138La 139La 136Ce 138Ce
−7.2 −1.28 −3.90 0.93 −0.55 −1.45 −3.01 −4.18 −5.29 −2.22 −3.37 −4.50 0.70 −1.57
140Ce 142Ce 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 148Nd 150Nd 144Sm 146Sm 147Sm 148Sm
−3.86 −2.06 −3.26 −2.88 −2.14 −1.04 0.10 0.56 0.85 0.54 −2.28 −0.41 0.67 1.12
149Sm 150Sm 152Sm 154Sm 151Eu 153Eu 150Gd 152Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd
1.22 1.31 0.90 0.38 1.39 1.02 1.30 1.59 1.33 1.05 0.89 0.62 0.56 0.21
159Tb 154Dy 156Dy 158Dy 160Dy 161Dy 162Dy 163Dy 164Dy 165Dy 163Ho 165Ho 162Er 164Er
0.64 1.63 1.56 1.24 0.92 0.64 0.47 0.16 −0.06 −0.41 0.46 −0.12 1.20 0.70
166Er 167Er 168Er 170Er 169Tm 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb 175Lu 176Lu
0.07 −0.37 −0.54 −1.08 −0.60 0.32 −0.34 −0.76 −0.94 −1.32 −1.30 −1.74 −1.23 −1.62
174Hf 176Hf 177Hf 178Hf 179Hf 180Hf 182Hf 181Ta 180W 182W 183W 184W 186W 185Re
−0.38 −0.90 −1.33 −1.53 −1.97 −1.99 −2.16 −2.02 −1.21 −1.71 −2.00 −2.02 −2.38 −2.19
187Re 184Os 186Os 187Os 188Os 189Os 190Os 192Os 191Ir 193Ir 190Pt 192Pt 194Pt 195Pt
−2.48 −1.61 −1.88 −2.16 −2.08 −2.43 −2.47 −3.50 −2.54 −3.62 −0.97 −2.01 −3.31 −4.04
196Pt 198Pt 197Au 196Hg 198Hg 199Hg 200Hg 201Hg 202Hg 204Hg 203Tl 205Tl 202Pb 204Pb
−4.80 −6.11 −5.56 −4.51 −5.99 −6.75 −7.52 −8.37 −9.11 −10.69 −9.97 −11.58 −8.22 −10.02
205Pb 206Pb 207Pb 208Pb 208Bi 209Bi 226Ra 229Th 230Th 232Th 231Pa 233U 234U 235U
−11.00 −11.82 −12.68 −12.84 −11.70 −11.95 −0.30 −0.52 −0.43 −0.60 −0.79 −1.27 −1.23 −1.46
236U 238U 236Np 237Np 239Pu 240Pu 242Pu 244Pu 243Am 245Cm 246Cm 247Cm 248Cm 247Bk
−1.30 −1.27 −1.85 −1.74 −2.12 −1.95 −1.99 −2.08 −2.44 −3.05 −2.96 −3.17 −3.00 −3.46
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[4] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[5] W. D. Myers and W. J. Swiatecki, LBL Report 36803, 1994.
[6] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A601, 141 (1996).
[7] M. Samyn, S. Goriely, P.-H. Heenen, J. M. Pearson, and

F. Tondeur, Nucl. Phys. A700, 142 (2002).
[8] J. Rikovska Stone, J. Phys. G 31, R211 (2005).
[9] M. Bender et al., Phys. Lett. B515, 42 (2001).

[10] S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J. W.
Clark, Nucl. Phys. A743, 222 (2004).

[11] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337
(2003).

[12] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75,
1021 (2003).

[13] G. Royer and B. Remaud, J. Phys. G 10, 1057 (1984).
[14] G. Royer and B. Remaud, Nucl. Phys. A444, 477 (1985).
[15] G. Royer, J. Phys. G 26, 1149 (2000).
[16] G. Royer and R. Moustabchir, Nucl. Phys. A683, 182

(2001).
[17] G. Royer and K. Zbiri, Nucl. Phys. A697, 630 (2002).
[18] R. A. Gherghescu and G. Royer, Phys. Rev. C 68, 014315

(2003).
[19] S. Hofmann et al., Z. Phys. A 354, 229 (1996).
[20] W. D. Myers, Droplet Model of Atomic Nuclei (Plenum, New

York, 1977).
[21] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann.

Phys. (NY) 105, 427 (1977).

067302-4


