α decay of ²³⁸Cm and the new isotope ²³⁷Cm

M. Asai,^{1,*} K. Tsukada,¹ S. Ichikawa,¹ M. Sakama,² H. Haba,³ I. Nishinaka,¹ Y. Nagame,¹ S. Goto,⁴ Y. Kojima,⁵

Y. Oura,⁶ and M. Shibata⁷

¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

²Department of Radiologic Science and Engineering, The University of Tokushima, Tokushima 770-8509, Japan

³Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198, Japan

⁴Department of Chemistry, Niigata University, Niigata 950-2181, Japan

⁵Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

⁶Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

⁷Radioisotope Research Center, Nagoya University, Nagoya 464-8602, Japan

(Received 6 March 2006; published 20 June 2006)

Alpha decays of ²³⁷Cm and ²³⁸Cm have been studied using a gas-jet coupled on-line isotope separator. The new isotope ²³⁷Cm has been identified through the detection of $6656 \pm 10 \text{ keV} \alpha$ particles. The α energy of ²³⁸Cm has been revised more precisely than the previous one. The α transition to the first excited 2⁺ state in ²³⁴Pu has also been observed. It was found that the 2⁺ energy in ²³⁴Pu is much higher than those in heavier Pu isotopes.

DOI: 10.1103/PhysRevC.73.067301

PACS number(s): 21.10.Dr, 23.60.+e, 27.90.+b

Neutron-deficient Cm isotopes with a mass number smaller than 240 have been rarely studied because of small production cross sections, short half-lives of <3 h, and small α -decay branching ratios. The α decay of ²³⁸Cm was studied in 1952 by Higgins [1] using the ²³⁹Pu(α ,5n)²³⁸Cm reaction and a chemical separation technique. The 6.52(5) MeV α peak with a half-life of 2.3 h was observed, and the EC/ α branching ratio of 240±50 was estimated from the α decay rate and the disintegration rate measured by means of a windowless proportional counter. The EC decay of ²³⁹Cm ($T_{1/2} \approx 2.9$ h) was also measured in the 1950s although these data were not published [2]. Since then, no experimental study had been reported for neutron-deficient Cm isotopes.

Recently, new attempts to study neutron-deficient Cm isotopes were carried out; the α decays of ^{233,234}Cm were newly identified using the velocity filter SHIP at GSI [3], and the EC decay of ²³⁹Cm was measured with a chemical separation technique [4]. In this Brief Report, we have studied the α decays of ²³⁷Cm and ²³⁸Cm using an on-line isotope separator (ISOL). The ²³⁷Cm is a new isotope whose decay properties have never been measured. For 238 Cm the α energy was reported but its accuracy is insufficient especially to establish excited states in the daughter nucleus, which could reveal collective properties of the nuclei in this region. The ISOL is very powerful to study EC and α decays of shortlived actinide nuclei with small α -decay branching ratios as demonstrated in our previous articles [5–10]. The preliminary results of ²³⁷Cm and ²³⁸Cm were also reported in Refs. [5–7]. The nuclei ²³⁷Cm and ²³⁸Cm were produced by the 237 Np(⁶Li, *xn*) reaction using the 20-MV tandem accelerator at the Japan Atomic Energy Agency (JAEA). A stack of 21 ²³⁷Np targets set in a multiple-target chamber with 5-mm spacings was bombarded with a ⁶Li beam of about 300 particle-nA intensity. Each target was electrodeposited on a 0.8-mg/cm² thick aluminum foil with an effective target thickness of about

100 μ g/cm². The energy of the ⁶Li beam was 52–59 MeV on targets for the production of ²³⁷Cm and 41–48 MeV for ²³⁸Cm. Reaction products recoiling out of the targets were stopped in He gas loaded with PbI₂ clusters and transported into an ion source of the ISOL with gas-jet stream through an 8-m long capillary. Atoms ionized in the surface ionization-type thermal ion source were accelerated with 30 kV and mass-separated with a resolution of $M/\Delta M \sim 800$. Details of the gas-jet coupled ISOL system are described in Ref. [5].

For ²³⁸Cm, the separated ions were implanted into an aluminum-coated Mylar tape in a tape transport system that periodically moved the implanted sources to seven consecutive detector stations at 3000-s intervals. Each of the detector stations was equipped with a Si PIN photodiode detector $(18 \times 18 \text{ mm}^2 \text{ active area})$ to detect α particles. The distance between the tape and the Si surface was 1.7 mm. The γ -ray measurement was also performed using a different experimental setup with a short coaxial Ge detector (ORTEC LOAX). For ²³⁷Cm, the separated ions were directly implanted into a Si detector. This setup was used to identify α particles of ²³⁷Cm. The half-life measurement for ²³⁷Cm was also performed using the tape transport system, although we could not obtain enough statistics to extract its decay rate. The energy calibration of the Si detectors was carried out before and after the experiments using mass-separated 221 Fr and its α -decay daughters ²¹⁷At and ²¹³Po, which were implanted into the tape or the Si detector by the present ISOL system. The energy resolution of the Si detectors was 27-35 keV (FWHM) for the 7067-keV α particles. All the data were recorded event by event together with time information.

Figure 1(a) shows an α -particle spectrum of the mass-237 fraction measured for 45 h. Three weak α peaks were observed at 5767(15), 6043(10), and 6656(10) keV in addition to a very intense peak of ²³⁷Np that originates from the target material sputtered by the ⁶Li beam. These α energies were determined with the maximum-likelihood method using an α peak shape of ²¹⁷At as a response function. The 5767- and 6043-keV peaks are attributed to the α decay of ²³⁶Pu and ²³⁷Am because

^{*}Electronic address: asai.masato@jaea.go.jp

FIG. 1. α -particle spectra for the (a) mass-237 and (b) mass-238 fractions.

their energies are in excellent agreement with the literature values of 5767.66(8) and 6042(5) keV, respectively [11]. The appearance of ²³⁶Pu in the mass-237 fraction results from the small contamination by adjacent mass fractions. Taking into account the mass resolution of the present ISOL system, about 0.2% of mass-separated ²³⁶Pu may be observed in the mass-237 fraction [5]. To confirm the mass identification of the observed α peaks, the adjacent mass fractions of 236 and 238 were measured with the same experimental setup. The 6043and 6656-keV α peaks were observed only in the mass-237 fraction, indicating that these transitions are attributable to the α decay of A = 237 nuclei. The present reaction can produce only $Z \leq 96$ nuclei, and α -decay energies of the A = 237 nuclei with $Z \leq 95$ are well known [11]. Therefore, the unknown α transition of 6656 keV is attributed to the α decay of the new isotope ²³⁷Cm.

An α -particle spectrum of the mass-238 fraction is shown in Fig. 1(b). The measured α peaks at 5501(13) and 6558(10) keV are associated with the α decay of ²³⁸Pu and ²³⁸Cm, respectively. The half-life of ²³⁸Cm was determined to be 2.2(4) h from the decay curve of the 6558-keV α particles as shown in Fig. 2. This value is in good agreement with the literature value of 2.3 h [1]. The α energy of ²³⁸Cm was revised more precisely than the literature value of 6520(50) keV [1]. The 6558-keV α line is considered to be the transition between the ground states because ²³⁸Cm is an even-even nucleus. In addition to this transition, another weak α component was found at 6503(11) keV by subtracting the single α component of 6558 keV from the measured spectrum; the α energy spectrum of ²¹⁷At was used as a response function for the single α transition. This α component is considered to be the transition to the first excited 2^+ state in 234 Pu. The energy difference between these α transitions was determined to be 55(7) keV, which revealed that the energy of the first excited 2^+ state in 234 Pu is 56(7) keV. The measured intensity of the 6503-keV α component was 14(3)% for total α intensity. This intensity is strongly affected by the

FIG. 2. Decay curve for the α particles of ²³⁸Cm.

coincidence summing effect between the 6503-keV α particles and following low-energy electrons. It is estimated that about 40% of the 6503-keV α intensity should be observed at higher energy than 6503 keV by more than 20 keV, which leads to the corrected α intensity of 23(6)% for the 6503-keV transition. This intensity is consistent with those of other Cm isotopes; the α decays of ^{240,242,244,246}Cm also show similar intensities of 29, 25, 24, and 18% for the transitions to the first excited 2⁺ state, respectively [11].

In the atomic mass evaluations by Audi *et al.* [12], the Q_{α} value of 6805(216) keV was estimated for ²³⁷Cm from systematic trends of atomic masses. This Q_{α} value corresponds to the α energy of 6690 keV for the transition between the ground states, which is in good agreement with the measured α energy of 6656 keV, although the level energy in ²³³Pu populated by the 6656-keV α transition is not known. Energy systematics of the Nilsson orbitals in N = 139 and 141 isotones suggest that the ground-state configuration of ²³⁷Cm₁₄₁ would be 5/2⁺[633] as is the same as those in the isotones [9] and that the 5/2⁺[633] state in ²³³Pu₁₃₉ would be located at very low energy; it is the ground state in ²²⁹Th₁₃₉ and

FIG. 3. α -decay partial half-lives of even-even Pu and Cm isotopes as a function of Q_{α} values corrected for the electron screening.

FIG. 4. Energies of the first excited 2^+ states in even-even Th, U, and Pu isotopes as a function of the neutron number.

at 1.7 keV in 227 Ra₁₃₉ [11]. Thus, the 6656-keV α transition of 237 Cm would probably populate the low-energy level in 233 Pu.

The EC/ α branching ratio of ²³⁸Cm could not be determined in the present experiments, because very intense Pu K x rays associated with the EC and β^- decays of ²³⁸Am and ²³⁸Np prevented the observation of weak Am K x rays from the EC decay of 238 Cm. To estimate the EC/ α branching ratio of 238 Cm, the partial half-life of the α transition is estimated from the semiempirical relationship between half-lives and Q_{α} values [8,13]. As shown in Fig. 3, experimental partial half-lives of the ground-state-to-ground-state α transitions in even-even isotopes are fitted well with the following equation: log $T_{1/2} = a Q_{\alpha}^{-1/2} + b$, where *a* and *b* are fitted parameters and the Q_{α} value is corrected for the electron screening by adding $\Delta E_{\rm SC} = (6.5 \times 10^{-2}) Z^{7/5}$ keV [13]. For Cm (Z = 96) isotopes, a = 4768 and b = -52.97 are obtained. The partial half-life of the 6558-keV α transition is calculated to be 1.8×10^5 s, which leads to the EC/ α branching ratio of 16 for 238 Cm. Higgins [1] reported the EC/ α branching ratio of 240 ± 50 for 238 Cm. This value is much larger than the estimated one, as is also suggested in Ref. [14].

For the 6656-keV α transition in ²³⁷Cm, the partial half-life of 6.6 × 10⁴ s is estimated as well through the assumption that this α transition is a favored one with a hindrance factor of 1.0. A theoretical half-life of the EC decay of ²³⁷Cm is 3.98 min [15]. Using these values and taking into account a large uncertainty of factor 2–3 for the theoretical half-life, the α branching of ²³⁷Cm is estimated to be less than 1%.

Energies of the first excited 2^+ states in even-even Th, U, and Pu isotopes [11] are plotted in Fig. 4. The 2⁺ energies of Th and U isotopes decrease with increasing neutron number and becomes almost constant in the $N \ge 142$ region. This trend is simply explained as the quadrupole deformation increases with the neutron number far away from the N = 126 closed shell and becomes the maximum around the midshell region. Although the 2^+ energy of 234 Pu deduced in the present work has a large uncertainty, this energy is apparently higher than those in heavier Pu isotopes, which is consistent with the trend of Th and U isotopes. On the other hand, it is also interesting to see the order of the 2^+ energies among Th, U, and Pu isotopes with the same neutron number. The present 2^+ energy of 56(7) keV seems higher than that of 232 U, but its accuracy is insufficient to clarify it. More precise determination of the 2^+ energy is desired to reveal collective properties of these actinide nuclei.

In conclusions, the new isotope ²³⁷Cm has been identified, and the α energy of ²³⁸Cm has been revised more precisely than the previous value, from 6520(50) keV to 6558(10) keV. The α transition to the first excited 2⁺ state in ²³⁴Pu has also been observed. The measured α energy of 6656(10) keV in ²³⁷Cm is consistent with the Q_{α} value estimated from the systematic trends of atomic masses. The 2⁺ energy in ²³⁴Pu was found to be much higher than those in heavier Pu isotopes.

We acknowledge the crew of the tandem accelerator for generating an intense and stable ⁶Li beam. This work was partly supported by the JAERI-University Collaborative Research Project.

- G. H. Higgins, Thesis, University of California, 1952, Report No. UCRL 1796.
- [2] E. Browne, Nucl. Data Sheets 98, 665 (2003).
- [3] P. Cagarda, S. Antalic, D. Ackermann, F. P. Heßberger, S. Hofmann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, A. G. Popeko, Š. Šáro, J. Uusitalo, and A. V. Yeremin, GSI-Report 2002-1, 2002, p. 15.
- [4] N. Shinohara, Yu. N. Novikov, G. Münzenberg, H. Wollnik, Y. Hatsukawa, M. Asai, K. Tsukada, A. Osa, M. Oshima, H. Haba, S. Ichikawa, Y. Nagame, A. V. Popov, and D. M. Seliverstov, JAERI-Review 2002-029, 2002, p. 45.
- [5] S. Ichikawa, K. Tsukada, M. Asai, H. Haba, M. Sakama, Y. Kojima, M. Shibata, Y. Nagame, Y. Oura, and K. Kawade, Nucl. Instrum. Methods Phys. Res. B 187, 548 (2002).
- [6] M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, K. Akiyama, A. Toyoshima,

Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, and K. Kawade, J. Nucl. Radiochem. Sci. **3**, 187 (2002).

- [7] Y. Nagame, M. Asai, H. Haba, K. Tsukada, I. Nishinaka, S. Goto, A. Toyoshima, K. Akiyama, M. Sakama, Y. L. Zhao, S. Ichikawa, and H. Nakahara, Phys. At. Nucl. 66, 1131 (2003).
- [8] M. Sakama, M. Asai, K. Tsukada, S. Ichikawa, I. Nishinaka, Y. Nagame, H. Haba, S. Goto, M. Shibata, K. Kawade, Y. Kojima, Y. Oura, M. Ebihara, and H. Nakahara, Phys. Rev. C 69, 014308 (2004).
- [9] M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, and K. Kawade, Eur. Phys. J. A 22, 411 (2004).
- [10] M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, and K. Kawade, Eur. Phys. J. A 23, 395 (2005).

- [11] Table of Isotopes, 8th ed., edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996).
- [12] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A729, 3 (2003).
- [13] J. O. Rasmussen, in *Alpha-, Beta-, and Gamma-ray Spec*troscopy, edited by K. Siegbahn (North Holland, Amsterdam, 1966), p. 701.
- [14] F. E. Chukreev, V. E. Makarenko, and M. J. Martin, Nucl. Data Sheets 97, 129 (2002).
- [15] T. Tachibana and M. Yamada, in *Proceedings of the International Conference on Exotic Nuclei and Atomic Masses, Arles, 1995* (Editions Frontières, Gif-sur-Yvette, 1995), p. 763; T. Horiguchi, T. Tachibana, H. Koura, and J. Katakura, *Chart of the Nuclides* 2004 (Japan Atomic Energy Research Institute, 2004).