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By looking at the parity-nonconserving (PNC) asymmetries for different energies in �pp scattering, it is in
principle possible to determine the PNC ρNN and ωNN couplings of a single-meson-exchange model of the
PNC NN force. Analysis of the experimental data at 13.6, 45, and 221 MeV was performed by Carlson et al.,
[Phys. Rev. C 65, 035502 (2002)] who concluded the data were in agreement with the uncertainties accorded the
original DDH estimates for the PNC meson-nucleon couplings. In this work it is shown first that a comparison with
updated hadronic predictions of these couplings suggests the existence of some discrepancy for the PNC ωNN

coupling. The effect of varying the strong coupling constants and introducing cutoffs in the one-boson-exchange
weak potential is then investigated. As expected, the resulting asymmetry is quite sensitive to these parameters
regardless of the energy. However, the above mentioned discrepancy persists. The dependence of this conclusion
on various ingredients entering an improved description of the PNC NN force is also examined. Additional
mechanisms include the two-pion resonance nature of the rho meson and some momentum dependence of the
isoscalar PNC ρNN vertex. None of these corrections removes or even alleviates the above discrepancy. Their
impact on the theoretical determination of the vector meson-nucleon couplings, the description of the PNC force
in terms of single-meson exchange, and the interpretation of measurements are examined.
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I. INTRODUCTION

It has been proposed that measurements of the parity-
nonconserving (PNC) longitudinal asymmetry in �pp scatter-
ing at different energies could provide a way to disentangle
the separate contributions to the PNC NN force due to ρ- and
ω-meson exchanges [1]. For some time, accurate measure-
ments were available only at the low energies of 13.6 MeV [2]
and 45 MeV [3]. Only recently a measurement, though less
accurate, was finished at the higher energy of 221 MeV [4],
which makes the above analysis possible. This task was
done by Carlson et al. [5], who claimed that the results so
obtained do not disagree with the largest range estimated by
Desplanques, Donoghue, and Holstein (DDH) [6]. A rough
understanding of the analysis is as follows. At the highest
energy (221 MeV), where the contribution of the S to P
NN states vanishes, the dominant contribution comes from
the P to D transition. The corresponding ω-meson-exchange
contribution is suppressed. As a result, this point allows one to
fix the ρNN coupling, hpp

ρ . Looking at the low-energy points,
it is found that the ρ-exchange force so derived generates PNC
asymmetries larger than those measured. Accounting for the
experiments is accomplished by fitting the part of the force
due to ω-meson exchange, which fixes the ωNN coupling,
h

pp
ω . In the absence of experimental error, h

pp
ω appears to

have a positive sign, opposite the negative sign of the DDH
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“best-guess” value, and a magnitude at the extreme limit of
the DDH estimated range.

Besides the DDH work, there are many predictions for
PNC meson-nucleon couplings in the literature. Most of them
correspond to contributions already included in the DDH
work (see Ref. [7] for references). Two updated ranges for
the PNC couplings are given in Refs. [8,9], and they do
not leave much room for a positive value of the ωNN

coupling. This makes it more difficult to accommodate the
value derived from the analysis by Carlson et al. [5]. Moreover,
as especially noted by Feldman et al. [9], predictions for ρ and
ω couplings are not independent of each other. According to
this observation, a larger h

pp
ω would imply an h

pp
ρ algebraically

larger than the DDH “best-guess” value, rather than smaller
as found in the analysis by Carlson et al. [5]. An approach
quite different from DDH was taken by Kaiser and Meissner
[10], who used the chiral-soliton model. Their predictions
differ from the “best-guess” values but nevertheless fit into
the estimated range. Actually, they could be approximately
obtained from the DDH work by weighting differently the
various contributions considered there and taking into account
the specific dependence of the coupling constants on the meson
squared momentum, q2. While the DDH estimates are, in
principle, made at the meson mass (q2 = m2), Kaiser and
Meissner’s estimates are given at q2 = 0. The momentum
dependence, which was accounted for very roughly in the DDH
work, has been looked at in detail by Kaiser and Meissner in
their framework [11]. It is found to be especially important for
the isoscalar PNC ρNN coupling.

From looking at the different hadronic predictions, it
appears very unlikely that h

pp
ω can acquire a positive value.

But, before jumping to the speculate about what could go
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wrong in these hadronic calculations, it is important to check
the analysis which depends quite sensitively on various issues
in the two-nucleon dynamics. In the past, many of these
issues have been surveyed by Simonius [1], Nessi-Tedaldi
and Simonius [12], Driscoll and Miller [13,14], and Carlson
et al. [5]. The aim of this current work is to study whether
there is some missing two-nucleon dynamics, besides that
considered previously, which could possibly restore h

pp
ω to

more conventional values anticipated by existing hadronic
calculations.

On the basis of the DDH “best-guess” values of meson-
nucleon couplings, it is generally considered that the con-
tribution to PNC effects in �pp scattering is dominated by
ρ-meson exchange. Although the contributions from ω-meson
exchange are not negligible at low energy, they only constitute
about a 20% or −30% correction, based on the DDH “best-
guess” values or the fitted values by Carlson et al. It is
therefore appropriate to concentrate on the ρ-meson-exchange
contribution as a first step. Taking into account the uncertainty
of the ρNN coupling, one can temporarily fix h

pp
ρ to reproduce

the low-energy measurements, which are the most accurate.
When this is done, it is found that the measured asymmetry
at the highest energy point (221 MeV) is off by a factor
of about 2. Therefore, any effect that could enhance the
transition from P to D states (dominant for 221 MeV) with
respect to the one from S to P states (dominant for 13.6
and 45 MeV) is of relevance for our purpose. Possibilities
include: (1) a larger vector-meson tensor coupling κV [15],
(2) hadronic form factors at the strong-interaction vertex, (3)
the two-pion resonance nature of the rho meson [16] and (4)
the momentum dependence of the weak meson-nucleon vertex
[7,11]. For the last three cases, the enhancement can be naively
expected from the resulting longer range of the PNC NN
force, which generally favors transition amplitudes involving
higher orbital angular momenta. However, it should be noted
that the first and third cases may not be independent [15].
For the parity-conserving (PC) NN force, we use the AV18
model [17].

This paper is structured as follows. In Sec. II, the definition
of the PNC longitudinal asymmetry and its analytic form are
given. In Sec. III, we concentrate on the description of the PNC
vector-meson-exchange potential, especially for the ρ-meson
part. This involves standard variations of this potential but also
less-known ones. We show in detail how the standard meson-
exchange potential is extended to incorporate the 2π -exchange
contribution and the form factor of the PNC vertex. The
asymmetries resulting from different variations of two-nucleon
dynamics are presented in Sec. IV. Their implications are
discussed and new values of the weak couplings are obtained
from a least-χ2 fit to the measurements. The conclusion
follows in Sec. V.

II. BASIC FORMALISM

The longitudinal asymmetry for nucleon scattering, with an
incident energy E and a scattering angle θ , is defined as

AL(E, θ ) = σ+(E, θ ) − σ−(E, θ )

σ+(E, θ ) + σ−(E, θ )
, (1)

where σ+ and σ− are differential cross sections for projectiles
of positive and negative helicities, respectively. In theoretical
analyses, however, it is the so-called “nuclear” total asymme-
try, Atot

L (E), that is often used [1,5,12,13,18,19]. For processes
involving Coulomb interactions, such as �pp scattering in this
discussion, the total asymmetry is in fact ill-defined, because
total cross sections diverge. The remedy is to remove the
pure Coulomb contribution from the total cross section: by
the optical theorem, the total cross section can be related to
the forward scattering amplitude f̄ (E, θ = 0) as

σ tot = 4π

k
Im[f̄ (E, θ = 0)], (2)

where k is the relative momentum. One can then subtract the
pure Coulomb scattering amplitude fC , which is singular at
θ = 0, and use the remaining regular “nuclear” scattering
amplitude, f = f̄ − fC , to define Atot

L (E).
After the spin sums are carried out, the “nuclear” total

asymmetry for �pp scattering takes the following form:

Atot
L (E) = Im[f̃ 10,00(E, 0) + f̃ 00,10(E, 0)]

Im
[∑

S,MS

fSMS,SMS
(E, 0)

] , (3)

where the subscripts S ′M ′
S, SMS denote the final and initial

two-body spin states, respectively. The notation f̃ is used
to remind a PNC scattering amplitude: in order to maintain
the Pauli principle for a pp system, a spin change must be
accompanied by an orbital angular momentum change, that is,
a parity change, too.

In this work, we treat the PNC interaction, VPNC , as
a perturbation. The unperturbed wave functions are solved
numerically from the Lippmann-Schwinger equation

|ψ〉(±) = |φ〉(±) + 1

E − H0 − VC ± iε
VS |ψ〉(±), (4)

where VC and VS are the Coulomb and strong interactions,
respectively; and |φ〉(±) is the solution of Coulomb scattering.

The PC scattering amplitude is given by the following
formula:

fS ′M ′
S ,SMS

(E, θ ) =
√

4π
∑
JLL′

√
2L + 1εL′S ′εLS

×〈L′(MS − M ′
S), S ′M ′

S |JMS〉
×〈L0, SMS |JMS〉YL′(MS−M ′

S )(θ )eiσL′

×SJ
L′S ′,LS(k) − δL′,LδS ′,S

ik
eiσL , (5)

where εLS enforces the Pauli principle: L+S has to be even; σL

is the Coulomb phase shift for the L-wave, and the S-matrix
element SJ

L′S ′,LS can be determined from the corresponding
“nuclear” partial-wave phase shifts.

The PNC scattering amplitude is calculated by the distorted-
wave Born approximation (DWBA)

f̃ S ′M ′
S ,SMS

(E, θ ) = − µ

2π

(∓)〈�k′
, S ′M ′

S |VPNC |kẑ, SMS〉(±),

(6)
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where | �k′| = |�k|, k̂′ · k̂ = cosθ , and µ = mp/2 is the reduced
mass. Comparing two recent works, Refs. [13] and [5], with the
former using DWBA and the latter being numerically exact,
treating VPNC as a first-order perturbation is a well-justified
approximation.

It should be noted that Atot
L , though being well-defined and

easily calculable, is not a quantity which an experiment directly
measures. There are two major setups for �pp scattering: the
scattering-type (for low-energy protons like Refs. [2,3]) and
the transmission-type (for high-energy protons like Ref. [4])
experiments. The former one measures the weighted, average
asymmetry within a selected angular range [θ1, θ2]. The
latter measures the total asymmetry greater than a critical
angle θc, as the beam in the angular range of [0, θc] is
extracted to analyze the transmission rate so that the total cross
section between [θc, π ] can be inferred. Since none of these
experiments has full angular coverage and is able to turn off
the Coulomb interaction, some theoretical correction is needed
when converting an experimental asymmetry to Atot

L . For these
issues, we refer readers to Refs. [5,13] and publications of
individual experiments for more details.

III. THE VECTOR-MESON EXCHANGE POTENTIAL

The one-meson-exchange PNC NN potential, often used
in the literature, refers to the expression given in Ref. [6]. For
a pp (nn) system, where only ρ and ω mesons contribute, this
potential can be generalized to the following form:

V
pp(nn)
PNC (r) = − gρNN

mN

(
h0

ρτ 1 · τ 2 + h1
ρ

2

(
τ z

1 + τ z
2

)

+ h2
ρ

2
√

6

(
3τ z

1 τ z
2 − τ 1 · τ 2

) )

×
(

(σ 1 − σ 2) · { p, fρ+(r)}
− (σ 1 × σ 2) · r̂fρ−(r)

)

− gωNN

mN

(
h0

ω + h1
ω

2

(
τ z

1 + τ z
2

) )

×
(

(σ 1 − σ 2) · { p, fω+(r)}
− (σ 1 × σ 2) · r̂fω−(r)

)
, (7)

where mN represents the nucleon mass, and gxNN ’s and hi
x’s

denote respectively the strong and the weak meson-nucleon
coupling constants for the meson x and isospin i.1

The radial functions fx±(r) contain important information
about the meson-exchange mechanism such as its range and
vertex form factor, and will be the main variable to be studied
in this work. In the original DDH model, where a point-like
(“bare”) meson-nucleon vertex is assumed, they are simply

1We notice that the strong and weak couplings are phase depen-
dent. The convention retained here, usually employed in the field,
corresponds to positive values of the former ones when the fx±(r)
functions are given by the Yukawa-like functions given in Eqs. (8)
and (9).

TABLE I. Weak coupling constants in units of 10−7.

hpp
ρ hpp

ω

DDH [6] −15.5 −3.04
adj. [5] −22.3 +5.17

related to the Yukawa function fx(r) as

f bare
x+ (r) = fx(r) ≡ e−mxr

4πr
, (8)

r̂f bare
x− (r) = −i(1 + κx)[ p, fx(r)], (9)

where κx is the strong tensor meson-nucleon coupling with
κρ,ω = κV,S (V for isovector and S for isoscalar) respectively.
Modifications of the above standard PNC potential to be
considered in this work include: (1) variations of the tensor
coupling κV and the introduction of cutoff form factors at the
meson-nucleon vertices, (2) the description of the ρ-meson as
a two-pion resonance, and (3) specific PNC meson-nucleon
vertices. All these changes involve different forms of fx±(r)
which will be precised in the following subsections. We also
note that fx±(r) can have isospin dependence—though it is not
manifest in Eq. (7)—and a superscript denoting the isospin will
be added whenever more clarification is necessary.

When fx±(r) does not have isospin dependence, the isospin
matrix elements can be easily evaluated and this gives rise to
a V

pp

PNC depending on two combinations of the weak-coupling
constants

hpp
ρ = h0

ρ + h1
ρ + h2

ρ/
√

6, (10)

hpp
ω = h0

ω + h1
ω, (11)

and their numbers to be used in our analysis are given in Table I.
The set denoted by DDH corresponds to the DDH “best-guess”
values [6]. As is known, it roughly accounts for the PNC
asymmetries measured at low energy (13.6 and 45 MeV). It
could miss however the high-energy asymmetry at 221 MeV as
reminded in the introduction (see detailed results in Sec. IV A
and Table IV). The other set, “adj.”, was fitted by Carlson
et al. [5] to the experimental values of AL at the three above
energies. Since then, it has been used to make predictions
for PNC effects in the np system [20], showing in some cases
significant differences from the DDH “best-guess” predictions,
especially for the PNC mixing parameter relative to the 1S0 −
3P0 transition, ε0.

A. Strong coupling constants and monopole form factors

In the analysis by Carlson et al. [5], while various modern
strong potentials were used to examine the model dependence,
the strong coupling constants, gρNN, gωNN, κV , and κS , and
the meson-exchange dynamics were fixed to the CD-Bonn
model [21]. The introduction of monopole form factors at both
the strong and weak meson-nucleon vertices—to be consistent
with the Bonn model—results in a modified radial function
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TABLE II. Sets of the strong coupling constants. The cutoffs ρ

and ω are in units of GeV.

gρNN gωNN κV κS ρ ω

S1 2.79 8.37 3.70 −0.12 – –
S2 2.79 8.37 6.10 0 – –
S3 2.79 8.37 3.70 −0.12 1.31 1.50
S4 3.25 15.58 6.10 0 1.31 1.50

in V
pp

PNC :

f mono
x+ (r) = e−mxr

4πr
− e−xr

4πr

[
1 + 1

2
xr

(
1 − m2

x

2
x

)]
, (12)

r̂f mono
x− (r) = −i(1 + κx)

[
p, f mono

x+ (r)
]
, (13)

where x is the momentum cutoff for x-meson exchange. The
values of these parameters are given in the row S4 of Table II.
We note that, as suggested by Miller [22], this parameter
set, particularly with a large isovector tensor coupling, κV ,
enhances the anapole moment of 133Cs, requiring a value of
the πNN coupling, h1

π , more consistent with expectations or
with the absence of effect in 18F [23].

In order to explore the role of the strong coupling constants
and the cutoff values, we consider three additional sets,
denoted by S1, S2, and S3 in Table II. The set S1 corresponds
to strong coupling constants we have been using in our
previous works on PNC problems [24,25]. It involves values
of κV = 3.7 and κS = −0.12 that are favored by the vector
meson dominance. The set S2 mainly differs from the set S1 by
a larger value of κV = 6.1. This value came from an analysis
of pion-nucleon scattering by Höhler and Pietarinen [15], and
was adopted in the Bonn model. The set S3 corresponds to a
modified set S1 by introducing the same monopole form factor
as Ref. [5]. The consideration of sets S1, S2, and S3 is useful in
that the comparison between S1 and S2 gives the dependence
on the tensor coupling constants, and the comparison between
S1 and S3 shows the role of the hadronic form factors.

Among the different sets considered here, it is not clear at
first sight which one is the most realistic [22], and comments
with this respect should be done. In absence of information, it
seems reasonable to rely on the parameters fixed by some NN
interaction model. However, they might possibly account for
physics different from that one they are supposed to describe.
It has been shown that the large gωNN in potential models,
like the one in line S4 of Table II, could actually simulate a
coherent contribution of bare-ω exchange (with a coupling of
the size given in the other lines) and ρπ exchange [26]. On the
other hand, accounting for hadronic form factors sounds also
reasonable at first, but a dispersion approach to the derivation
of the NN interaction ignores them by definition. Since form
factors imply that the particles have inner structure, their
excitations should be considered for consistency. As a matter of
fact, there are cases that can be worked out where both effects
cancel. This indicates that caution is required in dealing with
form factors. Finally, the term involving the tensor coupling
is expected to be associated with a hadronic form factor that
drops faster than for the other terms, which is most often
ignored.

In the following subsection, we present an improved
description of the ρ-exchange contribution. It, in particular,
involves the physics underlying the increase of κV from 3.7
to 6.1, while providing hadronic form factors (including the
faster drop-off of the form factor associated with κV ).

B. Two-pion exchange contribution

In order to account for the two-pion resonance nature of the
ρ meson, we follow the work presented in Ref. [16] based on
dispersion relations. In this formalism, only stable particles are
involved and the ρ meson appears indirectly in the transition
amplitude, NN̄ → ππ , through its propagator. To satisfy
unitarity, the width of the ρ meson has to be accounted for, and
this leads to the modification of the free-particle propagator

1

m2
ρ − t ′

→ 1

m2
ρ − t ′ + iγ q3(t ′)

, (14)

where γ is related to the ρ-meson decay width �ρ by

�ρ = γ q3
(
m2

ρ

)
/mρ, (15)

q(t ′) is defined as

q(t ′) =
√

t ′

4
− m2

π , (16)

and t ′ represents the invariant squared mass of the two-pion
system in the t-channel of the NN amplitude, on which the
integral in the dispersion relation is performed. The above
amplitude has to be completed for its PC part by a background
contribution involving the exchange in the t-channel of the
nucleon and the � or N∗ resonances (collectively denoted
as N∗ in the following, in absence of ambiguity). The
corresponding PNC part is ignored as it involves new but
essentially unknown parameters.

The next step is to introduce the above NN̄ → ππ transi-
tion amplitudes in the dispersion relation which allows one to
calculate the NN scattering amplitude. In terms of diagrams,
the zero-width ρ-meson contribution to the NN interaction,
shown in Fig. 1(a), is thus replaced by the sum of contributions
depicted in Fig. 1(b) and 1(c). For the intermediate baryon
states appearing in the last contribution, we retain, beside the
nucleon, the three lowest-lying resonances, �(1232), N(1440)
and N (1520) [16].

N

N

ρ π

N*

(c)(b)(a)

FIG. 1. Graphical representation of ρ exchange as a stable particle
(a) or taking into account its possible decay into two pions, (b)
and (c). The single solid line denotes a nucleon, the double line a
ρ meson, the dashed line a pion and the thick solid line a nucleon
or a baryon resonance. These last contributions, which involve
intermediate baryons N, � and N∗, are collectively denoted here
by N∗. The filled circle represents PNC ρNN vertices.
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To obtain the potential in configuration space, a standard
Fourier transformation has to be performed. The radial
functions fρ+(r) and fρ−(r) in Eq. (7) for the isoscalar,
isovector and isotensor parts now become2

f
2π(0,1,2)
ρ+ (r) = 1

3(2π )3

∫ ∞

4m2
π

dt ′
e−r

√
t ′

r

q3(t ′)√
t ′

gρ+(t ′), (17)

f
2π(0,1,2)
ρ− (r) = 1

3(2π )3

∫ ∞

4m2
π

dt ′
e−r

√
t ′

r

×
(

1 + 1

r
√

t ′

)
q3(t ′)gρ−(t ′). (18)

The spectral functions gρ+(t ′) and gρ−(t ′) are defined as

gρ+(t ′) = f 2
ρ(

m2
ρ − t ′

)2 + γ 2q6(t ′)
+ Re

β(t ′) + mNα(t ′)
m2

ρ − t ′ + iγ q3(t ′)
,

(19)

gρ−(t ′) = f 2
ρ (1 + κV )(

m2
ρ − t ′

)2 + γ 2q6(t ′)
+ Re

β(t ′)
m2

ρ − t ′ + iγ q3(t ′)
,

(20)

where

γ = f 2
ρ

6πmρ

. (21)

The quantities, α(t ′) and β(t ′), appearing in the above
equations are given by

α(t ′) = 3

q(t ′)χ2(t ′)

∑
N∗

[
GA

N∗

q(t ′)

(
1 − h tan−1 1

h

)

+ mN

2χ (t ′)
GB

N∗

(
3h − (1 + 3h2)tan−1 1

h

)]
, (22)

β(t ′) = − 3

2q(t ′)χ (t ′)

∑
N∗

GB
N∗

[
h − (1 + h2)tan−1 1

h

]
, (23)

with

χ (t ′) =
√

m2
N − t ′

4
, (24)

h = h(t ′) = q2(t ′) − χ2(t ′) + m∗2

2q(t ′)χ (t ′)
. (25)

The values of the coefficients G
A,B
N∗ used in the present work

are given in Table III.
Different values of f 2

ρ /(4π ) are referred to in the literature.
They can be related, for instance, to the decay width of ρ →
e−e+ or to gρNN by the hypothesis of vector meson dominance.
In the present estimate, we use the latter. For consistency with
gρNN = 2.79 in the sets S1–S3 (see Table II), f 2

ρ /(4π ) = 2.5
(2.08 was used in Ref. [16]).

2The isovector PNC ρNN coupling was not part of theoretical
frameworks by the time the above work [16] was written. There is no
more reason to ignore it now although the corresponding contribution
is expected to be quite small.

TABLE III. Coefficients GA
N∗ and GB

N∗ appearing in
Eqs. (22) and (23): values for the intermediate baryons
(nucleon and resonances) retained here.

N∗ GA
N∗/(4πmπ ) GB

N∗/(4π )

N 0 14.48
�(1232) −21.8 − 0.97 t ′

m2
π

7.4−0.062 t ′
m2

π

N (1440) −7.11 2.15
N (1520) −5.75 − 0.252 t ′

m2
π

1.26+0.06 t ′
m2

π

If one neglects the contribution from intermediate baryons
and takes the limit of γ → 0 (�ρ = 0) in Eqs. (19) and (20),
the radial functions f

2π(0,1,2)
ρ± (r) simply reduce to the original

Yukawa-like ones f bare
ρ± (r).

The two-pion exchange interaction also contains a part with
an isovector character which results from a non-zero πNN

coupling. Its contribution to the PNC asymmetry of interest
in this work has been calculated in the past [19]. It has not
been considered here however. While it could represent one
half of the low-energy measurements with the “best-guess”
value of this coupling, there are many reasons to believe
that this coupling is actually smaller [7]. The corresponding
contribution is therefore expected to play a minor role. On the
other hand, this contribution looks like a ρ-exchange one [16]
and qualitative results obtained here for the other two-pion
exchange contribution, f

2π(0,1,2)
ρ± (r), would largely apply to it

in any case.

C. Parity-nonconserving ρN N vertex form factor

Meson-nucleon vertex functions are generally written as the
product of the coupling constant, defined for an on-mass-shell
meson (q2 = m2), and a form factor which depicts the q2

dependence. Among various empirical choices, the monopole
one is often adopted for the strong vertex, which leads to,
e.g., the Bonn potentials [21,27]. As already mentioned in
the Sec. III A, the works of Refs. [5,13] involve applying the
same monopole form factor also to the weak vertex, which
gives rise to modified radial functions as in Eqs. (12) and (13).
However, one can certainly speculate about other possibilities.

In the DDH work [7], the coupling constant receives three
contributions: “factorization,” “parity admixture” and “sea
quarks.” For simplicity, they have been taken as constant.
The two last contributions were estimated by relying on
the SU (6)W symmetry and experimental information from
non-leptonic hyperon decays but the authors also worried
about symmetry-breaking effects. These ones could be siz-
able for the “parity-admixture” contribution to the isoscalar
ρNN coupling, which can be shown to vanish at q2 = 0.3 This
result is due to the cancellation of two contributions with the
same topology but involving intermediate quarks with negative

3This contribution is absent for the isotensor ρNN coupling and
both isoscalar and isovector ωNN couplings. The vanishing of the
contribution at q2 = 0 for the isoscalar ρNN coupling has some
relationship with an anapole moment contribution.
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FIG. 2. Yukawa function (bare-ρ, continuous) and modified ones due to form factors with a monopole type at both PC and PNC vertices
(Monopole, dashed), to 2π and N∗ corrections (“2π+N∗”, dot), and to PNC form factors obtained from the chiral-soliton model calculation [11]
(Chiral soliton, dot-dashed). The left panel is for fρ+(r), and the right one for fρ−(r). Expressions of the potentials are given in the text,
Eqs. (8), (9), (12), (13), (19), (20), (27), (28), and parameters entering the monopole and chiral-soliton ones,  and ′, are given the unique
value 1.31 GeV.

and positive energies. While the first one is included by using
the SU (6)W symmetry and could be appropriate for an on-
mass-shell meson, the effect of the second one is ignored. To
account for the expected cancellation, the “parity-admixture”
contribution to the isoscalar ρNN coupling was suppressed by
a factor 4 in getting the “best-guess” values. A refined estimate
would suppose to calculate the q2 dependence of the coupling
constant, which was done by Kaiser and Meissner in their
framework [11]. Although there exists no detailed comparison,
their results tend to support the above analysis. The q2

dependence is especially important for the isoscalar ρNN

coupling. It evidences a feature which is somewhat unusual
for current form factors but is a signature of the underlying
dynamics: a change of sign occurs at q2 = q2

0 − q2 � −m2
ρ .

We now consider the effect of inserting the above mo-
mentum dependence in the PNC NN interaction. Consistently
with the non-relativistic approach used here, we neglect the
energy transfer carried by the meson and therefore assume
q2 � −q2 in the following. The isoscalar PNC ρNN vertex

form factor, F̃
KM(0)
ρ (q2), in Ref. [11] can thus be approximately

parametrized as

F̃
KM(0)
ρ (q2) =

(
1 − 2

q2

q2 + ′2

)
. (26)

At low-momentum transfer, the parameter ′ has the same
effect as usual cutoff parameters but its role differs at
high momentum transfer (hence a different notation). The
sensitivity to this parameter will be studied in the later section.
Assuming the corresponding strong vertex is still a point-like
one, the radial functions for the isoscalar ρ exchange, modified
by Eq. (26), now reads

f
KM(0)
ρ+ (r) = ′2 + m2

ρ

′2 − m2
ρ

fρ(r) − 2′2

′2 − m2
ρ

f′(r), (27)

f
KM(0)
ρ− (r) = −i(1 + κρ)[ p, f

KM(0)
ρ+ (r)]. (28)

In the limit ′ → ∞, f
KM(0)
ρ+ (r) recovers the standard

Yukawa function fρ(r). In a special case where ′ = mρ ,

corresponding to the above mentioned change of sign at
q2 � −m2

ρ, f
KM(0)
ρ+ (r) remains finite

f
KM(0)
ρ+ (r) = 1

4πr
e−mρr (mρr − 1), (29)

despite the presence of the factor ′2 −m2
ρ in the denominator.

D. Resulting potentials

The masses of π, ρ and ω mesons are set to be 139.0, 771.0
and 783.0 MeV respectively, throughout the calculations.
Plotted in Fig. 2 are fρ+(r) and fρ−(r) multiplied by r2 which
appears in the r-space integration. The potentials with bare-ρ
exchange, the monopole form factor, the 2π + N∗ corrections
and the PNC chiral-soliton form factor are represented respec-
tively by solid, dashed, dotted and dot-dashed lines.

Compared to the bare-ρ-exchange potential, the 2π + N∗
corrected (“2π+N∗”) one gives a non-negligible enhancement
in the range 0.5 � r � 2 fm. In the remaining regions,
however, these two potentials are almost indistinguishable.
For the potentials with form factors, we show results with
′ = 1.31 GeV and ρ = 1.31 GeV for the chiral-soliton and
monopole ones, respectively. Both of them give significant
difference from bare-ρ and “2π + N∗” potentials at r �
2 fm. The chiral-soliton form factor enhances the potential
substantially at 0.4 � r � 2 fm, drops rapidly at around
r ≈ 0.4 fm and changes sign at r � 0.2 fm. The change of
sign can give a negative contribution to the matrix elements,
but the quantitative estimation is dependent on the shape of
the wave functions. With different ′ values, the shape of
the potential changes. For a value smaller than 1.31 GeV, the
change of sign is shifted to larger r values, and the enhancement
in the intermediate range becomes more significant than for
the present potential. On the other hand, if one increases the
′ value, the potential becomes more similar to the bare-ρ
one. We will show this behavior explicitly when we discuss
the results. Contrary to the PNC chiral-soliton form factor,
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TABLE IV. Sensitivity of the PNC asymmetry, AL(×107), to different choices of weak and strong coupling constants,
or to monopole form factors (see Tables I and II for their values) and comparison with experiment.

Weak DDH Adj. Exp.a

Strong
S1 S2 S3 S4 S4

13.6 −0.96 −1.33 −0.66 −1.13 −0.92 −0.95 ± 0.15 [2]
45 −1.73 −2.39 −1.16 −2.00 −1.59 −1.50 ± 0.23 [3]

221 0.43 0.75 0.25 0.52 0.85 0.84 ± 0.29 [4]

aThese values are taken from Ref. [5], assuming the theoretical corrections have been made.

a monopole form factor gives suppression in magnitude over
the whole r region. This suppression will give matrix elements
smaller than in the remaining three cases. More importantly, a
monopole form factor makes the potential more sensitive to the
cutoff value than the PNC chiral-soliton form factor is to the
value of ′. We will argue about this point in the forthcoming
results.

Concluding this section, an important observation should
be made with respect to the motivation of the present work.
In comparison to the standard ρ-exchange potential, some of
the variations we consider tend to make its range longer.
At first sight, the feature which can possibly enhance the
contribution of P to D NN states with respect to the S to
P ones is desirable. This can be checked by calculating the
plane-wave Born amplitude, but a definitive answer requires a
full calculation with distorted wave functions.

IV. NUMERICAL RESULTS AND DISCUSSION

We here discuss qualitatively the effects of the different
variations on the meson-exchange potential laid down in the
previous section.

A. Effect of the coupling constants and monopole form factors

In Table IV, the results with various chosen parameter sets
(see Tables I and II for their values) are presented. The effect
of the coupling constants is straightforward: larger coupling
constants give larger asymmetries. As shown in Ref. [1] that
the S − P transition dominates at the low energies, while the
P −D transition does at the high energies, the S−P transition
amplitude is approximately proportional to

hpp
ρ gρNN (κV + 2) + hpp

ω gωNN (κS + 2), (30)

and the P − D transition amplitude to

hpp
ρ gρNNκV + hpp

ω gωNNκS. (31)

Beginning the discussion with a comparison of the predic-
tions and measurements, we observe that the S1-set results
agree with the low-energy measurements. At 221 MeV, the
result is smaller than the lowest experimental value by about
22%. For the set S2, the situation is opposite: the result at
221 MeV is within the error bar, but those at low energies
are off. Since the asymmetry can be well approximated by
Eqs. (30) and (31), which are linearly dependent on the strong

coupling constants gxNN and κ’s, we conclude that those good
at low energy are not good at 221 MeV, and vice versa. As
expected, the asymmetry is sensitive to the strong coupling
constants, but this is almost irrelevant to the resolution of the
problem raised in the introduction.

We now consider in more detail the sensitivity to the
isovector tensor coupling κV . This can be done by comparing
results of sets S2 and S1, or S4 and S3. Evaluating Eq. (30)
with S2 and S1, we obtain the ratio S2/S1 (S − P ) � 1.36.
This value is comparable to the ratios of S2/S1 at 13.6 and
45 MeV, 1.39 and 1.38, respectively. Equation (31) gives
S2/S1 (P − D) � 1.68, and this value is close to S2/S1 at
221 MeV, 1.74. In a similar way, we can compare S4 and S3.
We have the ratios S4/S3 (S−P ) � 1.71 and S4/S3 (P −D) �
1.96. Our calculation gives 1.71 and 1.72 at 13.6 and 45 MeV,
respectively, and 2.10 at 221 MeV. In both cases, it is found
that changing κV from 3.7 to 6.1 enhances the prediction for
the high-energy point with respect to the low-energy ones. The
effect, which is of the order of 25%, goes in the direction we
looked for. However, for the set S1, enhancement due to a larger
value of κV is still lacking to fit the high-energy asymmetry
within the experimental error bar.

The role of monopole form factors can be understood by
comparing results of sets S3 and S1 (or S4 and S2 after
correcting for different strong couplings in this case). The
ratios are 0.69, 0.69, and 0.58 at 13.6, 45, and 221 MeV,
respectively (or 0.73, 0.72, and 0.59). One sees a clear
indication that the effect of monopole form factors is in favor
of S to P transitions, contrary to what we would naively expect
from a longer-range interaction. This point will be further
examined later on after other similar long-range effects are
also considered.

For a part, the above results can be understood from the
behavior of the potentials. In Fig. 3, the left panel shows the
Yukawa potential modified by monopole form factors, with a
multiplication factor r2. The smaller the cutoff value is, the
smaller is the potential for all r. Thus, with a smaller cutoff
value, the asymmetry is also smaller in magnitude. The large
sensitivity of the potential to the cutoff value as Fig. 3 shows,
has its origin in the expression of the squared monopole form
factor in momentum space, [(2−m2)/(2+q2)]2. This form,
which is consistent with the definition of couplings made for
on-mass-shell mesons, implies an overall suppression of PNC
amplitudes at low energy by a factor [(2 − m2)/(2)]2( =
0.43 for  = 1.31 GeV). This behavior differs from the one
evidenced by other potentials considered below where the
factor under discussion is essentially absent. On the other hand,
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FIG. 3. Modified Yukawa functions multiplied by r2: with the square of monopole form factor (left panel) and the PNC chiral-soliton form
factor (right panel). For illustration, the cutoff  is given the values ∞ (bare), 3, and 1.31 GeV in one case while the parameter ′ assumes the
values ∞ (bare), 3, 1.31, and 0.771 GeV in the other case.

the difference between the above suppression factor and the
one deduced in the previous paragraph by comparing S3 and
S1 results indicates that the effect of the potential occurs at
distances larger than what the position of maxima in Fig. 3
suggests.

B. Effect of the 2π and N∗ corrections

The effect of the 2π + N∗ corrections is investigated
with the strong parameter sets S1 and S2, and the DDH
“best-guess” values for the weak coupling constants. The
results are summarized in Table V. In the column “2π + N∗”,
the numbers in the parentheses represent the ratios of results
(“2π + N∗”)/(bareρ).

The “2π + N∗” result evidences a relatively larger en-
hancement at 13.6 MeV than at the remaining two energies,
but as a whole, the ratios are similar. For the set S1, the
“2π + N∗” potential increases the asymmetry by 0.26, 0.38,
and 0.09 at 13.6, 45, and 221 MeV, respectively (in units of
10−7). Consequently the low-energy asymmetries exceed the
experimental upper limit while the high-energy one is still
below. For the set S2, the amount of increase is larger than
for the set S1: 0.35, 0.53, and 0.17 at 13.6, 45, and 221 MeV,
respectively (again in units of 10−7). Thus, the low-energy
predictions, which are already out of the experimental error
bars with the ρ-exchange potential, are further away from

experiment. Meanwhile, a relatively small increase of the
high-energy asymmetry keeps the prediction within error
bars.

To get some insight into the above results, it is interesting
to look at the potentials in Fig. 2. At r � 2 fm, they show a
similar behavior. In comparison to the bare-ρ potential within
the range 0.4 � r � 2 fm, f 2π

ρ+(r) is sizably larger but f 2π
ρ−(r)

is slightly smaller. In the range r � 0.4 fm, f 2π
ρ+(r) is very

similar but f 2π
ρ−(r) is clearly smaller. From the result of the

asymmetry in Table V, one can deduce that the suppression of
f 2π

ρ−(r) at short distances does not much affect the magnitude
of the asymmetry. Therefore, roughly speaking, a good deal
of the difference in the results comes from the difference of
the potentials in the region 0.4 < r < 2 fm and the contribution
from r < 0.4 fm is negligible.

While the enhancement of the interaction in the range
0.4 < r < 2 fm can explain enhanced asymmetries, an enhance-
ment of asymmetry at the higher energy point with respect
to the low ones, as one would expect from a longer-range
interaction, does not show up. Though the effect is small
(0 ∼ 3%), it is opposite to what could be naively expected.
It is interesting to compare the results with those obtained
from using the plane-wave Born approximation (PWBA). The
enhancement of the asymmetry at low energy would be about
12% while it reaches 26% at high energy (the enhancement
for the P to D transition at low energy is about 60%).

TABLE V. Sensitivity of the PNC asymmetry, AL(×107), to the effect of the finite ρ-width correction of the weak potential.
Weak coupling constants are fixed to the DDH “best-guess” values. Two sets of strong couplings, S1 and S2, are considered.
The numbers in the parentheses represent the ratios (“2π + N∗”)/(bare-ρ).

S1 S2 Exp.

Bare-ρ “2π + N∗” Bare-ρ “2π + N∗”

13.6 −0.96 −1.22 (1.26) −1.33 −1.68 (1.25) −0.95 ± 0.15
45 −1.73 −2.11 (1.21) −2.39 −2.92 (1.22) −1.50 ± 0.23

221 0.43 0.52 (1.22) 0.75 0.92 (1.22) 0.84 ± 0.29
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As mentioned in Sec. III A, the enhanced κV value, 6.1,
could account for the physics we included here in allowing
for the contribution of nucleon and baryon resonances to the
πN scattering amplitude (or the NN̄ → ππ amplitude).
Therefore, results denoted “2π +N∗” with S1 and bare-ρ with
S2 in Table V should not be independent. This is supported for
a part by the fact that both results deviate from the bare-ρ S1
contribution by relatively the same amount for the low-energy
measurements (roughly 24% and 38%). The difference is
larger for the high-energy point (22% and 74%), but this could
be due to the approximate character of treating the effect
of extra contributions to the πN scattering amplitude by a
constant number. In principle, the κV contribution is expected
to be associated with a form factor that decreases faster than
for the other contributions.

C. Effect of the PNC vertex form factor

Results with the monopole form factor have been discussed
at the beginning of the present section (see Table IV). We here
consider the effect of the PNC chiral-soliton form factor for
the isoscalar ρNN coupling. As this form factor could involve
some uncertainty, we also looked at variations of the cutoff
parameter ′ in Eq. (26). Besides the value ′ = 0.771 GeV,
which approximately fits Kaiser and Meissner’s estimate [11],
we consider the values 1.31 and 3 GeV. The first of these last
values fits the low-momentum dependence of the monopole
form factor used by Carlson et al. and the second allows one to
make the transition to the standard point-like ρNN coupling.
The larger ’s are probably closer to the one inferred from the
DDH work, though quite uncertain. Strong coupling constants
are picked up from the set S1, and DDH “best guess” values are
used for the weak coupling constants. The results with different
strong coupling constants, e.g., S2, can be easily deduced from
Eqs. (30) and (31).

Looking at the results given in Table VI, it is seen that the
magnitude of the asymmetry increases when the parameter ′
becomes smaller. This can be understood from the behavior of
the potential. In Fig. 3, we plot the modified Yukawa potential
multiplied by r2 for the PNC chiral-soliton form factor (right).
With a smaller ′ value, the position of the peak is shifted to
larger r, and the curve becomes broader. This behavior leads
to a large enhancement in the range 0.5 � r � 2 fm. In the
result with the 2π + N∗ corrections, we discussed that a large
portion of the difference in the asymmetry is expected to be

TABLE VI. Sensitivity of the PNC asymmetry, AL(×107), to
the effect of a specific correction of the isoscalar PNC ρNN

vertex. Results are presented for different values of the parameter
′, introduced in Eqs. (27) and (28). The bare-meson exchange is
adopted for the other components of the PNC potential. Set S1 is
used for the strong parameters, and DDH “best-guess” values for the
weak coupling constants.

′ (GeV) Bare 3 1.31 0.771

13.6 −0.96 −1.04 −1.33 −1.69
45 −1.73 −1.88 −2.38 −2.92

221 0.43 0.47 0.61 0.67

originated from the different behavior of the potential in the
range 0.4 < r < 2 fm. The behavior of f KM

ρ+ (r) and f KM
ρ− (r) in

Fig. 2 supports this conjecture; and though these functions even
change sign at r � 0.2 fm, enhanced results are still found.
A smaller ′ value gives rise to a more enhanced potential in
the range 0.4 < r < 2 fm and consequently, this gives a larger
magnitude of asymmetry.

Similarly to the effect discussed in the previous section, the
enhancement of the potential in the range 0.5 � r � 2 fm
can explain the enhancement of the asymmetries calculated
in this section with respect to the bare-ρ ones. Again, the
enhancements are larger at low than at high energy (roughly
73% and 56% for ′ = 0.771 GeV) but the relative difference
is more obvious here (17% instead of 0 ∼ 3%). It is interesting
to compare the above results with the PWBA ones. In this case,
the effect of the form factor under consideration provides
a slight suppression at low energy while, at high energy, it
leads to a large enhancement, 80% for ′ = 0.771 GeV
(a factor 3 for the P to D states transition at low energy). These
results evidence a striking feature. While the enhancement for
the P to D states transition amplitude at high energy in PWBA
is more or less recovered by the actual DWBA calculation, the
appearance of an enhancement for the S to P states transition
amplitude at low energy in PWBA is much less expected by
DWBA. To some extent, this confirms the conclusion from
considering similar longer-range forces as due to monopole
form factors or a non-zero width of the ρ meson that: contrary
to a naive expectation, a longer-range force does not necessar-
ily imply an enhancement of P to D states transition amplitudes
at high energy over the S to P states one at low energy.

Somewhat surprised by this last result, we looked for an
explanation. It turns out that both the 1S0 and 3P0 wave
functions entering the S to P transition amplitude are strongly
suppressed at short distances in the AV18 model, which we
used to describe the strong NN interaction. This suppression
acts the same way as the centrifugal barrier favors Born
amplitudes with higher orbital angular momenta. However,
in AV18, the suppression for the 1S0 and 3P0 is even stronger
than the one for 3P2 and 1D2, so an opposite situation occurs
here: a longer-range PNC force enhances the S to P transition
amplitude with respect to the P to D one. This feature is
largely due to the 3P0 wave function where the effect of
a short-range repulsion extends to medium distances. Were
this wave function similar to the 3P2 one, quite different
results would have been obtained instead. The effect of a
longer-range interaction would then be more similar to what is
expected from considering the PWBA alone. In Ref. [5], other
strong potential models were also considered and no big model
dependence was found. Therefore, it can be expected roughly
that the above conclusion applies for cases other than AV18.

D. Fitting the weak coupling constants

Motivated by the values of PNC coupling constants ob-
tained in an earlier analysis [5], we looked in the present
work for possible effects that could affect its conclusions. We
consider in this subsection the quantitative consequences of
these effects on the coupling constants.

We first notice that none of the cases we considered
allows one to reproduce the central values of measurements
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by relying on presently known predictions of PNC meson-
nucleon couplings. While ρ exchange dominates, ω exchange
must necessarily have a sign opposite to what is expected,
confirming Carlson et al.’s analysis, whose main qualitative
features were reminded in the introduction. A question which
remains of particular interest is whether the size of the ωNN

coupling can be made more consistent with expectations.
Before entering into details, we mention that our own results
for the ρNN and ωNN couplings, h

pp
ρ = −22.2 × 10−7

and h
pp
ω = 5.28 × 10−7, slightly differ from Carlson et al.’s

ones when the same set of strong couplings, S4, is used. The
discrepancies can be reasonably understood as due to minor
differences in the inputs.

We begin with the S1 set of strong couplings, for which
a qualitative understanding of the result has been reminded
in the introduction. A least-χ2 fit gives h

pp
ω = 10.5 × 10−7

and h
pp
ρ = −25.9 × 10−7. The difference with Carlson

et al.’s result for h
pp
ω is primarily due to that one in the strong

coupling constant gωNN . The absence of difference for h
pp
ρ

is somewhat accidental and results from the cancellation of
different effects involving the tensor coupling, κV , the strong
coupling constant, gρNN , and the monopole form factor, with
some being separately discussed below.

Looking now at the results for the set S2, it is found that the
ωNN coupling obtained from a least-χ2 fit, hpp

ω = 7.2×10−7,
is smaller than in the previous case as expected from the
discussion of results in Sec. IV B, showing the favorable
character of an enhanced value of the isovector tensor coupling,
κV , for the problem under consideration in this work. A
value of the ρNN coupling smaller in magnitude is also
obtained, h

pp
ρ = −16.3 × 10−7. Let us elaborate this point

in more detail. Sets S2 and S1 differ by the values of the
tensor couplings, κS and κV . Since |κS | << κV , Eq. (31)
for the P − D transition amplitude approximately implies
h

pp
ρ ∝ 1/κV . One therefore expects that the ratio of the

fitted values, h
pp
ρ (S2)/h

pp
ρ (S1), be close to the ratio of the

tensor couplings, κV (S1)/κV (S2). The approximate equality
of the ratios, 0.63 and 0.61, respectively, confirms that the
ω contribution to the corresponding amplitude is small. For
the set S1, its contribution to the asymmetry at high energy
amounts to 4%. More generally, the fitted value of h

pp
ρ

depends on the strong coupling constant as 1/(gρNN κV ).
This implies that the contribution of the term h

pp
ρ gρNN κV

to the S − P transition amplitude, represented by Eq. (30), is
approximately the same for the sets S1 and S2. The remaining
term, 2h

pp
ρ gρNN + h

pp
ω gωNN (2 + κS), should be therefore

the same too. The value of h
pp
ω can be fitted so that this

term is the same, regardless of the strong coupling constant.
Considering the case discussed above where κV increases,
leading to an increase of h

pp
ρ (algebraically), it appears that the

first contribution to the remaining term, 2h
pp
ρ gρNN , increases

with the consequence that the other term h
pp
ω gωNN (2 + κS)

has to decrease. This implies that h
pp
ω decreases. The value so

obtained is close to the fit one. As will be shown for the results
for the set S3, h

pp
ω is also sensitive to the value of the strong

coupling, gωNN .
As argued at the end of Sec. III A, a partly improved

version of the above results obtained with the set S2 could
be given by the “2π +N∗” ones with the set S1. It is therefore

expected that the corresponding fitted couplings should tend
to evidence the same departures to the S1-set results. The
value obtained in the present case for the ρNN coupling,
h

pp
ρ = −21.1 × 10−7, is half way between the results for

the S1 and S2 sets. The expectation is verified for a part,
suggesting that the physics which has led to introduce an
enhanced value of κV is not fully accounted for. The effect
of an approximate treatment of the underlying physics could
have more important consequences for the ωNN coupling.
This one, given by h

pp
ω = 11.7 × 10−7, remains close to

the S1-set result. This feature indirectly indicates that the 2π

correction scales the ρ-exchange contribution to the low- and
high-energy asymmetries by the same factor, allowing one to
account for its effect by modifying the ρNN coupling. The
result is that the ωNN coupling is essentially unchanged in the
fit procedure. The lower value of the ωNN coupling obtained
with the S2 set could therefore be questionable to some
extent.

Pursuing the discussion with the results for the set S3,
which was intended to look at the effect of monopole form
factors often introduced to describe hadronic vertices, it is
found that the fitted values of the couplings, h

pp
ω = 14.6 ×

10−7 and h
pp
ρ = −41.1 × 10−7, are significantly increased (in

size) with respect to the previous ones. The difference with
Carlson et al.’s results comes mainly from different values
of the strong couplings and of κV . The most important one
for the main purpose of the present paper is due to the value
of gωNN , almost a factor 2, which explains a large part of
the discrepancy between the fitted values of h

pp
ω . There are

other significant differences but, due to cancellations, they
have not much effect on the PNC ωNN coupling. Taking into
account that the product gρNNh

pp
ρ κV is mainly determined by

the high-energy point, the difference in the value of κV is
largely compensated by a change in h

pp
ρ . Differences between

the sets S3 and S4 for other ingredients (gρNN and κs) have a
minor effect. Thus, the comparison of results for these two sets
of strong couplings shows that smaller (and more reasonable)
values could be obtained for the weak couplings by increasing
the size of the strong ones but, while this could be suggested
by the phenomenology of the strong NN interaction, there is
no theoretical justification.

Finally, as for the effects of the weak vertex form factors,
the result for the ωNN coupling reflects the discussion of the
asymmetries in Sec. IV C. The fitted value tends to increase
when ′ decreases. It is given by h

pp
ω = 11.5 × 10−7 and

15.2 × 10−7 at ′ = 1.31 and 0.771 GeV respectively
(correspondingly, h

pp
ρ = −16.8 × 10−7 and h

pp
ρ = −14.1 ×

10−7). Strictly speaking, the last values obtained for h
pp
ρ only

apply to h0
ρ as only the isoscalar PNC form factor is taken into

account (the isovector and isotensor vertices are still taken
as point like). However, to a good approximation, it can be
considered that the fit determines an effective h

pp
ρ coupling

given by h0
ρ + 0.7(h1

ρ + h2
ρ/

√
6) for ′ = 1.31 GeV and

h0
ρ + 0.5(h1

ρ + h2
ρ/

√
6) for ′ = 0.771 GeV. From what is

left out, which is not expected to be large, it is in principle
possible to get an extra constraint on the isovector and isotensor
couplings. The statistical significance of the result is expected
to be smaller than the h

pp
ω one, however.
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V. CONCLUSION

We considered the PNC asymmetry in �pp scattering at
the energies 13.6, 45 and 221 MeV, where experimental data
are available. In a recent analysis [5], ρNN and ωNN weak
coupling constants were fitted to reproduce the experimental
data. Though the resulting values are within the reasonable
range given in Ref. [6], the fitted ωNN coupling constant is
opposite in sign to most of the theoretical estimates. Employing
AV18 as a strong interaction model, we investigated the role of
the effects such as different strong coupling constants, cutoffs
in the regularization of the PNC meson-exchange potential,
long-range contributions to its ρ-exchange component and
PNC form factors of the isoscalar ρNN vertex.

As expected, the asymmetry is sensitive to the strong
coupling constants, on which it depends linearly. Assuming
the DDH “best-guess” values for the weak couplings, it was
found that all three experimental data cannot be satisfied
simultaneously with any of the strong coupling sets considered
in this work. In one case, low-energy results are within the
experimental errors but the high-energy one is not, and vice
versa in the other. Comparison of the results with and without
monopole form factors shows a significant effect. For the
cutoff value  = 1.31 GeV, asymmetries are suppressed by
about 30 ∼ 40%. This strong dependence on the cutoff value
qualitatively agrees with the one shown in a different way in
Ref. [5]. Fitting the weak couplings to the measurements, the
authors found that a decrease of the cutoff value by a factor 0.8
enhances the fitted values of h

pp
ρ and h

pp
ω from −22.3 × 10−7

and 5.17 × 10−7 to −106.7 × 10−7 and +14.63 × 10−7,
respectively [5]. The 2π -exchange contribution to the bare-ρ-
exchange potential gives a sizable enhancement at both low and
high energies. The ratio of enhancement is, however, similar
but slightly larger at 13.6 MeV than that at 45 and 221 MeV.
Consequently, with the 2π exchange in the PNC potential, the
asymmetries at low energies exceed the experimental ranges,
and that at 221 MeV is close to or within the error bar.
Simply speaking, the 2π contribution does not change the
high vs. low energy trend found in the case of using the
bare-meson-exchange potential. The results with a specific
PNC form factor show its strong influence too. The larger
is the change in the potential, the larger is the magnitude of
the asymmetry regardless of the energy: similar to the case
including 2π exchange. Concluding this part of our work based
on the DDH “best-guess” values for the weak couplings, we
did not find any effect that could allow one to simultaneously
describe the measurements of the asymmetries at low and high
energies.

As is well known, predictions for the weak ρNN and ωNN

couplings are uncertain and can largely vary in some range.
One can thus look for values of these couplings which could fit
the above measurements. The striking feature is that in all cases
we considered the h

pp
ω coupling constant has a positive sign,

opposite to the DDH “best-guess” one. This is not therefore a
surprise if the above studies with the DDH “best-guess” values

could not provide a good description of the measurements. The
sign agrees with Carlson et al.’s one [5] but the size, which
assumes some improvements in this work, is generally larger,
making it more difficult for the h

pp
ω coupling so obtained to be

accommodated in the expected range. Thus, the discrepancy
that motivated the present work, far to be reduced, is enhanced.

Interestingly, the possibility that the ωNN coupling be
positive was considered in the past to explain the ratio of
the proton-nucleus force, determined from PNC effects in
some complex nuclei, to the proton-proton one, determined
from PNC effects in �pp scattering at low energy [7]. It was
however discarded due to a low statistical significance and the
absence of theoretical support. With results from incorporating
the high-energy point in the analysis of �pp scattering (Ref. [5]
and present work), the above prospect becomes less unlikely.

We here consider three issues. The first one is that the
value of the fitted ωNN coupling, its sign in particular,
is correct. This implies that present hadronic estimates are
missing important contributions. With this respect, one should
distinguish bare and dressed couplings that could include
rescattering effects (loop corrections) [28]. Including some
phenomenology however, it is not clear how much present
estimates should be corrected for them. The second issue is
the possible existence of large corrections to the PNC single-
meson exchange potential [29]. This concern has motivated
various approaches dealing more directly with NN scattering
amplitudes, in the past [30,31] and quite recently [32].
Multimeson exchanges or retardation effects are known to
provide large corrections in the strong-interaction case and
there is no reason it should be different here. Along the same
lines, one could also cite relativistic corrections which, for
vector-meson exchanges, could be important [14]. The last
issue concerns the experiment, especially at the highest energy
of 221 MeV. The discussion throughout the paper is based on
the absence of error bar. Assuming minor adjustments of the
meson-nucleon couplings to the low-energy points, current
predictions for the highest-energy point may be off by a factor
two for the central value, but only by one and a half standard
deviation when the experimental error is accounted for. On the
other hand, the PNC experiments are difficult ones and a naive
interpretation of the error bar does not necessarily give a good
indication of where a more accurate measurement would sit. A
tendency to overestimate the real asymmetries has often been
observed. Whatever the issue, we believe all of them quite
exciting because further studies will be required to determine
the right answer.
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