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K ∗ photoproduction off the nucleon: γ N → K ∗�

Yongseok Oh∗
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

Hungchong Kim†

Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
(Received 16 February 2006; published 19 June 2006)

We study the photoproduction of the K∗(892) vector meson from both the charged and neutral reactions
γp → K∗+� and γ n → K∗0�. The production mechanisms that we consider include t-channel K∗, K,

κ exchanges, s-channel nucleon diagrams, and u-channel �, �,�∗ diagrams. These could constitute important
backgrounds for future investigation of “missing” resonances that can be searched for especially in these reactions.
The t-channel K meson exchange is found to dominate both reactions. The total and differential cross sections
are presented together with some spin asymmetries.
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I. INTRODUCTION

The baryon spectra predicted by some quark models
anticipate much more baryon resonances than those observed
so far [1]. These “missing” resonances are expected to
have rather small couplings to the πN channel, and various
reaction mechanisms have been suggested to search for
those resonances. One of them is to use photoproduction
processes containing mesons other than pion(s) in the final
state. For example, the photoproductions of K� and K�

in the scattering off the nucleon may give us a clue on the
existence of nucleon resonances that strongly couple to the
kaon channel [2]. Vector meson photoproduction, γN → V N ,
where V stands for a vector meson (ρ, ω, φ), may also be useful
in identifying the missing resonances [3].

Recently, the interest in K∗(892) vector meson photo-
production has grown. This was initially triggered by the
quark model, which predicts that some nucleon resonances
with higher mass can have sizable couplings with the K∗
channel [2]. In addition, there are some preliminary experi-
mental data from the CLAS Collaboration at the Jefferson Lab
on the reactions of K∗ photoproduction, i.e., K∗� [4] and
K∗� [5] production. These experiments show that the total
cross sections for K∗ photoproduction, though small, are not
much more suppressed than those for K photoproduction, and
it leads to the conclusion that full coupled-channel analyses
to search for the resonances should include the K∗ channel as
well [5]. Therefore, it is legitimate to study the mechanisms of
K∗ photoproduction.

At present, theoretical works to understand the K∗ photo-
production reactions are very limited [6]. In Ref. [7], Zhao
et al. studied K∗� photoproduction from the proton targets
using a quark model. This model is based on the quark-meson
couplings whose coupling constants are assumed to be flavor-
blind, which allows to use the values determined by other
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reactions. To implement the t-channel exchange contribution,
the kaon exchange was considered. More accurate experimen-
tal data are needed to further test their model [4], and the
other channels for K∗ photoproduction, such as K∗�, were
not considered.

In this article, we investigate K∗� photoproduction, γN →
K∗�. The purpose of this work is to study the background
production mechanisms that include t-channel K∗,K , and κ

exchanges as well as s-channel nucleon and u-channel hyperon
(�,�,�∗) diagrams. This can provide a platform for future
investigations of nucleon resonances that can also contribute
to this reaction near the threshold. Because of isospin, the
s-channel 	 resonances are excluded, and this reaction has an
advantage in the study of nucleon resonances. Our approach
is based on the effective Lagrangians and is similar to the
work of Ref. [8]. By making use of the effective Lagrangians
for K∗ meson interactions, we evaluate the tree diagrams for
K∗ photoproduction. The coupling constants are constrained
either by phenomenology or by quark-model predictions when
the experimental inputs are not available. One advantage of K∗
photoproduction over K photoproduction is that it provides a
chance to study the controversial scalar (700–900) meson [9]
in the t channel. Such a contribution is prohibited in kaon
photoproduction because the κ → Kγ interaction is not
allowed because of angular momentum and parity. We show,
however, that the κ-meson exchange is suppressed in K∗
photoproduction and it would be hard to identify the κ-meson
contribution in this reaction at present.

Because both the K∗ and nucleon are isodoublets, we
consider the following two reactions,

(I): γp→K∗+�, (II): γ n→K∗0�. (1)

In the next section, we develop our approach for K∗ pho-
toproduction. The effective Lagrangians and their coupling
constants are discussed in detail. Our results for cross sections
and some spin asymmetries are given in Sec. III, and we make
some comments on the Regge approach to this reaction. We
summarize in Sec. IV.
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FIG. 1. Tree diagrams for γN → K∗�, which include (a) t-
channel exchanges, (b) the intermediate nucleon, (c) the intermediate
hyperon, and (d) contact diagrams.

II. MODEL

The tree diagrams we consider are shown in Fig. 1, which
also defines the momentum of each particle. In this calculation,
we work with a model that includes (i) t-channel K,K∗,
and κ exchanges; (ii) the s-channel nucleon; and (iii) the
u-channel hyperon (�,�,�∗) terms. The contact term for
the charged K∗ photoproduction is included as well. Because
of isospin conservation, the 	 resonances cannot contribute to
this reaction. The production amplitude can then be written as

M = ε∗
ν (K∗)ū�(p′)MµνuN (p)εµ(γ ), (2)

where εµ(K∗) and εµ(γ ) are the polarization vectors of K∗
vector meson and the photon, respectively. The Dirac spinors
of � and the nucleon are denoted by u�(p′) and uN (p),
respectively. Below we calculate Mµν for each channel.

A. t-channel K ∗ and K exchanges

Because of charge, the K∗ exchange is present only
for the charged K∗ photoproduction, γp → K∗+�. The
production amplitude is calculated from the following effective
Lagrangians,

LγK∗K∗ = −ieAµ
(
K∗−νK∗+

µν − K∗−
µν K∗+ν

)
, (3)

LK∗N� = −gK∗N�N̄

(
γµ�K∗µ

− κK∗N�

2MN

σµν�∂νK∗µ

)
+ H.c., (4)

where Aµ is the photon field, K∗±
µν = ∂µK∗±

ν − ∂νK
∗±
µ , and

the isodoublets are defined by

K∗ =
(

K∗+

K∗0

)
, N =

(
p

n

)
. (5)

We use the following coupling constants determined by the
Nijmegen potential [10],

gK∗N� = −4.26, κK∗N� = 2.66 (NSC97a),

gK∗N� = −6.11, κK∗N� = 2.43 (NSC97f).
(6)

The production amplitude then reads

Mµν

K∗ = ηK∗
e

(k − q)2 − M2
K∗

�
µνα

K∗ (k, q)

×Pαβ (k − q)�β

K∗N�(q − k), (7)

where ηK∗ = 1 and 0 for reactions (I) and (II) of Eq. (1),
respectively, and

�
µνα

K∗ (k, q) = 2qµgνα − qαgµν + kνgµα,

Pαβ (k − q) = gαβ − (k − q)α(k − q)β
M2

K∗
,

�
µ

K∗N�(q − k) = gK∗N�

[
γ µ − iκK∗N�

2MN

σµν(q − k)ν

]
. (8)

The decay width of K∗, �K∗ = 50.8 MeV, is included by
replacing MK∗ in the propagator by MK∗ − i�K∗/2.

However, the t-channel kaon exchange is allowed for both
reactions. In this case, we have

LγKK∗ = g0
γKK∗ε

µναβ∂µAν

(
∂αK∗0

β K̄
0 + ∂αK̄

∗0
β K0

)
+ gc

γKK∗ε
µναβ∂µAν(∂αK∗−

β K+ + ∂αK∗+
β K−),

LKN� = −igKN�N̄γ5�K + H.c., (9)

where K is the kaon isodoublet, KT = (K+,K0). The coupling
constants gγKK∗ can be calculated from the experimental data
for �(K∗ → Kγ ),which gives

g0
γKK∗ = −0.388 GeV−1, gc

γKK∗ = 0.254 GeV−1, (10)

where the phases of the couplings are fixed from the quark
model.

The coupling constant gKN� is obtained by using the SU(3)-
flavor-symmetry relation, which gives

gKN� = − 1√
3

(1 + 2f )gπNN = −13.24, (11)

with f = 0.365 and g2
πNN/4π = 14.0. In this work

we employ the pseudoscalar coupling for this interaction.
However, because the nucleon and � are on their mass shell,
it is equivalent to the pseudovector coupling. The production
amplitude for the K exchange becomes

Mµν

K = igγKK∗gKN�

(k − q)2 − M2
K

εµναβkαqβγ5, (12)

where gγKK∗ = gc
γKK∗ for reaction (I) and g0

γKK∗ for
reaction (II).

B. t-channel κ exchange

The scalar κ meson cannot couple to Kγ because of
angular momentum and parity consideration and, as a result,
the κ meson exchange is not present in kaon photoproduction.
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However, γK∗κ coupling is allowed and this provides us with
a chance to study the controversial κ(700–900) meson [11] in
K∗ photoproduction.

The effective Lagrangians for the scalar (and isodoublet)
κ meson interactions are given by

LγK∗κ = gγK∗κA
µνκ̄K∗

µν + H.c.,

LκN� = −gκN�N̄κ� + H.c.,
(13)

where Aµν = ∂µAν − ∂νAµ and

κ =
(

κ+

κ0

)
, κ̄ = (κ−, κ̄0). (14)

The coupling constants are determined as follows. For
gγK∗κ , we rely on the vector-meson dominance model in the
SU(3) limit [12]. Here we briefly explain this model referring
the details to Ref. [12]. The basic idea of this model is to
start with the most general Lagrangian for the SVV interaction,
where S stands for scalar meson nonet and V for vector meson
nonet. Then the q̄q or q̄2q2 nature of scalar mesons is revealed
through the mixing angle between the scalar meson octet and
scalar meson singlet. If the q̄q structure dominates the scalar
meson wave function, then one would expect the mixing angle
θS ≈ −20◦, whereas the dominance of the tetraquark nature
leads to θS ≈ −90◦ [12]. The general form for the SVV
interaction can then be written as [12]

LSV V = βAεabcε
a′b′c′

[Vµν]aa′[Vµν]bb′S
c
c′

+βB Tr (S) Tr (V µνVµν) + βC Tr (SV µν) Tr(Vµν)

+βD Tr (S) Tr (V µν) Tr (Vµν). (15)

Using the vector-meson-dominance hypothesis in the SU(3)
limit, the SV γ couplings of our concern can be expressed in
terms of the above couplings βi and the mixing angle, and we
have

gc
γK∗κ = e

gρ

2

3
βA, g0

γK∗κ = − e

gρ

4

3
βA, (16)

where gρ = 4.04 is the universal ρ meson coupling, gc
γK∗κ =

gγK∗−κ+ = gγK∗+κ− , and g0
γK∗κ = g

γ K̄
∗0

κ0 = gγK∗0κ̄0 . Because
βA is independent of the mixing angle θS [12], this shows
that the coupling constants gγK∗κ also do not depend on the
mixing angle and, therefore, they are blind to whether the q̄q or
q̄2q2 nature dominates the scalar meson structure in the SU(3)
limit. Note also that the ratio of the couplings g0

γK∗κ/g
c
γK∗κ is

−2 in this limit just as in the case of g0
γKK∗/g

c
γKK∗ , which is

close to −1.53 in nature but takes −2 in the SU(3) limit. The
coupling constant βA can be estimated from the observed value
of �(a0 → γ γ ), which leads to βA = 0.72 GeV−1 [12]. Here
we use M(κ) = 900 MeV and �(κ) = 550 MeV following
Ref. [12].1

For the couplings of scalar mesons with octet baryons, we
again use the values of the Nijmegen potential [10], which

1We note, however, that a recent analysis gives the pole position of
the κ at M = (750+30

−55) − i(342 ± 60) MeV [13].

gives

gκN� ∼ −8.3 (NSC97a),

gκN� ∼ −10.0 (NSC97f).
(17)

However, it should be mentioned that the above values are
obtained with M(κ) = 880 MeV. Also in Ref. [10], it was
stressed that the structure of the scalar mesons is crucial for
the central YN potential and the above values are obtained
with assuming that the scalar mesons are close to q̄q state.
With this caveat in mind, we use the above values just as a
guide for the couplings involving the κ meson. Our numerical
results show that the κ meson exchange is suppressed and the
uncertainties of κ-meson coupling constants are not crucial
in K∗ photoproduction. Collecting the κ-meson coupling
constants, we have∣∣gc

γK∗κgκN�

∣∣ = (1.0 ∼ 1.2)e GeV−1,

g0
γK∗κgκN� = −2gc

γK∗κgκN�.
(18)

In fact, the phase of gc
γK∗κgκN� cannot be fixed at this stage.

However, because the κ-exchange contribution is small, the
phase of the above coupling constants is hard to distinguish in
K∗ photoproduction. The production amplitude reads

Mµν = − 2gγK∗ κgκNY

(k − q)2 − (Mκ − i�κ/2)2
(k · qgµν − kνqµ),

(19)

where gγK∗κ = gc
γK∗κ for reaction (I) and g0

γK∗κ for
reaction (II).

C. s-channel diagrams

The s-channel diagrams shown in Fig. 1(b) can contain
the intermediate nucleon as well as nucleon resonances. The
purpose of this work is to investigate the main production
mechanisms that should be well understood before studying
the nucleon resonances. In this work, therefore, we consider
only the intermediate nucleon state, postponing the inclusion
of nucleon resonances to a future study, as it requires more
information or assumptions. The consequences of limiting the
intermediate state to the nucleon are discussed later.

The amplitude of the s-channel nucleon term can be
calculated from LK∗N� of Eq. (4) and

Lγ NN = −eN̄

[
γµAµ 1 + τ3

2

− 1

2MN

(
κN

s + κN
v τ3

)
σµν∂

νAµ

]
N, (20)

where the isoscalar and isovector anomalous magnetic mo-
ments of the nucleon are κN

s = −0.06 and κN
v = 1.85. Then

the production amplitude is obtained as

Mµν

N = e

(k + p)2 − M2
N

�ν
K∗N�(q)(k/ + p/ + MN )�µ

γN (k),

(21)
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where

�
µ

γN (k) = γ µQN + iκN

2MN

σµνkν, (22)

with (Qp = +1, κp = 1.79) for reaction (I) and (Qn = 0,

κn = −1.91) for reaction (II).

D. u-channel diagrams

For the u-channel diagrams of Fig. 1(c), we consider
intermediate hyperons, including �(1116), �(1193), and
�∗(1385). The diagrams with the intermediate octet hyperons
can be calculated with

Lγ�� = eκ�

2MN

�̄σµν∂
νAµ�, (23)

Lγ�� = eµ��

2MN

�̄
0
σµν∂

νAµ� + H.c., (24)

where κ� = −0.61 and µ�� = 1.62 ± 0.08. This leads to

Mµν
� = η�

e

(p − q)2 − M2
�

�
µ
γ�(k)(p/ − q/ + M�)�ν

K∗N�(q),

Mµν
� = η�

e

(p − q)2 − M2
�

�
µ
��(k)(p/ − q/ + M�)�ν

K∗N�(q),
(25)

where

�
µ
γ�(k) = iκ�

2MN

σµνkν,

�
µ
��(k) = iµ��

2MN

σµνkν,

(26)

with η� = 1 and η� = 1,−1 for reactions (I) and (II),
respectively, which comes from the isospin factors. The vertex
function �ν

K∗N�(q) was provided before and �ν
K∗N�(q) has the

same structure but with [10]

gK∗N� = −2.46, κK∗N� = −0.47 (NSC97a),

gK∗N� = −3.52, κK∗N� = −1.14 (NSC97f).
(27)

To compute the contribution from the intermediate
�∗(1385), we need to know the interactions LK∗N�∗ and
Lγ��∗ . The general form for LK∗N�∗ is written as

LK∗N�∗ = −i
f

(1)
K∗N�∗

MK∗
K̄

∗
µν�̄

∗µ · τγ νγ5N

− f
(2)
K∗N�∗

MK∗
K̄∗

µν�̄∗µ · τγ5∂
νN

+ f
(3)
K∗N�∗

MK∗
∂νK̄∗

µν�̄∗µ·τγ5N + H.c., (28)

which follows from the fact that this is an interaction of JP =
3
2

+ → 1
2

+ + 1−. Thus we have, in general, three independent
couplings. However, their values are poorly known and we use
the SU(3) symmetry relations to estimate the couplings. (See,
e.g., Ref. [14].) By making use of the quark-model prediction
and SU(3) flavor symmetry we obtain

f
(1)
K∗N�∗ = − 1√

6

MK∗

Mρ

f
(1)
ρN	 = −2.6, (29)

with f
(1)
ρN	 = 5.5 [15,16]. The other couplings are unknown

and we do not consider the terms containing f
(2)
K∗N�∗ and

f
(3)
K∗N�∗ [16].

The Lagrangian for γ��∗ interaction has the same struc-
ture as LK∗N�∗ of Eq. (28). Because the photon is massless,
the number of independent couplings is reduced to 2 and the
interaction can be written as

Lγ��∗ = ieg1

2MN

�̄∗
µγνγ5�Fµν

+ eg2

4M2
N

�̄∗
µγ5∂ν�Fµν + H.c., (30)

which leads to the decay width as

�(�∗ → �γ )

= p3
γ

48πM2
�∗

(
e

2MN

)2

×
{[

g1(3M�∗ + M�) − g2
M�∗

2MN

(M�∗ − M�)

]2

+ 3

[
g1 − g2

M�∗

2MN

]2

(M�∗−M�)2

}
, (31)

and the E2/M1 ratio as [17]

REM = E2/M1 = −M�∗ − M�

2MN

× g1 − g2M�∗/(2MN )

g1(3M�∗ + M�)/(2MN ) − g2M�∗ (M�∗ − M�)/(2MN)2 .

(32)

The recent CLAS experiment puts a constraint on the
radiative decay width of �(�∗ → �γ ) as [18]

�(�∗ → �γ ) = 479 ± 120 +81
−100 keV. (33)

Together with the chiral quark-model prediction on the
E2/M1 ratio for this radiative decay, REM = −2.0% [19],
we obtain

g1 = 3.78, g2 = 3.18. (34)

The production amplitude reads

Mµν
�∗ = η�∗

e

(p − q)2 − M2
�∗

�
µβ

�∗�(k, p′)

×	βα(�∗, p − q)�να
K∗N�∗ (q), (35)

where η�∗ = 1 for the reaction (I), η�∗ = −1 for reaction (II),
and

�να
K∗N�∗ (q) = f

(1)
K∗N�∗

MK∗
γδγ5(qαgνδ − qδgνα),

�
µβ

�∗�(k, p′) =
{

g1

2MN

γνγ5 + g2

4M2
N

p′
νγ5

}
(kβgµν − kνgµβ).

(36)
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The spin-3/2 Rarita-Schwinger propagator for the resonance
R with momentum p contains

	µν(R,p) = (p/ + MR)

(
− gµν + 1

3
γµγν

+ 1

3MR

(γµpν − γνpµ) + 2

3M2
R

pµpν

)
.

(37)

The decay width is incorporated by replacing MR → MR −
i�R/2 in the propagator. We use M�∗ = 1385 MeV and ��∗ =
37 MeV.

E. Contact diagram

Because the K∗N� interaction contains a derivative cou-
pling, there exists a contact diagram for the charged K∗
vector meson photoproduction. Inclusion of this diagram is
essential to satisfy the gauge-invariance condition. By minimal
substitution in the Lagrangian (4), we have

LγK∗N� = −i
egK∗N�κK∗N�

2MN

�̄σµνAνK
∗−
µ p + H.c., (38)

which gives the contact diagram of Fig. 1(d). The correspond-
ing amplitude is given by

Mµν

C = − iegK∗N�κK∗N�

2MN

σµν. (39)

F. Form factors

The form factors are included to dress the vertices of
the diagrams. For the form factors of t-channel exchanges,
FK∗ , FK , and Fκ , we use the form of

FM (p2) = �2 − M2
ex

�2 − p2
, (40)

where M2
ex and p2 are the mass and momentum squared of

the exchanged particle. The form factor is multiplied to each
vertex, and each diagram contains two powers of the form
factor.

The s- and u-channel diagrams have the form factor,
FN, F�, F� , and F�∗ , in the form of [20]

FB(p2) =
(

n�4

n�4 + (
p2 − M2

ex

)2

)n

, (41)

which becomes the Gaussian form as n → ∞. We take n = 1
but the results with n → ∞ are also discussed.

It is well-known that introducing the form factors that
depend on the momentum and mass of the exchanged particle
violates the charge conservation condition, kµMµν = 0 unless
the production amplitude is transverse by itself. For example,
in the reaction of γp → K∗+�, the t-channel K∗ exchange,
s-channel nucleon term, and the contact term separately violate
the charge-conservation condition but their sum does not.
Having different form factors at each channel clearly makes
the sum violate the charge conservation. Various methods to
restore the charge-conservation condition have been developed

[21–24]. In this work, following Ref. [24], we take the common
form factor for the t-channel K∗-exchange, s-channel nucleon
term and the contact term as

F = 1 − (1 − FK∗ )(1 − FN ). (42)

In the case of γ n → K∗0�, each production amplitude is
transverse. Thus the charge-conservation condition is satisfied
even with the form factors and no prescription such as Eq. (42)
is necessary.

III. RESULTS

Before we present our numerical results, the cutoff pa-
rameters should be fixed. We use the total cross section for
γp → K∗+� reported in Ref. [5] to constrain the cutoff
parameters of the form factors. The observed total cross section
data show that the cross section has the maximum near the
threshold and then decreases as the energy increases. This
behavior is observed in the model of spin-0 meson exchanges,
whereas the spin-1 meson exchange makes the total cross
section increase with the energy because the total cross section
in the t-channel exchange model scales as σ ∼ sJ−1, where
J is the spin of the exchanged particle in t-channel. In our
case, the charged K∗ production contains the K∗ vector meson
exchange and, as a result, provides an increasing total cross
section with the energy. This is shown by the dot-dashed line
in Fig. 2(a), which is obtained with the cutoff �K∗ = 1.1 GeV.
(See below for the other cutoff parameters.) However, this
is not consistent with the experimental observation reported
by Ref. [5], which means that the K∗-exchange contribution
should be suppressed. In fact, the contribution from the
higher-spin meson exchanges can be modified by reggeizing
the production amplitude. (See below) In this exploratory
work, however, to avoid additional complexity, we simply
suppressed the K∗ exchange by employing a soft form factor
with �K∗ = 0.9 GeV.

Shown in Fig. 2 are the total cross sections for γp → K∗+�

(left panel) and γ n → K∗0� (right panel). These results
are obtained with the (NSC97a) values for the K∗ and κ

couplings. The solid lines are obtained with �K∗ = 0.9 GeV
and �K = �κ = 1.1 GeV, whereas the s- and u-channel form
factors have � = 0.9 GeV [16]. This gives a good fit to the
measured total cross sections except the near-threshold region.
In the left panel we also give the results obtained with �K∗ =
1.0 GeV (dotted line) and with �K∗ = 1.1 GeV (dot-dashed
line) while keeping the other cutoff parameters. The decrease
of the total cross section by changing �K∗ = 0.9 GeV to
�K∗ = 1.0 GeV shows the destructive interference between
the K exchange and K∗ exchange. With �K∗ = 1.1 GeV,
the vector meson exchange starts to dominate and the total
cross section shows the behavior expected from the vector
meson exchange model. With �K∗ = 0.9 GeV, the K∗ vector
meson exchange is suppressed and, in fact, the kaon exchange
dominates the reaction.

The K meson exchange dominance can be also seen in the
neutral K∗ production shown in Fig. 2(b). The vector meson
exchange does not contribute to this reaction and Fig. 2(b)
shows the behavior expected from the pseudoscalar meson
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FIG. 2. (Color online) Total cross section (a)
for γp → K∗+� and (b) for γ n → K∗0�.
(a) The solid line is obtained with �K∗ = 0.9
GeV, whereas the dashed and dot-dashed lines
are obtained with �K∗ = 1.0 and 1.1 GeV,
respectively. (b) The solid line is the full cal-
culation and the dotted line is obtained from the
t-channel K exchange alone. The experimental
data are from Ref. [5].

exchange model. One can clearly see from the dotted line that
the cross section is almost dominated by the K exchange.
Figure 2 also shows that the cross section for the neutral
K∗ photoproduction is larger than that for the charged K∗
photoproduction. This can be understood by the dominance of
K exchange and the ratio of |g0

γKK∗/g
c
γKK∗ | ≈ 1.53.

A close inspection of our results for total cross sections
with the data of Ref. [5] shows that our model can describe
the charged K∗ meson production process at large energies,
Eγ > 2.3 GeV. But there is discrepancy between the two

at lower energies. This may be ascribed to limiting the s-
and u-channel diagrams to the intermediate lowest octet and
decuplet baryons. We expect that the low energy behavior can
be improved by including the nucleon resonances lying near
the K∗� threshold.

The differential cross sections for the charged and neutral
K∗ photoproduction are given in Figs. 3 and 4, respectively, at
four photon energies, Eγ = 2.0, 2.5, 3.0, and 3.5 GeV. They
are given as functions of the scattering angle θ , which is defined
as the angle between the photon beam and the outgoing K∗
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FIG. 3. (Color online) Differential cross sections for γp → K∗+� at Eγ = (a) 2.0 GeV, (b) 2.5 GeV, (c) 3.0 GeV, and (d) 3.5 GeV. The
solid lines are the full calculation and dashed lines are for the K-meson exchange alone.
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FIG. 4. (Color online) Differential cross sections for γ n → K∗0� at Eγ = 2.0 GeV, (b) 2.5 GeV, (c) 3.0 GeV, and (d) 3.5 GeV. The solid
lines are the full calculation and dashed lines are for the K-meson exchange alone.

vector meson in the center-of-mass frame. In both cases, we
have a forward peak as a result of the K-exchange dominance.
The effects of the other production amplitudes can be barely
seen at large scattering angle region only. The contribution
coming from the scalar κ meson exchange is suppressed in
the considered energy region. We have varied the κ meson
couplings, including the phase around the values of Eq. (18)
with the form factor (40) in the production amplitude, but the
changes are not crucial.

We also employed the Gaussian form factor by taking
the limit of n → ∞ in Eq. (41) and found no significant
difference in the differential cross sections.2 This is because of
the K-meson-exchange dominance. The only difference could
be seen in the backward-scattering region, cosθ � −0.5,
because the form factor with n → ∞ suppresses the

2Note, in some other reactions, the difference between n = 1 and
n → ∞ becomes quite noticeable, e.g., in Ref. [25].
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FIG. 5. (Color online) Spin asymmetries
(a) �, (b) Vxxyy , (c) CBT

zz , and (d) CBR
zz for

γp → K∗+� (solid lines) and for γ n → K∗0�

(dashed lines) at Eγ = 3.0 GeV.

065202-7



YONGSEOK OH AND HUNGCHONG KIM PHYSICAL REVIEW C 73, 065202 (2006)

−0.5 0 0.5 1

cosθ

−1

−0.95

−0.9

−0.85

−0.8

P
σ

−0.5 0 0.5 1

cosθ

−1

−0.95

−0.9

−0.85

−0.8

P
σ

(a) (b)

FIG. 6. (Color online) Parity asymmetry Pσ

(a) for γp → K∗+� and (b) for γ n → K∗0�

at Eγ = 3.0 GeV. The solid lines are the
full calculation, whereas the dashed lines are
obtained without the κ exchange.

differential cross section at large scattering angles more than
that with n = 1. However, it is difficult to distinguish them.

Next we consider the spin asymmetries. Because contri-
butions from the baryon resonances are expected to be seen
mostly in the backward scattering angles, cosθ<0, here we
focus on the spin asymmetries in the range cosθ � −0.5.
Because of the K-exchange dominance, the single asymmetries
for photon, nucleon, and � are close to zero for forward-
scattering angles. As an example, in Fig. 5(a), the single photon
asymmetry is shown, which is defined as

� = σ ‖ − σ⊥

σ ‖ + σ⊥ , (43)

where σ ‖ (σ⊥) is the differential cross section produced by a
photon linearly polarized along the x̂ and (ŷ) axis in the center-
of-mass frame. Also given in Fig. 5 are the tensor polarization
asymmetry Vxxyy of the K∗ vector meson, beam-target double
asymmetry CBT

zz , and beam-recoil double asymmetry CBR
zz . The

solid lines in Fig. 5 are the results for γp → K∗+� and
the dashed lines for γ n → K∗0�. The definition for these
asymmetries and the coordinate system can be found, e.g., in
Refs. [26].

Another interesting feature of K∗ production reaction is
that the scalar κ-meson exchange is allowed. In fact, because
the κ exchange is a natural-parity exchange, whereas the
K meson exchange is an unnatural-parity exchange, their
relative strength can be estimated by measuring the parity
asymmetry defined as [27,28]

Pσ ≡ σN − σU

σN + σU
= 2ρ1

1−1 − ρ1
00, (44)

where σN and σU are the contributions of natural and unnatural
parity exchanges to the cross section, and the asymmetry Pσ

can be expressed in terms of the K∗ density matrix elements.
From its definition, it can be easily found that Pσ → −1 for the
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FIG. 7. (Color online) Total cross section
(a) for γp → K∗+� and (b) for γ n →
K∗0� within K-trajectory exchange model of
Regge approach. The experimental data are from
Ref. [5].
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K exchange, whereas it becomes +1 for K∗ and κ exchanges.
The reaction γ n → K∗0�, where the K∗ exchange does not
contribute, is a good place to estimate the relative strength
between the K exchange and the κ exchange. In our model,
however, the contribution from the κ exchange is suppressed
and Pσ is very close to −1 as can be seen from Fig. 6. (The
photon polarization asymmetry �V [28] also gives the similar
results.)

Before closing, we briefly mention about the Regge
approach to this reaction. To estimate the cross sections of
K∗� production in Regge approach, we have employed the
method of Ref. [29] to Reggeize the amplitudes, namely
the propagator is replaced by the Regge propagator while
keeping the coupling constants as before. The results within
the K-trajectory exchange process are presented in Fig. 7.
Although it underestimates the total cross sections for K∗+�

production, this shows that the energy dependence of the
total cross sections is similar to the case of the tree-level
approximation that is employed in this work. We refrain
from making the full calculations including the K∗-trajectory
exchange and other possible contributions, which is beyond the
scope of this work. However, we expect that the discrepancies
shown in Fig. 7 could be compensated by the K∗-trajectory
exchange, which will dominate in the high-energy region, as
claimed in Ref. [6], because the K∗ trajectory lies above the
K trajectory: αK∗ (t) ≈ 0.25+0.83t and αK (t) ≈ −0.17+0.7t

[29].

IV. SUMMARY

We have investigated photoproduction mechanisms of K∗�
off the nucleon targets. Our calculation includes the t-channel
strange meson exchanges as well as the s- and u-channel inter-
mediate nucleon and hyperon diagrams. Baryon resonances,
which are predicted to have sizable couplings with K∗� [2],
can also participate in the reaction. Our calculation thus can

provide background production mechanisms to investigate
such resonances in K∗� photoproduction. We have found
that the K-meson exchange dominates both the charged and
neutral K∗ photoproduction, which leads to sharp peaks in
the differential cross sections at forward-scattering angles.
Because of the K-exchange dominance, the total cross sections
for the neutral K∗ photoproduction is found to be larger than
those for the charged K∗ photoproduction. Comparison with
the experimental data of Ref. [5] shows that the inclusion of
baryon resonances can improve our model prediction at lower
energies close to the threshold.

As a test for our model, we have made several predictions
on the spin asymmetries that can be measured at current
experimental facilities. One advantage of K∗ photoproductions
over K photoproductions is that it allows the κ-meson exchange
whose existence and properties are still under debate. However,
within our model, we found that the contribution from the
κ meson exchange is suppressed and can hardly be seen in
the reaction of K∗� photoproduction. Therefore, the parity
asymmetry Pσ , which can distinguish the relative strength
between the κ and K exchanges, especially in neutral K∗
production, is found to be Pσ ≈ −1 because of the K-meson
exchange dominance. Measurement of those spin asymmetries
would be helpful to test the reaction mechanisms of K∗
photoproduction such as the dominance of the K meson
exchange.
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