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Q2 evolution of generalized Baldin sum rule for the proton
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The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized
Gerasimov-Drell-Hearn integral provides an important way to investigate the transition between perturbative
QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure
function F1, which until recently had not been measured at low Q2 and large x, i.e., in the nucleon resonance
region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at
Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements
of the generalized Baldin integral for the proton in the Q2 range of 0.3 to 4.0 GeV2.
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I. INTRODUCTION

Polarizabilities are the fundamental quantities that charac-
terize the response of a composite system to static or slowly-
varying external electromagnetic fields. The Baldin sum rule
connects the sum of the electric and magnetic polarizabilities
of the nucleon (α + β) to the integral of the ν2-weighted
nucleon unpolarized photoabsorption cross section [1,2],

α + β = 1

4π2

∫ ∞

ν0

σ 1
2
+ σ 3

2

ν2
dν. (1)

Here, σ 1
2

and σ 3
2

are the photoabsorption cross sections of 1/2
and 3/2 helicity states, respectively; ν is the energy carried
by the photon; and ν0 is the pion photoproduction threshold
energy. The polarizabilities α and β are defined in the low
energy expansion of the Compton scattering amplitudes. In
particular, α + β represents the helicity nonflip part of the
electromagnetic polarizability. The Baldin sum rule establishes
a relation between the static nucleon properties (electric and
magnetic polarizabilities) and the dynamic nucleon excitation
spectrum, such that these polarizabilities can be extracted
from precision measurements of the photoabsorption cross
sections in real Compton scattering. For the proton, recent
measurements give (α + β)p = 13.69 ± 0.14 [3].

The Baldin sum rule is the unpolarized analog of the
Gerasimov-Drell-Hearn (GDH) sum rule [4,5] and, in analogy
to the generalized GDH sum rule [6], Drechsel, Pasquini, and
Vanderhaeghen have used dispersion relation formalism [7,8]
to extend the Baldin sum rule to virtual Compton scattering
(Q2 > 0, where Q2 is the square of four-momentum transfer)
[9]. We present here first precision measurements of this
extended Baldin sum rule for the proton in the Q2 range of 0.3
to 4.0 GeV2.

Extending the GDH and Baldin sum rules to virtual
Compton scattering provides a tool to extract generalized
polarizabilities by means of radiative electron scattering.
These generalized polarizabilities are functions of the Q2

of the incident photon and describe, in some sense, the
spatial distribution of the polarizabilities. After a proof of
principle at SLAC [10], the first unpolarized virtual Compton

scattering observables have been obtained from MAMI at
Q2 = 0.33 GeV2 [11], and recently at Jefferson Lab at higher
Q2 (1 < Q2 < 2 GeV2) [12,13].

The virtual Compton scattering process includes the ab-
sorption of the virtual photon, which is related to inclusive
electron-nucleon scattering. At finite Q2, the generalized sum
rule gives

α(Q2) + β(Q2) = 1

4π2

∫ ∞

ν0

K

ν

σ 1
2
+ σ 3

2

ν2
dν

= e2M

πQ4

∫ x0

0
2xF1(x,Q2)dx, (2)

where the integral on the right hand side is the second
Cornwall-Norton moment [14] of the nucleon structure func-
tion F1, barring the elastic contribution. Here, M is the
nucleon mass. According to Hand’s definition [15], K =
(W 2 − M2)/2M is the equivalent real photon energy needed
to excite the nucleon to mass W. The Bjorken scaling variable
is x = Q2/2Mν, and x0 corresponds to pion threshold.

In the limit of large Q2, the coupling constant of quantum
chromodynamics (QCD) is very small, and perturbative QCD
provides an excellent interpretation of the deep inelastic
scattering (DIS) process of electron-proton scattering. In
the DIS region, the nucleon structure functions FL (purely
longitudinal), F1 (purely transverse), and F2 are related by

2xF1 =
(

1 + 4M2x2

Q2

)
F2 − FL. (3)

On the limit of high Q2, 2xF1 � F2, and the second moment
of the structure function F1 is less than the first moment of
the structure function F2 which is nearly a constant above
Q2 = 2 GeV2 [16–19]. Therefore, the integrand in Eq. (2) is
less than a constant, and the generalized sum rule (α + β) will
go to 0 as Q2 goes to ∞.

At the larger distance scales probed at low Q2, the coupling
constant of QCD is large, and the scattering process is better
described in terms of hadronic degrees of freedom using Chiral
Perturbation Theory. The generalized sum rule, then, tends to
the Baldin sum rule of real Compton scattering at Q2 = 0.
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Between these two regions, a rigorously descriptive theory
is lacking at present. Here, the sum rule is dominated
by the resonance region structure function. Measuring the
generalized Baldin sum rule in this transition region (Q2 up
to a few GeV2) provides an important window to understand
the transition from DIS incoherent processes to the resonance-
dominated coherent processes. In practice, we measure the
second moment of F1 in the inclusive electroproduction
process, and then extract the generalized Baldin sum rule.

II. EXPERIMENT OVERVIEW

To calculate the integral, F1 needs to be extracted from
the measured cross sections in both the resonance and DIS
regions. This requires accurate knowledge of the separated
structure function R in both regions, where R = σL/σT is the
ratio of longitudinal to transverse cross sections. In contrast to
the high quality R measurements available in the DIS regime,
there were very few R measurements in the resonance region
prior to Jefferson Lab experiment E94–110 [20]. Therefore,
no precise inclusive F1 data in the resonance region were
available either to constrain the resonance analysis (such as
the MAID analysis [21], etc.) or to accurately compute the low
Q2 generalized Baldin sum rule.

E94–110 measured inclusive scattering of unpolarized
electrons from a hydrogen target in Hall C at Jefferson
Lab (JLab) [20]. The data were accumulated in the nucleon
resonance region [20,22], as well as the elastic region with
absolute normalizations to better than 2% [23]. The kinematic
settings of this experiment were chosen to extract the nu-
cleon structure function R using the Rosenbluth technique
at M2 � W 2 � 4 GeV2. The Q2 range covered by our data
set was between 0.3 and 5 GeV2. A complete description
of the data analysis and systematic uncertainty estimations
may be found in Refs. [20,22,23]. The longitudinal-transverse
separations allowed the nucleon structure functions F2, F1

(purely transverse), and FL (purely longitudinal) to be ex-
tracted independently. Formally,

R = FL

2xF1
= F2

2xF1

(
1 + 4M2x2

Q2

)
− 1. (4)

III. ANALYSIS AND RESULTS

A sample of the extracted 2xF1 data (2xF1 ∼ σT ) in the
nucleon resonance and DIS regions is shown in Fig. 1, as a
function of Bjorken x at four different Q2 values. The open
triangles in the figure represent the data extracted from the
E94–110 Rosenbluth separations, and the open crosses are the
data extracted from SLAC Rosenbluth data [24]. The low x
NMC data (0.0045 � x � 0.25) are also shown in open circles,
which are calculated from the NMC R and F2 results [25].
While 2xF1 = 0 at x = 0, NMC results show that 2xF1 >

0.18 at x = 0.0045 and Q2 � 0.75 GeV2. A significant drop-
off of 2xF1 should take place at x < 0.0045. The solid curve
was calculated using the R and F2 parametrization of E94–110
[22] at W 2 < 4 GeV2, and using the parametrization of R and
F2 from SLAC DIS experiments [24,26] at W 2 > 4 GeV2.
Note that the solid curve well reproduces the data in both the
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FIG. 1. 2xF1 is plotted as a function of Bjorken x, at four
different Q2 values. The three arrows indicate where the three primary
resonance enhancements are located.

resonance and DIS regions. The dashed curve in the figure was
calculated using only the parametrization of R and F2 from
SLAC DIS experiments [24,26]. A comparison between the
JLab E94–110 and SLAC data sets was done at 3.5 < W 2 <

4 GeV2, and the two data sets were found to be consistent
within 1% in this overlap region [22].

As shown in Fig. 1, we calculate the second moment of F1

by integrating the area below the solid curve over the Bjorken
x range 0 < x < x0. The area corresponding to W 2 < 4 GeV2

represents the resonance contribution to the moment and is
calculated using the R and F2 parametrization of E94–110 [22];
While the area corresponding to W 2 > 4 GeV2 is the DIS
contribution, and calculated using SLAC parametrization of R
and F2 [24]. The region below x ∼ 0.1 is extrapolated using the
same SLAC parameterization, and the uncertainty associated
with this low x extrapolation is less than 1.8% for Q2 up to a
few GeV2.

Using this approach, we separated the generalized Baldin
sum rule into two pieces, contributions from the resonance and
DIS regimes,

α(Q2) + β(Q2) = e2M

πQ4

∫ x0

xres

2xF1(x,Q2)dx

+ e2M

πQ4

∫ xres

0
2xF1(x,Q2)dx, (5)

where xres corresponds to W 2 = 4 GeV2. The uncertainty
of this extracted generalized sum rule is less than 3.4%,
dominated by the normalization systematic uncertainties of
the measured cross sections (∼2%) [22,24], as well as
fitting uncertainties (∼2%) [22,24,26] and low x extrapolation
uncertainty (∼1.8%).

Table I lists the generalized sum rule values at 11 different
Q2 values, as well as the resonance and DIS contributions
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TABLE I. Table of the generalized Baldin sum rule values
and the associated uncertainty, as well as the resonance and DIS
contributions to the sum rule, for the Q2 values given.

Q2 Sum rule Error Resonance DIS
(GeV2) (10−4 fm3) (10−4 fm3) (10−4 fm3) (10−4 fm3)

0.3 3.0673 0.0871 2.7137 0.3536
0.4 2.2444 0.0636 1.9513 0.2931
0.6 1.2033 0.0341 0.9894 0.2139
0.8 0.6945 0.0197 0.5306 0.1639
1.0 0.4367 0.0124 0.3053 0.1314
1.5 0.1813 0.0051 0.0979 0.0834
2.0 0.0972 0.0028 0.0399 0.0573
2.5 0.0604 0.0017 0.0188 0.0416
3.0 0.0412 0.0011 0.0099 0.0313
3.5 0.0299 0.0009 0.0055 0.0243
4.0 0.0226 0.0006 0.0032 0.0194

separately. Note that the generalized Baldin sum rule extracted
from this experiment is not the same as the sum rule extracted
from virtual Compton scattering [13]. While these two
quantities should converge at Q2 = 0, the measured process
of this experiment involves two virtual photons, as compared
to one virtual photon in virtual Compton scattering. The latter
α + β value is 1.51 ± 0.25 (10−4 fm3) at Q2 = 0.92 GeV2

[13], whereas this result is 0.4367 ± 0.0124 (10−4 fm3) at
Q2 = 1.0 GeV2.

The extracted extended sum rule value is plotted as a
function of Q2 in Fig. 2, along with the Baldin sum rule at
Q2 = 0. It clearly shows that, unlike the generalized GDH
sum rule, the generalized Baldin integral evolves smoothly
to the Q2 = 0 point as has been predicted [9]. We also plot
two MAID estimates, one for the π channel only, and another
for the π + η + ππ channels [27,28], as a comparison to our
measurement. The latter agrees better with our data, clearly

Q2 (GeV2)

(α
+

β)
p
 (

1
0

-4
fm

3
)

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Q2 (GeV2)

10
-3

10
-2

10
-1

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

FIG. 2. A comparison of MAID estimates with the extracted sum
rule value at different Q2.
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FIG. 3. A comparison of MAID estimates with the generalized
Baldin integral weighted by a factor of Q4/2M , at different Q2, as
well as the resonance and DIS contributions.

indicating that accurate modeling of this integral requires
multiple resonance contributions. The discrepancy between
the data and MAID estimate at Q2 > 1 GeV2 (see figure inset) is
likely due to DIS and higher mass contributions of the extracted
integral.

To compare the Q2 evolution of the resonance and DIS
contributions of the generalized Baldin integral, we plot the
sum rule value, resonance and DIS contributions in Fig. 3,
each multiplied by a factor of Q4/2M , as a function of Q2,
along with the two MAID estimates, and one DIS estimate
calculated from the SLAC parametrization [24,26]. The figure
shows that the resonance contribution extracted from our data
set agrees well with the three channel MAID estimate down to
Q2 = 0.6 GeV2.

The generalized sum rule is mainly saturated by the
resonance contribution at Q2 � 1 GeV2, while the DIS part
dominates at Q2 � 2 GeV2. At 1 < Q2 < 2 GeV2, a transition
from partonic incoherent processes to resonance dominated
coherent processes occurs. Also, the value of Q4(α + β)/2M ,
which is proportional to the second moment of structure
function F1, is nearly flat at Q2 > 2 GeV2. This behavior
is predicted by the perturbative description of DIS processes
at large Q2 [16,17].

IV. CONCLUSION

In summary, we have utilized new inclusive electron-
proton scattering cross section results in the resonance region,
allowing for extraction of the structure functions R,F2, FL,
and F1. The F1 data were used to calculate the generalized
Baldin sum rule over the Q2 range from 0.3 to 4.0 GeV2.
A transition from partonic incoherent processes to resonance
dominated coherent processes is observed at Q2 between 1
and 2 GeV2. Resonance models of this integral need to include
higher mass contribution. The generalized Baldin sum rule is
found to evolve smoothly with Q2 to the real photon point.
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