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The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland

Jan Pluta§

Faculty of Physics, Warsaw University of Technology, PL-00661 Warsaw, Poland
(Received 14 February 2006; published 26 June 2006)

Effects of the choice of the freeze-out hypersurface and resonance decays on the Hanbury-Brown–Twiss
(HBT) interferometry in relativistic heavy-ion collisions are studied in detail within a class of models with single
freeze-out. The Monte-Carlo method, as implemented in THERMINATOR, is used to generate hadronic events
describing production of particles from a thermalized and expanding source. All well-established hadronic
resonances are included in the analysis as their role is crucial at large freeze-out temperatures. We find that
presence of the the short-lived resonances increase the pionic HBT radii by about 1 fm. We use the two-particle
method to extract the correlation functions, which allows us to study the Coulomb effects. We find that the pion
HBT data from the Relativistic Heavy Ion Collider are fully compatible with the single freeze-out scenario,
pointing at the shape of the freeze-out hypersurface where the transverse radius is decreasing with time. Results
for the single-particle spectra for this situation are also presented. Finally, we present predictions for the kaon
femtoscopy.
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I. INTRODUCTION

Femtoscopy is one of the most important and promising
techniques used in relativistic heavy-ion collisions, as it reveals
the spacetime characteristics of the fireball formed in the
reaction. The study of two-particle correlations of identical
particles is known as the Hanbury-Brown–Twiss (HBT) inter-
ferometry [1–5], whereas together with the extension to non-
identical particles it has been generically termed femtoscopy
[6,7], referring to studies of systems at the femtometer scale.
For a recent review of various aspects, both theoretical and
experimental, of the field the reader is referred to the review
by Lisa, Pratt, Soltz, and Wiedemann [8]. There are several
questions concerning the heavy-ion data for the HBT radii. The
major puzzle is the practically constant value of the HBT radii
over the huge reaction energy range

√
sNN = 20–200 GeV.

The other surprising (when confronted with expectations based
on earlier model predictions) feature found at the Relativistic
Heavy Ion Collider (RHIC) is the proximity of the value of
Rout/Rside to unity, indicating a very short emission time of
pions from the source. These challenges are to be faced with
theoretical descriptions. As a matter of fact, a simultaneous re-
production of all HBT radii poses a serious problem to models
with limited parametric freedom, as well as to hydrodynamical
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simulations or transport codes (for a recent study, see Ref. [9],
where Rside and Rlong are found to be in agreement with
data, whereas Rout is predicted to be larger that the observed
values). The above puzzles and problems led to significant
revision of our understanding of the RHIC physics, with such
important conclusions as the absence of the latent heat in
hadronization [8], which would have led to a much longer-lived
fireball, or the introduction of the concept of the length of
homogeneity [10], effectively reducing the observed radii to
smaller values than the geometric size of the whole source.

In the present article we study the femtoscopy at RHIC
in a class of hydrodynamics-inspired models, all with a
single freeze-out [11]. Our analysis uses THERMINATOR [12],
the thermal heavy ion generator, for the single-freeze-out
approach, which is a very flexible tool for studies of this type.
The single-freeze-out concept, which identifies the thermal
and kinetic freeze-outs, may be viewed as an approximation
to a more detailed evolution, taking into account different
time scales for various processes. Nevertheless, the single
freeze-out complies to the explosive scenario at RHIC [13]
and is definitely worth a detailed study in the context of
femtoscopy. Moreover, the approach reproduces very effi-
ciently the particle abundances, the transverse-momentum
spectra, including particles with strangeness [14], and pro-
duces very reasonable results for the resonance production
[15], the balance functions in rapidity [16], the elliptic flow
[17], and the transverse energy [18]. Approximate predictions
of the model for the HBT radii were already presented in
Refs. [17,19].
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In particular, in this work we deal in detail with two
important issues. The first one is the influence of the chosen
freeze-out hypersurface � on the model prediction for the
pionic HBT radii. We study several parametrizations of �:
the one from the original single-freeze-out model [11], as
well as three hypersurfaces from the blast-wave model [20,21]
and its extension that account for the changes of the shape
in the t-ρ (time-transverse radius) space with the help of
a single parameter, a. We find significant dependence here,
especially for the Rlong radius. The analysis favors the shape
of the freeze-out hypersurface where the transverse radius
is decreasing with time. We also present the results for the
single-particle spectra for the best freeze-out model out of
the four studied, which turns out to be the modified blast-wave
model with parameter a = − 0.5. Clearly, the HBT correlation
data place constraints on the freeze-out geometry and our study
helps to put quantitative bounds on model parameters.

The second issue studied is the detailed role of hadronic
resonances on the two-particle pion correlation. Although the
basic features have been known since the very early days of
the field [1,22–24], there have been no HBT studies at large
temperatures (T ∼ 170 MeV) taking into account sufficiently
many resonances. The inclusion of practically all resonances
at such temperatures is important, as revealed by the studies of
particle ratios [25–30] and the transverse-momentum spectra
[11], where the resonances significantly decrease the inverse-
slope parameter [31]. The presence of resonances plays an
essential role also in femtoscopy, supplying the separation
distributions with long exponential tails and thus providing
non-Gaussian features in the HBT correlation functions. For
a very recent study, see Ref. [32]. We should stress that
the models termed here as blast wave have the blast-wave
geometry; however, they do include all resonances, contrary
to many other applications, where no resonance feeding is
present.

Our analysis includes the Coulomb effects, which is a
novel feature in this type of model study. We take into
account the Coulomb interactions in the correlation functions
with an exact form of the wave function of the pion pair.
For comparison, we also study the influence of the Bowler-
Sinyukov approximation [33,34] used in experiments on the
extracted HBT radii.

Our investigation of the role of resonances has similar goals
as the basic work of Wiedemann and Heinz [22]. The most
important difference is the use of the two-particle correlation
function in our study, which is possible and straightforward
in the Monte Carlo approach, where we can directly count
the pion pairs. With THERMINATOR we are able to follow
exactly the experimental procedures, including the fact that
the analysis is carried out in the local comoving frame of
the pion pair (LCMS). This is one of the major advantages
of our approach. Moreover, we include the complete set of
resonances that may decay in cascades. Other differences
include a somewhat higher value of the temperature (165 vs.
150 MeV), as well as different transverse density and flow
profiles. Nevertheless, our qualitative conclusions are similar,
with the important difference concerning the role of short-lived
resonances, which in our case increase the HBT radii by about
1 fm. We discuss this issue in more detail in Sec. V.

Finally, we present predictions for the kaon femtoscopy. We
find that when the pion and kaon results are plotted together,
they comply to the mT -scaling conjecture.

The article is constructed as follows: In Sec. II we define a
class of the hydrodynamics-inspired models with resonances
that are used in our analysis of the correlation functions.
Section III is a short introduction to the HBT formalism. In
Sec. IV we present our main results on the HBT radii.
The effects of the resonances on the correlation function
are discussed in Sec. V. Section VI contains our predictions
concerning the kaon correlation functions.

II. HYDRODYNAMICS-INSPIRED MODELS OF
FREEZE-OUT

The hydrodynamics-inspired models have become a very
popular tool in analyzing the data collected in relativistic
heavy-ion collisions [35,36]. The most popular model belong-
ing to this class is the blast-wave model of Schnedermann,
Sollfrank, and Heinz [20]. In the original formulation it
was designed to describe boost-invariant and cylindrically
symmetric systems, hence it is best suited for description
of the midrapidity region of the central Au+Au collisions
studied at the top RHIC energies. Other models of this
type include the Buda-Lund model [37,38] and the Cracow
single-freeze-out model [11,14,19]. A distinctive feature of the
Cracow model is that it includes the complete set of hadronic
resonances. This feature allows for a uniform description of
the chemical and thermal freeze-outs. In this work we consider
the boost-invariant and cylindrically symmetric systems and
use THERMINATOR [12] to include the resonance effects. In this
way, the blast-wave and Cracow models are treated on the
same footing; the contributions from the resonance decays
that are very often neglected in the studies based on the
blast-wave model are now taken completely into account. The
important difference between the considered models resides in
the definition of the freeze-out hypersurface; for the blast-wave
model the freeze-out hypersurface is typically defined by
the condition of the constant laboratory time, whereas
for the Cracow model the freeze-out hypersurface is defined by
the condition of the constant proper time. In the present article
we take into consideration these two cases and other options.
The four cases considered are presented in Fig. 1, where the
lines show the freeze-out hypersurfaces at rz = 0. Because of
the measure 2πρdρ the parts of the hypersurface with larger
values of ρ are more relevant in the evaluation of observables.

The boost-invariant, cylindrically symmetric freeze-out
models are distinguished by different freeze-out curves in
the t-ρ space (t is the laboratory time measured at rz = 0,

whereas ρ =
√

r2
x + r2

y is the distance from the collision

axis). In our parametrization we limit the value of ρ to
ρmax, which is a model parameter, controlling the transverse
size. The most popular blast-wave parametrization uses the
freeze-out condition t = const. In our calculations we also
consider more general parametrization of the form t = τ + aρ,
where τ and a are constants. For a = 0 we reproduce the
standard case. By studying the cases with different values of
a we may analyze the effect of the shape of the freeze-out
hypersurface on different physical observables, including the
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FIG. 1. Various parametrization of the freeze-out hypersurface.
The curves show the dependence of time t on the radial distance

ρ =
√

r2
x + r2

y at rz = 0 for the four models considered.

HBT radii. The positive (negative) values of the parameter a
correspond to the freeze-out curves that go up (down) in the
Minkowski t-ρ space (cf. Fig. 1). It is important to realize
that the freeze-out curves with negative a resemble the shape
of the freeze-out curves obtained typically in hydrodynamic
calculations; however, our transverse sizes resulting from
fitting the transverse-momentum spectra are around 8–9 fm,
larger than the corresponding values in hydrodynamics, which
are close to the initial overlap size. However, note the recent
results of Refs. [39,40]. In the case of negative a the matter
placed closer to the surface of the system decouples earlier,
whereas the matter inside the system decouples later, only
when the temperature in that region drops down because of
expansion of the system. Consequently, by studying the effect
of the freeze-out curve on the extracted HBT radii we may
learn which freeze-out models are favored by the data.

A. Emission function

Our starting point is the formula for the pion emission
function that takes into account sequential decays of the
resonances [14,19,41]. A contribution from one particular
decay chain c, illustrated in Fig. 2, is given by the following
equation:

Sc(x1, p1) = Ep1

dN

d3p1d4x1

=
∫

d3p2

Ep2

B(p2, p1)
∫

dτ2�2e
−�2τ2

×
∫

d4x2δ
(4)

(
x2 + p2τ2

m2
− x1

)
. . .

×
∫

d3pN−1

EpN−1

B(pN−1, pN−2)

×
∫

dτN−1�N−1e
−�N−1τN−1

×
∫

d4xN−1δ
(4)

(
xN−1 + pN−1τN−1

mN−1
− xN−2

)

x

x

x

N-1
2

2

1

freeze-out hypersurface

ττ

x
N

initial resonance

final pion

N-1
N

τ

FIG. 2. (Color online) The cascade of resonance decays: the
initial resonance formed on the freeze-out hypersurface at the point
xN with momentum pN decays after proper time τN at the point xN−1.
We track here one decay product, which decays in sequence until the
final pion is formed at the point x1.

×
∫

d3pN

EpN

B(pN, pN−1)
∫

dτN�Ne−�N τN

×
∫

d�µ(xN )pµ

Nδ(4)

(
xN + pNτN

mN

− xN−1

)
× fN [pN · u(xN )]. (1)

Here d�µ is a three-dimensional element of the freeze-out
hypersurface � and the position of a resonance that decouples
on the freeze-out hypersurface � is denoted by xN , its
four-momentum by p

µ

N , and its mass by mN . The function
fN is the thermal distribution function depending on the
product of the resonance four-momentum pN and the local
four-velocity u(xN ). The resonance decays at the spacetime
point xN−1 and produces the tracked daughter particle with
the four-momentum p

µ

N−1. In the first step of the simulation of
the decay, the proper time τN is generated randomly according
to the exponential decay law (1/�N ) exp(−�NτN ), where
�N is the resonance width. Then, in the second step, the
position xN−1 is obtained from the formula x

µ

N−1 = x
µ

N +
(pµ

N/mN )τN . The momentum of the daughter particle p
µ

N−1 is
determined purely by the available phase space, as described in
Refs. [12,19]. In Eq. (1) the phase-space effects are taken
into account in terms of the splitting functions B (pN, pN−1)
defined in Ref. [19]. If the daughter particle is a resonance, the
above scheme is repeated until the final stable particle (pion,
kaon, nucleon, or antinucleon) is produced. The spacetime
position and four-momentum of the final particle is denoted
as x1 and p1. The cascade character of the process is reflected
by the iterative structure of Eq. (1). The complete emission
function is obtained as the sum over all possible decay
channels c,

S(x, p) =
∑

c

Sc(x, p). (2)
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We note that all considered particles are on the mass shell with
the energies Ep =

√
m2 + p2.

B. Distributions of the primordial particles

Our Monte Carlo simulation of the decay process starts
with the generation of hadronic distributions at the moment
of freeze-out. We shall refer to such distributions as the
primordial distributions. All hadronic states appearing in the
Particle Data Tables [42] are included in this procedure.
Because we consider a boost-invariant and cylindrically
symmetric system, the primordial distributions in rapidity, y,
and transverse momentum, p⊥, are of the form

dN

dyd2p⊥
=

∫
d�µ(xN )pµ

Nf [pN · u(xN )]

= 1

(2π )3

∫ 2π

0
dφ

∫ ∞

−∞
dα‖

∫ 1

0
dζρ(ζ )τ̃ (ζ )

×
[
m⊥ cosh(α‖ − y)

dρ

dζ
− p⊥ cos(φ − ϕ)

dτ̃

dζ

]
× (exp{βm⊥ cosh[α⊥(ζ )] cosh(α‖ − y)

−βp⊥sinh[α⊥(ζ )] cos(φ − ϕ) − βµ} ± 1)−1.

(3)

Here m⊥ =
√

m2 + p2
⊥ is the transverse mass and ϕ is the

momentum azimuthal angle. The quantities φ, α‖, and ζ are
used to parametrize the freeze-out hypersurface: φ is the
azimuthal angle, tan φ = ry/rx, α‖ is the spacetime rapidity,
and α‖ = 1/2 ln[(t + rz)/(t − rz)], whereas ζ parametrizes the
freeze-out curve obtained as the projection of the freeze-
out hypersurface on the rz = 0 plane. The freeze-out curve
is defined by the mapping ζ → [τ̃ (ζ ), ρ(ζ )] relating the
freeze-out time and position. At rz = 0 the variable τ̃ =√

t2 − r2
z coincides with the laboratory time, whereas ρ =√

r2
x + r2

y is the distance from the collision axis. The function

α⊥(ζ ) conveniently parametrizes the transverse collective flow,
v⊥(ζ ) = tanhα⊥(ζ ). We recall that the longitudinal flow has
the form vz = rz/t [43]. The variable β appearing in Eq. (3)
is the inverse temperature, β = 1/T , whereas the plus-minus
sign is related to the statistics (in Eq. (3) and in the expressions
below the upper sign corresponds to fermions, whereas the
lower sign corresponds to bosons). With the help of the
modified Bessel functions, Eq. (3) may be rewritten in a more
compact form

dN

dyd2p⊥
= 1

2π2

∞∑
n=1

(∓)n+1enβµ

∫ 1

0
dζρ(ζ )τ̃ (ζ )

×
{
m⊥

dρ

dζ
K1[nβm⊥ cosh α⊥]I0[nβp⊥sinhα⊥]

−p⊥
dτ̃

dζ
K0[nβm⊥ cosh α⊥]I1[nβp⊥sinhα⊥]

}
.

(4)

C. Cracow single-freeze-out model

Different boost-invariant and cylindrically symmetric mod-
els differ in the choice of the freeze-out curve [τ̃ (ζ ), ρ(ζ )]. In
the Cracow single-freeze-out model [11,14,19] the freeze-out
hypersurface is specified by the following equations:

τ̃ = τ cosh α⊥(ζ ), ρ = τ sinhα⊥(ζ ), τ = const., (5)

which are equivalent to the condition

τ̃ 2 − ρ2 = t2 − r2
z − r2

x − r2
y = τ 2. (6)

The parametrization of Eqs. (5) implies that the freeze-out of
the fluid elements placed farther away from the center happens
at later times (see Fig. 1). The velocity profile in the Cracow
model has the Hubble-like structure

v = r
t
. (7)

The use of Eqs. (5) and (7) in Eq. (3) and the change of the
integration variable ζ (first to α⊥ and later to ρ) leads to the
distribution of the primordial particles in the six-dimensional
space of space-time positions and momenta

dN

dydϕp⊥dp⊥dα‖dφρdρ

= 1

(2π )3
[m⊥

√
τ 2 + ρ2 cosh(α‖ − y) − p⊥ρ cos(φ − ϕ)]

×
{

exp

[
βm⊥

√
1 + ρ2

τ 2
cosh(α‖ − y)

−βp⊥
ρ

τ
cos(φ − ϕ) − βµ

]
± 1

}−1

. (8)

The parameters of the model are τ and ρmax. Note that
according to Eq. (7) ρmax also sets an upper bound for the
transverse velocity.

D. Generalized blast-wave model

As the second option considered in our calculations we
choose the generalized blast-wave parametrization

τ̃ = τ + aρ, tanhα⊥(ζ ) = v⊥ = const. (9)

For a = 0 we obtain the standard blast-wave parametrization
corresponding to the assumption that the freeze-out process
happens at constant laboratory time t = τ (in the central region
where α‖ = 0). For simplicity we assume that the transverse
flow profile is constant. For a > 0 (a < 0 ) the straight line
defining the freeze-out in the Minkowski space at rz = 0 goes
upwards (downwards). Similarly to the case of the Cracow
model, the use of the parametrization (9) in Eq. (3) gives the
six-dimensional density

dN

dydϕp⊥dp⊥dα‖dφρdρ

= 1

(2π )3
(τ + aρ)[m⊥ cosh(α‖ − y) − ap⊥ cos(φ − ϕ)]
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×

exp


 βm⊥√

1 − v2
⊥

cosh(α‖ − y)

− βp⊥v⊥√
1 − v2

⊥
cos(φ − ϕ) − βµ


 ± 1




−1

. (10)

The parameters of the model are a, τ, ρmax, and v⊥.

III. THE HBT FORMALISM

In this section we present the standard formalism used to
describe the Hanbury-Brown–Twiss correlations. For a recent
review the reader is referred to Ref. [8].

A. Two-particle correlation function

Consider the two-particle distribution expressed by the two-
particle emission function,

W2( p1, p2) = Ep1Ep2

dN

d3p1d3p2

=
∫

S(x1, x2, p1, p2)d4x1d
4x2. (11)

The correlation function is then defined as,

C( p1, p2) = W2( p1, p2)

W1( p1)W1( p2)
, (12)

where

W1( p) = Ep

dN

d3p
=

∫
d4xS(x, p) (13)

with S(x, p) given by Eqs. (1) and (2).
One may assume that the two-particle production prob-

ability is influenced only by the two-particle interaction. In
this case one neglects the many-body interactions between
the produced particles as well as the event-wide correlations
(e.g., the effects induced by the momentum conservation).
Then, the two-particle emission function may be expressed as
the product of the single-particle emission functions and the
squared wave function of the pair. After taking into account
the smoothness approximation one can write

C(q, k) =
∫

d4x1S(x1, p1)d4x2S(x2, p2)|�(k∗, r∗)|2∫
d4x1S(x1, p1)

∫
d4x2S(x2, p2)

. (14)

We define the momentum difference of the particles as

q = (q0, q) = (
Ep1 − Ep2 , p1 − p2

)
, (15)

the sum of their momenta as

P = (P0, p) = (
Ep1 + Ep2 , p1 + p2

)
, (16)

and the average momentum of the pair as

k = (k0, k) = 1
2

(
Ep1 + Ep2 , p1 + p2

)
. (17)

The generalized momentum difference is defined by the
formula

q̃ = q − P (q · P )

P 2
, (18)

which in the pair rest frame (PRF) is reduced to the form

q̃ = (0, 2k∗). (19)

For the particles with equal masses we use the notation

q inv = 2k∗. (20)

The space and time separations of the members of the pair are
r = r1 − r2 and t = t1 − t2. If calculated in PRF they are
denoted as r∗ and t∗. Both k∗ and r∗ appear as the arguments
of the wave function in Eq. (14) because PRF is the natural
reference frame for the representation of the wave function
structure.

In general, the HBT analysis may be performed in any
reference frame. One determines the correlation function as a
function of the relative-momentum components in the selected
frame. Then the inverse widths of the correlation functions
yield the size parameters of the system in this frame. In
the present article we use the Bertsch-Pratt decomposition
[44–46] of the mean and relative three-momenta into three
components. The long axis coincides with the beam axis,
the out axis is determined by the direction of the average
transverse momentum of the pair, denoted later by kT , and the
side direction is perpendicular to the other two axes. Following
the RHIC experiments we choose to perform the analysis in
the longitudinal comoving system (LCMS), which is defined
as a system where klong = 0. Note that this system is different
for each pair considered. The HBT radii presented below are
always obtained in the LCMS system. In this work the notation
is used in which the values in PRF are denoted by an asterisk,
whereas the values without asterisk are defined in LCMS.

By the definition of the Monte Carlo method, the numerical
equivalent of the integrals (14) is the summation over particles
or pairs of particles generated by the Monte Carlo procedure.
The numerical calculation of the correlation functions is done
in bins, which may be expressed with the help of the function

δ( p) =



1 if |px | � 
2 , |py | � 

2 , |pz| � 
2

0 otherwise,
(21)

then the correlation function may be expressed simply as

C(q, k)

=

∑
i

∑
j 	=i

δ(q − pi + pj )δ

[
k − 1

2 ( pi + pj )
]|�(k∗, r∗)|2

∑
i

∑
j

δ(q − pi + pj )δ

[
k − 1

2 ( pi + pj )
] .

(22)

In our numerical calculations we use  = 5 MeV.

B. Wave function of the pion pair

Various analyses of the HBT correlations use different
approximations for the full pion wave function �. In the
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FIG. 3. (Color online) Transverse-mass spectra at midrapidity
of pions (open circles) and kaons (open squares) for the blast-
wave model with a = −0.5, T = 165.6 MeV, µB = 28.5 MeV, τ =
8.55 fm, ρmax = 8.92 fm, and v⊥ = 0.311 c. The data points (stars
for pions and triangles for kaons) come from the STAR Collaboration
[47].

noninteracting system or in the interacting but nonrelativistic
case the motion of the center of mass can be separated and one
deals with the relative motion only. The simplest relative wave
function ignores all dynamical interactions and has the form

�Q = 1√
2

(
eik∗r∗ + e−ik∗ r∗)

, (23)

where symmetrization over the two identical particles has been
performed. Therefore,

|�Q|2 = 1 + cos (2k∗r∗). (24)

Correlation functions calculated according to Eqs. (22) and
(24) represent the ideal Bose-Einstein correlation functions.
They are also very useful in the model studies, because they
can be calculated analytically for simple Gaussian emission
functions.

In more realistic calculations, the Coulomb interaction of
the charged pion pairs should be taken into account, which
may be achieved through the use of the wave function

�QC = eiδc

√
Ac(η) 1√

2
[e−ik∗ r∗

F (−iη, 1, iξ+)

+ eik∗ r∗
F (−iη, 1, iξ−)], (25)

where δc is the Coulomb phase shift, Ac is the Coulomb
penetration factor (sometimes called the Gamow factor), ξ± =
k∗r∗ ± k∗r∗ = k∗r∗(1 ± cos θ∗), η = (k∗a)−1 with a being
the Bohr radius of the pair, and F is the confluent hyperge-
ometric function. The angle between k∗ and r∗ is denoted
by θ∗. The correlation function obtained in this way can be
compared directly to the correlation function obtained from
the experiment. The complete wave function of the pion pair
contains a contribution from the strong interaction as well;
however, these are small in the isospin I = 2 channel and are
neglected.
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FIG. 4. (Color online) The results for Cracow model: λ and the
HBT radii Rout, Rside, and Rlong shown as functions of the transverse
momentum of the pion pair. The squares show the full calculation with
resonances based on the method of Sec. III, down-triangles show the
same without resonances, and the up-triangles show the calculation
with resonances and the Coulomb corrections made according to the
Bowler-Sinyukov method, whereas the circles show the data of the
STAR Collaboration for

√
sNN = 200 GeV [47]. The lines are drawn

to guide the eye. We note that the inclusion of resonances increases
the radii by about 1 fm. The model parameters are as follows: T =
165.6 MeV, µB = 28.5 MeV, τ = 10.55 fm, and ρmax = 7.53 fm.

C. Numerical calculation of correlation functions

The correlation functions analyzed in this work are obtained
through a numerical implementation of Eqs. (22) and (23)
(no Coulomb effects) or Eqs. (22) and (25) (Coulomb effects
included). Particles generated by THERMINATOR are grouped
into events, as in experiment. In each event every charged
pion is combined with every other pion of the same charge.
For each pion pair, |�|2 is calculated and added to the
numerator of Eq. (22) in a bin corresponding to its qinv for
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FIG. 5. (Color online) Same as described in the legend to
Fig. 4 for the blast-wave model with resonances, a = 0.5. The
model parameters are as follows: T = 165.6 MeV, µB = 28.5 MeV,
τ = 9.91 fm, ρmax = 7.43 fm, and v⊥ = 0.407.

one-dimensional functions or to its qout, qside, and qlong for the
full three-dimensional case. At the same time, 1 is added to
the denominator of Eq. (22) in the corresponding bin. The
resulting ratio yields the correlation function.

By making a proper selection of single pions and pairs of
pions one may study the correlation functions as functions of
various variables. For instance, taking into account the pairs
of particles within a certain total momentum range only, one
immediately obtains the dependence on kT . It is important
to note that all single-particle approaches in the studies of
the correlation functions use transverse momenta of single
particles only, whereas the experimental data are represented
as functions of kT . This is one of the advantages of the two-
particle method over the single-particle method. Another one
is the possibility of including final-state interactions, such as
Coulomb effects.
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FIG. 6. (Color online) Same as described in the legend to
Fig. 4 for the blast-wave model with resonances, a = 0. The model
parameters are as follows: T = 165.6 MeV, µB = 28.5 MeV, τ =
8.17 fm, ρmax = 8.21 fm, and v⊥ = 0.341.

D. Extraction of HBT radii

In most of the realistic cases the integral (14) cannot be
performed analytically. One of the cases where the analytic
calculation may be done corresponds to the situation where the
pion wave function is given by Eq. (23) and the single-particle
emission function is a static three-dimensional ellipsoid with
a Gaussian density profile

S(x, p) = N exp

(
− x2

out

2R2
out

− x2
side

2R2
side

− x2
long

2R2
long

)
. (26)

Please note that this source function is static—it does not
depend on particle momentum. In this case the integral (14)
with the free wave function (23) leads to the well-known
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FIG. 7. (Color online) Same as Fig. 4 for the blast-wave model
with resonances, a = −0.5. The model parameters are as follows:
T = 165.6 MeV, µB = 28.5 MeV, τ = 8.55 fm, ρmax = 8.92 fm, and
v⊥ = 0.311. This is the model that produces best agreement out of
the four models considered. With the same values of the parameters
the model reproduces the transverse-mass spectra, see Fig. 3. Open
squares in the top panel show results for the analysis of λ including
all weak-decay products.

formula

C(k⊥, qout, qside, qlong) = 1 + λ exp
[−R2

out(k⊥)q2
out

−R2
side(k⊥)q2

side − R2
long(k⊥)q2

long

]
.

(27)

The quantities Rout, Rside, and Rlong, known as the “HBT radii”
are the widths of the Gaussian approximation to the single-
particle freeze-out distribution. It is important to emphasize
that formula (27) is commonly used to fit the experimental

 [GeV/c]
out

q
0 0.02 0.04 0.06 0.08 0.1

)
o

u
t

C
(q

1

1.2

1.4

1.6

1.8

2

 [GeV/c]
side

q
0 0.02 0.04 0.06 0.08 0.1

)
si

d
e

C
(q

1

1.2

1.4

1.6

1.8

2

 [GeV/c]
long

q
0 0.02 0.04 0.06 0.08 0.1

)
lo

n
g

C
(q

1

1.2

1.4

1.6

1.8

2

FIG. 8. (Color online) An example of the projected pion correla-
tion functions for the blast-wave model with resonances, a = −0.5.
Model parameters are the same as for Fig. 7. The correlation functions
include pion pairs with transverse momentum in the range: 0.25 GeV
< kT < 0.35 GeV. We show the projections of the correlation function
(symbols) and the projections of the three-dimensional fit (lines). The
top plot shows projections on the qout axis, i.e., the three-dimensional
correlation function has been integrated in two other directions over
some range. The middle plot shows the projection on qside, and
the bottom plot the projection on qlong. Circles (solid lines) show
the function (fit) integrated in two other directions in the range:
|qi | < 2.5 MeV, triangles (dashed lines) for |qi | < 12.5 MeV, and
squares (dotted line) for |qi | < 32.5 MeV, where i = out, side or
long.

data and to represent the results of the model calculations
although the experimental or model emission functions are
frequently far from Gaussians. In context of our model this
issue is discussed in detail in Sec. V.
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FIG. 9. (Color online) The same as Fig. 8 for the analysis
including the Coulomb interaction.

E. Bowler-Sinyukov formalism

The pion correlation functions for sizes typically observed
in heavy-ion collisions are significantly influenced by the
Coulomb interaction, hence the model calculations should
also include this effect. We take into account the Coulomb
interaction by using the exact form of the two-particle wave
function (25). In the procedure of including the Coulomb
effects we should accordingly modify the form of the
reference function (27) that is used to extract the HBT
radii. Because there is no analytic formula that parametrizes
the Coulomb effects exactly, we follow the procedure of
CERES [48], STAR [47], and PHENIX [49], which is based
on the following assumptions: the Coulomb interaction and
the wave-function symmetrization factorize and, moreover, the
Coulomb interaction part of the function can be replaced by
the averaged Coulomb wave function. With these assumptions
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FIG. 10. (Color online) Ratio Rout/Rside for the Cracow model
with T = 165 MeV (circles) and the blast-wave model with reso-
nances and a = −0.5 (squares). The STAR data are represented by
open circles.

the Coulomb interaction may be separated from the integration
in the numerator of (25) and one obtains the Bowler-Sinyukov
formula [33,34]

C(q, k) = (1 − λ) + λKcoul(qinv)
[
1 + exp

(−R2
outq

2
out

−R2
sideq

2
side − R2

longq
2
long

)]
, (28)

where Kcoul(qinv) is the squared Coulomb wave function
integrated over a static Gaussian source. We use, following the
STAR procedure [47], the static Gaussian source characterized
by the widths of 5 fm in all three directions, see the Appendix
for details. The three-dimensional correlation function with
the exact treatment of the Coulomb interaction, calculated
according to Eqs. (14) and (25), is then fitted with this
approximate formula and the HBT radii are obtained. They
can be compared directly to the experimental radii. We note
that this way of comparing experimental data and theoretical
predictions is very reasonable in the sense that the same
experimental and theoretical observables are compared. The
HBT radii may be obtained also from the fit to the correlation
function (27), which provides the way for the experiments to
judge the systematic uncertainty of determining the results by
using the Bowler-Sinyukov procedure. Details of our method
are given in the Appendix.

IV. RESULTS

The parameters of each model are fixed by fitting the single-
particle p⊥-spectra of pions and kaons to the experimental
data. An example of such a fit is shown in Fig. 3. The values
of the parameters are listed in the captions of Figs. 4–7. Thus
our analysis of the HBT correlations has no extra parametric
freedom left.

Our basic results for the pion interferometry are shown
in Figs. 4–7. They are obtained by the procedure described
in detail in Sec. III, i.e., by fitting the three-dimensional
two-particle correlation functions. In Figs. 4–7 we show the
intercept λ and the HBT radii Rout, Rside, and Rlong as functions
of the transverse momentum of the pion pair. The squares
correspond to the full calculation with resonances and the
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FIG. 11. (Color online) The separation distributions for pion pairs from the blast-wave model with resonances and a = −0.5 (black circles).
On the left-hand side the plots for pairs of primordial pions are shown. On the right-hand side, the plots for all pions are shown. The lines show
the separation distribution which is the result of the fitting of the corresponding correlation function by a Gaussian parametrization.

down-triangles show the results obtained in the calculation
without resonances, and the up-triangles show the results
obtained with resonances and with the Coulomb-aware fit
made according to the Bowler-Sinyukov formalism [33,34],
whereas the circles show the data of the STAR Collaboration
from Ref. [47]. The first immediate observation is that the
inclusion of resonances increases the radii by about 1 fm. This
is expected, because the resonances travel some distance from
their place of birth on the freeze-out hypersurface before they
decay into pions. The typical scale is set by the resonance
lifetime, which is about 1 fm/c. We observe a decrease of
the radii with kT , which is a known qualitative effect of the
presence of the flow correlating momenta with emission points.
We also note that the effect of resonance decays is larger at
small kT (cf. Fig. 4–7).

Browsing through Figs. 4–7 we note that the agreement with
the data changes with the selected model of expansion. Out
of the four models tested, by far the best results are obtained
for the blast-wave model with resonances and a = −0.5. This

shows that the hypersurfaces with ρ decreasing with time (cf.
Fig. 1) are favored. Note that the Rlong radius is particularly
sensitive to the a parameter, with a = −0.5 giving the right
result, whereas increasing a spoils the agreement. The model
values of the intercept λ shown in Figs. 4–7 are too large
compared to the data, which simply reflects the fact that we
do not take into account the effect of secondary pions coming
from the weak decays, as well as the contamination of the
pion sample by misidentified particles in the experiment. The
inclusion of the weakly decaying particles is presented in
Fig. 7 (open squares). We see a dramatic drop of the λ param-
eter, as expected. The remaining discrepancy between model
values and experiment can be attributed to the misidentification
of particles in the experiment.

The Cracow model and the blast-wave model with a = 0.5
have very close predictions, as expected from the similarity of
the hypersurfaces (cf. Fig. 1). We note that in all considered
models the qualitative behavior of the dependence of the radii
on kT is correct. The Coulomb corrections evaluated with the
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FIG. 12. (Color online) Space distribution of the produced pion
pairs. The solid lines show separation distribution for all pairs, circles
show the pairs of primordial pions, up-triangles show the pairs which
contain one pion from the ρ decay, but no pion from the ω decay,
squares show the pairs where one pion comes from the ω decay, and
down-triangles show the pairs where one pion comes from decays
of resonances other than ρ and ω and the other from this group plus
the primordial pions. See the text for a more detailed description.
Blast-wave model with resonances, a = −0.5, 0.25 GeV < kT <

0.35 GeV.

Bowler-Sinyukov formalism are small, of the order of a small
fraction of a fermi.

Our method of determining the HBT radii from the model
involves the calculation of the complete three-dimensional
correlation function. First we use the free wave function
of Eq. (23) in Eq. (22) and compare it to the Gaussian fit
made according to Eq. (27). The results are shown in Fig. 8
where we plot the projections of the correlation function
itself, as well as the projections of the three-dimensional
fit. The deviations between the function (symbols) and the
fit (curves) reflect the fact that the underlying two-particle
distributions are not Gaussian and produce a non-Gaussian
correlation function. One can also see that the increase of

the integration regions in the complementary directions leads
to better agreement. Because this is an important finding,
we restate this observation: In a fixed kT bin we take the
three-dimensional function. We choose one of the directions,
say qout, and integrate over the remaining two directions,
qside and qlong, within the specified range. When the range is
very narrow, this corresponds to slicing the three-dimensional
function along the line qside = qlong = 0. This gives the circles
in Fig. 8. Next we repeat the same projection prescription but
for the Gaussian fit to the correlation function, which results
in the solid lines. The lines deviate from the circles within
a few percentages showing that the Gaussian approximation
works at that level. Increasing the integration range in the
complementary directions results in a much better agreement,
which is manifested by the overlap of the squares to the dotted
lines. One can also see that even though the detailed shape
of the correlation function is not exactly reproduced when the
integration region is smaller (circles and triangles), the overall
width, and hence the radius, is described well.

Now we come to the analysis of the correlation function
taking into account the Coulomb interactions. Explicitly, we
use the Coulomb wave function of Eq. (25) in Eq. (22) and
compare it to the Bowler-Sinyukov formula (28). We perform
the same procedure as above and the results are shown in
Fig. 9. We observe that the Coulomb interactions dig holes
at low values of q, which is the well-known result of the
long-range repulsion.

In Fig. 10 we show the ratio Rout/Rside for several models.
The very good agreement with the STAR data (open circles)
is obtained for the blast-wave model with resonances and a =
−0.5. This behavior is already expected from the inspection
of Figs. 4–7. The Cracow model with T = 165 MeV describes
well the kT dependence of the experimental ratio, giving the
magnitude of the ratio smaller by about 15%.

V. EFFECTS OF RESONANCES IN THE CORRELATION
FUNCTION

Figure 11 shows the separation distributions for the blast-
wave model with a = −0.5 and for the bin 0.25 GeV < kT <

0.35 GeV. On the left-hand side the distributions of pairs
constructed only from the primordial pions are shown. It
can be seen that these distributions are cut off at the value
determined by the ρmax parameter of the blast-wave model,
because by definition no pair can have a separation greater
than 2ρmax in the out and side directions. The correlation
function is the Fourier transform of these distributions. As
described in Sec. IIID, the correlation function may be fitted
with the Gaussian formula (27) and the result of the fit can
be used to find the presumed Gaussian distribution (26).
The separation distributions obtained with the help of such
a procedure, i.e., from the Gaussian fits to the correlation
function, are shown as thin lines in Fig. 11. We note that the
Gaussian approximation works reasonably well at low values
of the separation radii with some deviations in the case of long
direction at large values of rlong. In that case a tail results from
the chosen model of expansion. In our boost-invariant model
the distribution extends to infinity; however, the observed drop
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FIG. 13. (Color online) The one-dimensional correlation function plotted as a function of qinv for the blast-wave model with resonances,
a = −0.5, 0.25 GeV < kT < 0.35 GeV (open circles). (a) The “primary-primary” case, (b) “primary, other-ρ,” (c) “primary, ρ, other-ω,” and
(d) “other, primary-other.” For comparison dashed lines show the best fit of the Gaussian formula, with the corresponding values of Rinv and
the statistical errors of the fit.

is caused by the presence of the homogeneity length in the
system.

On the right-hand side of Fig. 11 we show the corresponding
plots, including all pairs of the pions created before 500 fm/c,
i.e., the primordial pions and other pions coming from almost
all strongly decaying resonances. The effect of the resonances
is very clearly visible in a long-range tail in the out and side
directions. One can see how the model curve departs from
the Gaussian fit around 17 fm. For the long direction the tail
is also produced and the effect adds up to the tail produced
by the expansion model. Thus, it is clear that the Gaussian fit to
the correlation functions has no way to describe the long-range
tail of the distributions. The tails have, however, an effect on
the correlation function and show up as peak at low qinv which
is seen in Fig. 8 as the difference between the data (circles) and
fit (solid lines). This results in the lowering of the λ parameter
of the Gaussian fit [1].

It is interesting to study the long-range tails of the separation
distributions in more detail. Figure 12 shows the anatomy of
the separation distributions divided into several components.

The pions are divided into four groups: primary, those coming
from ρ decays, those coming from ω decays, and other coming
from decays of other resonances than ρ or ω. In the plot
we show the distributions of pairs constructed from pions
belonging to the classes defined above. First we consider pairs
where both pions are primary (circles). One can see that in the
case of out and side directions these pions are concentrated
near the origin with 2ρmax ≈ 18 fm providing the cutoff.
There is no such cutoff in the long direction where we can
see the falloff resulting from the homogeneity length. Next
we consider the pairs where one of the pions comes from the
ρ decays and the other from primary pions or pions coming
from decays of resonances other than ω and ρ (up-triangles,
labeled as “primary, other-ρ”). These pairs are responsible for
the increase of the strength of the source in all three directions.
In the out and side directions, they cause the swelling of the
source. The curves corresponding to the pairs where one of
the pion belongs to the group “other” and the second to the
groups “other, primary” (down-triangles) show a very similar
behavior to the “primary, other, ρ” case. Finally, we show the
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FIG. 14. (Color online) Predictions for the kaon femtoscopy in
the blast-wave model with a = −0.5. The model parameters are T =
165.6 MeV, µB = 28.5 MeV, τ = 8.55 fm, ρmax = 8.92 fm, and v⊥ =
0.311. The first four points from the left are predictions for pions, the
three points on the right are for kaons. The error bars show the errors
resulting from the Gaussian fit to the THERMINATOR results.

pairs where one of the pions comes from the ω decay (squares).
In all three directions we observe the long-range tails caused
by the long lifetime. These pairs produce a non-Gaussian
character of the correlation function. It can also be seen, that
the total distribution (solid lines) can be well approximated
by a combination of a Gaussian-like core at low r and the
long-range non-Gaussian halo.

To illustrate the influence of the resonances on the corre-
lation function itself, in Fig. 13 we show how different types
of pairs contribute to the observed correlation as a function
of qinv. It is clearly seen that none of the contributions is well
reproduced by a Gaussian. This feature is most prominently
seen for the pairs that contain at least one pion from the

ω decay: in this case the correlation function has a peak at low
qinv, which is expected as the space-time distribution for these
pairs, seen in Fig. 12 is exponential at large r. Even though
the Gaussian fit fails to describe the detailed behavior of the
functions, especially at low values of qinv, it serves as a tool for
extraction of the HBT radii. One can see that the smallest radius
is obtained for the primordial pairs, as expected. However,
they provide only about 10% of the correlation effect. Pairs,
which contain a pion from any strongly decaying resonance,
except for ρ or ω, show a size larger by approximately 1 fm.
They account for at least 30% of the correlation effect. Pairs
containing the ρ-decay product show slightly larger increase of
the radius (also about 1 fm) and provide the largest contribution
to the correlation effect, about 40%. Pairs containing the
ω-decay products give the largest size, as expected, but their
contribution to the correlation function is sharply peaked at
small qinv, which results in the decrease of the λ parameter, but
does not influence the width of the correlation function (and
therefore the obtained radius).

Because the work of Wiedemann and Heinz [22] it has
been argued that the resonances fall into three categories: (i)
the long lived (η and η′ and all weakly decaying particles) that
affect the intercept λ only; (ii) the ω meson that produces a
non-Gaussian tail in the source function; and, finally, (iii) the
short-lived strongly decaying particles that do not affect the
shape of the correlation function or the corresponding HBT
radii. Our results comply to the first two statements; however,
our conclusions concerning (iii), obtained using a different
method than in Ref. [22], are different. As already stated, it is
the short lived-resonances that increase the radii in (Figs. 4–7)
by approximately 1 fm. The origin of the effect is most apparent
in Fig. 11, where the curvature of the separation distributions
at low r are visibly broader with resonances included.

VI. PREDICTIONS FOR THE KAON

In this section we show our predictions for the kaon HBT
radii from the blast-wave model with resonances. The results
obtained with the free wave function (23) and formula (22)
are shown in Fig. 14. We also give the results for the pions
and notice that the kaons nicely extend the curves to higher
values of the transverse mass. The results are plotted as a
function of mT of the pair. This choice follows from the
expectation that the radii are influenced mostly by the flow,
which results in the approximate mT scaling [50,51]. The error
bars indicate the errors of the Gaussian fit to the THERMINATOR

simulation. We note that for all radii the scaling holds within
these uncertainties. The calculation presented in Fig. 14 uses
the model that was most successful for the pions. Note that all
parameters were fixed by the pionic sector and the predictions
for kaons involve no parametric freedom.

VII. CONCLUSIONS

In this article a class of hydrodynamics-inspired models
with single freeze-out was used to analyze in detail the pion
correlation functions, with an emphasis on the role of the
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chosen model of freeze-out as well as the detailed influence
of resonance decays. Concerning the choice of the expansion
model we have found that the freeze-out geometry where the
transverse size decreases with time works by far the best,
allowing for a uniform description of the pT spectra and
the HBT correlation radii. Such a model has the features
similar to those found in the advanced hydrodynamical
calculations; however, in our study the resulting time and
size scales are shorter. We have found that the Rlong radius
is particularly sensitive to the details of expansion, which
helps to discriminate between various cases. Our calculations
were done for the Cracow single-freeze-out model as well
as for the blast-wave model, including all resonance decays,
and with a modified shape of the ρ-t freeze-out curve.
We have achieved a satisfactory and uniform agreement for
the description of the data, as can be judged from Figs. 3
and 7.

Our calculations used the code THERMINATOR, which is a
Monte Carlo implementation of the hydrodynamics-inspired
models with single freeze-out. The use of the Monte Carlo
technique allowed us to study in a greater detail the effects
of resonances on the shape of the correlation functions.
Because our freeze-out temperature is large, we need to
include practically all resonances, as in the studies of particle
abundances and momentum spectra. We have explicitly found
non-Gaussian features of the pion correlation functions caused
by the long-living resonances, mainly the ω meson, confirming
earlier expectations. In addition, we have carefully discussed
their quantitative role for the extraction and interpretation of
the HBT radii, as well as the shape of the correlation functions
and the separation distributions. In short, we hope that our
analysis provides a very useful “vivisection” of the pion
HBT problem, helpful in the understanding of the underlying
spacetime picture of relativistic heavy-ion collisions. We find
that the pion HBT data from RHIC are fully compatible with
the single freeze-out scenario.

Finally, we give predictions for the HBT radii of kaons,
which should be measured shortly. The results for the kaons
exhibit the mT scaling proposed in Ref. [50,51].
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APPENDIX: CALCULATION OF Kcoul

To calculate Kcoul of Eq. (28) we employ the following
numerical procedure. We assume that the source has the size R,
equal in all directions in the PRF. In the present calculation
R = 5 fm. We perform the calculation at a fixed qinv. Note
that although Kcoul is used in a three-dimensional Eq. (28), it
is a one-dimensional function of qinv only. Because both the
source and the Coulomb potential are spherically symmetric
in PRF, we do not need to integrate over the q direction. We fix
qinv to have only one component, K, in the x direction and then
proceed to average the Coulomb part of the pion-pion wave
function over the source. At small q the function F is a smooth
and slowly varying function of r. The factor Ac is fixed by the
fixed qinv. Therefore the squared Coulomb wave function can
be averaged by summing over a spatial grid. We create a three-
dimensional grid in rx, ry , and rz. At each point we have k =
(K, 0, 0), r inv = (rx, ry, rz), and cos(k · r) = Krx/|k|2 and we
compute |F |2. Each point on the grid contributes to the average
with the weight W = exp[−(r2

out + r2
side + r2

long)/(2R2)]. The
averaged |F |2 is then multiplied by Ac to give the final value
of Kcoul at the particular value of qinv. Then the procedure is
repeated at the next qinv point.

We note that at high qinv = 2k∗ the F function is in-
creasingly difficult to calculate, hence in this region the
asymptotic form of the squared wave function is used: |�C |2 =
1/(acrinvk

∗2).
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