
PHYSICAL REVIEW C 73, 064604 (2006)

Fusion barrier distribution derived from quasielastic excitation functions
in 11B, 12C, 13C+209Bi reactions
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The representations of fusion barrier distribution were derived from the quasielastic excitation function
measured at the backward angle in 11B, 12C, 13C+209Bi reactions at energies around the Coulomb barrier.
The experimental fusion barrier distributions were compared with the predictions of simplified coupled-channels
fusion (CCDEF) calculations with inclusion of various channels coupling because of low-lying inelastic states of
target and one and few nucleon transfers. The influence of neutron transfer coupling on fusion barrier distribution
has been discussed.
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I. INTRODUCTION

The heavy ion induced fusion reactions have been used
frequently to understand the effect of projectile structure on
the reaction dynamics [1,2]. The enhancement of subbarrier
fusion cross section as compared to the one-dimensional
barrier penetration model arises from coupling between the
relative motion and intrinsic degree of freedom of the target and
projectile. These degrees of freedom are nuclear deformation,
inelastic excitation, particle transfers, projectile breakup, and
many other multistep processes [3,4]. The coupled-channels
models have been quite useful in explaining the enhancement
of fusion cross section below the Coulomb barrier energies, as
described in detail in Refs. [5,6] and references therein. The
coupling can be described in terms of changes in the potential
barrier between interacting bodies, leading to its splitting into
several components around the one-dimensional barrier and
thereby giving rise to a distribution of barriers. The lower
ones being responsible for fusion at lower energies explain
the enhancement at subbarrier energies. In other words, the
shape of the barrier distribution can be directly linked to the
coupling of channels that are important in governing the fusion
process at energies around the barrier. In an earlier study, the
enhancement of fusion cross section at subbarrier energies in
6He+209Bi, 238U reactions as compared to that in 4He+209Bi,
238U reactions were attributed because of breakup coupling
of halo nuclei [7]. However, a systematic study on barrier
distribution measured from fusion cross sections using 12C,
16O, 28Si, and 35Cl on 92Zr [4] and comparison with the exact
coupled-channels code CCFULL [8] without transfer channel
coupling, suggested that the barrier distribution shape could
have been reproduced better by including positive Q-value
transfer channels present in the case of 28Si- and 35Cl-
induced reactions. The enhancement in subbarrier fusion cross
sections because of positive Q-value neutron transfer channels
has been studied for 16,17O+144Sm [9], 32,36S+110Pd [10],
40Ca+90,96Zr [11], 40Ca+46,48,50Ti [12], and 16,18O+120,124Sn
[13] systems. The fusion barrier distributions for 32,34S+89Y
systems extracted from the measured fusion cross sections
were explained by including the collectivity of the projectiles.
Though the effect of proton transfer on the fusion process
were found to be small in these reactions, the inclusion

of coupling to positive Q-value proton stripping channels
improved the fits to the low-energy cross sections [14].
The barrier distributions in 12C+105,106Pd and 13C+105,106Pd
reactions have been studied using quasielastic excitation
functions [15]. The low-Z projectiles and medium-Z targets
were used in Ref. [15], where the coupling due to transfer
channels could explain the barrier distributions much better as
compared to the coupling due to the inelastic channels alone.
This is possible because the effect of inelastic channels is
hindered since the strength of the coupling to inelastic channels
is proportional to the product of projectile and target atomic
numbers. In the present work we have selected similar low-Z
projectiles 11B, 12C, and 13C but a high-Z target 209Bi to see
whether the transfer channels still play an important role in
the barrier distribution inspite of large effect due to inelastic
channels. The selected systems have diverse ground-state
Q values and transfer strengths for transfer channels.

The fusion cross section (σfus) for the heavy ion reaction
under the adiabatic and isocentrifugal approximation can be
written as a weighted sum of the fusion cross sections for a
number of eigenchannels which depend on the direct reaction
channel and couple strongly to the incident one [16,17]:

σfus(E) =
∑

i

Wiσ (E,Bi), (1)

where Wi and Bi are the eigenchannel weights and barrier
heights, with

∑
i
Wi = 1. The multiple barriers present in the

nuclear reactions as a result of coupling is directly extracted
through a transformation of the experimental data. The
distribution of potential barriers clearly showing the barrier
structure can be obtained from the precise measurements of
the experimental fusion cross section [15,18,19] as:

Dfus(E) = 1

πr2
b

d2[Eσfus(E)]

dE2
. (2)

This expression shows how a smooth fusion cross section
can give rise to a distribution of barriers pertaining to various
coupling involved in the collision of the two nuclei. This
method is however not very sensitive at the high-energy
part of the barrier distribution. Therefore, another widely
used complementary approach to extract the representation
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of barrier structure is by the measurement of quasielastic
excitation function at the backward angles. This representation
can be obtained from the first derivative of the ratio between
quasielastic [σqel (E)] and Rutherford [σR (E)] excitation func-
tion with respect to energy [11,20–23]:

Dqel(E) = − d

dE

[
dσqel(E)

dσR(E)

]
, (3)

where the quasielastic scattering cross section includes elastic,
inelastic, and transfer channels. The measured fusion barrier
distributions are sensitive to the target and projectile structure
and the role of particle transfer leading to fusion which
can be brought out by choosing different projectiles for the
same target inelastic excitations [4]. The present selection of
projectiles 11B, 12C, and 13C on 209Bi target will also help to
bring out the relative importance of various transfer coupling
in the representation of fusion-barrier distributions.

II. EXPERIMENT AND DATA ANALYSIS

The experiment was carried out using 11B, 12C, and 13C
beams from the 14 UD BARC-TIFR Pelletron accelerator
facility in Mumbai. A �E (30 µm)-E (500 µm) silicon
surface barrier detector telescope was mounted at an angle
of 170◦ to the beam direction to detect the projectile-like
fragments. Another silicon surface barrier detector telescope
�E (35 µm)-E (1 mm) mounted at an angle of 40◦ with
respect to the beam direction was used as the beam monitor
for relative normalization of different runs. A self-supporting
209Bi target of 500 µg/cm2 thickness kept at normal angle with
respect to the beam direction was used in the experiment. The
measurements were carried out over the bombarding energy
range of Elab = 50–72 MeV and 40–62 MeV, respectively, for
12,13C+209Bi and 11B+209Bi systems in steps of 2-MeV inter-
vals. The selected beam energy range were ±10 MeV around
the Coulomb barrier. The bombarding energies have been
corrected for the energy loss in half the target thickness, which
are about 0.2 and 0.15 MeV, respectively, in 12,13C+209Bi
and 11B+209Bi reactions. A typical two-dimensional �E-ERes

scatter plot from the detector telescope at back angle showing
elastic and various transfer products (C, B, and Be) at Elab

= 64 MeV are shown in Fig. 1. The outgoing projectile-like
fragments (PLF) of various charges are seen to be clearly
separated. The quasielastic to Rutherford excitation functions
were determined by using the expression:

dσqel(E, θtel)

dσR

= Ntel(E, θtel)

Nm(E, θm)

[dσR/d�](E, θm)

[dσR/d�](E, θtel)

��m

��tel
,

where θtel(θm) is the fixed angle of the �E-E telescope
(monitor) and Ntel (Nm) is the corresponding number of
detected events of interest in the solid angle ��tel (��m).
The ratio ��m/��tel was experimentally determined at low
bombarding energies where the elastic scattering is expected
to follow the Rutherford scattering. The number of events
recorded in the area of �E-ERes scatter plot associated with
the quasielastic scattering channel, Ntel, were taken by adding
the number of events of PLF, having atomic number greater
than 2. The quasielastic to Rutherford excitation functions so

ERes  (Ch.No.)
0 256 512

∆
E

  (
C

h.
N

o.
)

0

256

512

768

C
B

Be

α

12C + 209Bi at Elab= 64 MeV

FIG. 1. A typical �E versus ERes scatter plot for 12C+209Bi
reactions at Elab = 64 MeV. The outgoing projectile-like fragments
(C, B, and Be) are identified.

obtained for 12,13C+209Bi and 11B+209Bi systems are shown
in Figs. 2(a) and (b) respectively.

III. DETERMINATION OF TRANSFER STRENGTH

In the present work we have reanalyzed our earlier data
on transfer angular distributions [2] to determine the transfer
strength, which goes as an input to the code CCDEF [24] for
the inclusion of transfer coupling in the fusion cross-section
calculation. The semiclassical method used in the present
work have been described in Refs. [25–28]. In the present
experiment the transfers to the individual states were not
resolved, therefore the transfer probability after integration
over Q from -∞ to the ground-state Q value (Qgg) and
assuming a Q-independent form factor can be written as a
function of distance of closest approach (D) as

P (D) = π

σ 2
|F (D)|2

∫ Qgg

−∞
dQ exp

[
− (Q−Qopt)2

2σ 2

]
, (4)
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FIG. 2. The measured quasielastic excitation functions for
12,13C+209Bi and 11B+209Bi reactions at 170◦ laboratory angle.

where σ =
√

h̄2αr̈0/2, and r̈0 [29] is the acceleration at D,
given by

r̈0 = ZpZte
2

µD2

1

sin(θc.m./2)
. (5)

The binding-energy-derived decay constant α is given by a
semiclassical relation α =

√
2µEB/h̄2, where EB is the

binding energy and µ is the reduced mass. The α was
calculated as the average of the target and projectile after
correcting for the binding energies [25] because of the
Coulomb potential in the case of charged particle transfers. The
optimum Q value, Qopt, which is derived from the incoming
and outgoing trajectory matching conditions [27], is given by

Qopt =
(

Z
f
p Z

f
t

Zi
pZi

t

− 1

)
Ec.m., (6)

where i and f refer to the initial and final channels. The
distance of closest approach, D in Eq. (4) is calculated by
taking the average of incoming and outgoing elastic channels
by assuming a Coulomb trajectory as given by

D = ZpZte
2

2Ec.m.

[
1 + 1

sin(θc.m./2)

]
, (7)

where Zp and Zt are the charges of projectile and target respec-
tively and Ec.m. is the center-of-mass energy. The experimental
transfer probability Pexpt(D) is obtained by taking the ratio of

the transfer cross section to the corresponding Rutherford cross
section as

Pexpt(D) = dσtr

d�

/
dσR

d�
. (8)

Here, dσtr/d� is the differential transfer cross section obtained
from angular distribution data and dσR/d� is the calculated
Rutherford cross section for the corresponding scattering
angle θ . The Pexpt(D) as a function of distance of closest
approach were obtained by converting the measured angular
distribution for various transfer channels in 11B, 12C+209Bi
reactions at Elab = 69 and 85 MeV, respectively; the
experimental details of this experiment are reported in Ref. [2].
These data were fitted by the exponential function

Ptr(D) = Ptr(rb)exp[−2αt (D−rb)], (9)

with the free parameter αt to obtain the transfer probabilities,
Ptr(rb), at the Coulomb barrier radius rb.

The Pexpt(D) for various transfer channels as a function
of distance of closest approach along with the fits Ptr(D)
are shown in Fig. 3 for both the systems. The transfer form
factor for various transfer channels at Coulomb barrier radius,
F (rb), were calculated by using P (D) = Ptr(rb) in Eq. (4).
The value of F (rb), Qgg, α and the effective Q value (Qeff)
corrected for charged-particle transfers as Qeff = Qgg − Qopt

are listed in Table I for 11B+209Bi and 12C, 13C+209Bi systems
at Elab = 69 and 85 MeV, respectively. The transfer strengths
for various transfer channels in 13C+209Bi reaction were
assumed to be the same as that calculated for the corresponding
number of particle transfers in 12C+209Bi reaction, because
the experimental transfer probabilities were not measured
in the former case; however, it was varied for the important
positive Q-value transfer channels. The + and − signs indicate
the particle pickup and stripping by projectile with respect to
target.

TABLE I. Table containing Qgg , Qeff, α, and F (rb) for various
transfer channels in 12C, 13C+209Bi, and 11B+209Bi reactions at
Elab = 85 and 69 MeV, respectively.

Systems Channel Qgg Qeff α F (rb)
(MeV) (MeV) (fm−1) (MeV)

12C+209Bi +1n −2.51 −2.51 0.53 1.04
+2n −1.25 −1.25 1.10 0.19
−1p −10.97 1.63 0.82 0.48
−1p1n −17.87 −5.27 1.12 0.12
−2p −19.2 6.3 1.49 0.19

13C+209Bi +1n −0.74 −0.74 0.60
+2n 4.95 4.95 1.03
−1p −12.60 −0.07 0.84
−1p1n −11.38 1.15 1.24
−2p1n −12.43 12.96 1.86

11B+209Bi +1p 12.16 0.00 0.79 0.20
−1n −6.85 −6.85 0.58 0.40
+1n −4.09 −4.09 0.49 0.59
−1p −6.24 6.23 1.70 0.35
−1p1n −8.50 3.97 1.18 0.12
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FIG. 3. Transfer probabilities as a function of distance of closest
approach, along with the exponential fits, using Eq. (9) for various
transfer channels in 11B+209Bi and 12C+209Bi reactions at Elab = 69
and 85 MeV, respectively.

IV. RESULTS AND DISCUSSIONS

The experimental barrier distributions (BD) were obtained
by taking first derivative of dσqel/dσR with respect to energy
by using a point difference formula. In order to compare the
shape of Dqel(E, θ = 170

◦
) with that of Dqel(E, θ = 180

◦
),

the energy scale of the former was reduced by the centrifugal
energy [11] Ecent given by

Ecent = Ec.m.

cosec(θc.m./2) − 1

cosec(θc.m./2) + 1
, (10)

the reduced energy Eeff is used as Ec.m. − Ecent. The ex-
perimental BD for 12C, 13C+209Bi and 11B+209Bi systems
are shown by solid dots in Figs. 4(a)–(c), respectively.
The fusion cross sections were calculated with and without
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FIG. 4. Representation of fusion barrier distribution for 12C, 13C,
11B+209Bi systems along with the simplified coupled-channels calcu-
lations for various coupling conditions. The dotted lines represent the
without coupling cases, the dashed lines show coupling of target
inelastic excitations, and the solid lines show coupling of both
inelastic and transfer channels as listed in Table I.

coupling of various inelastic and transfer channels by using
the simplified coupled-channels code CCDEF. The fusion BD
were obtained from the fusion excitation functions using
Eq. (2). The calculated fusion barrier distribution was nor-
malized by a factor d(Eσfus)/dE at higher energies where
it reaches a saturation that corresponds to the πr2

b value of
the corresponding system. The bare nuclear fusion potential
parameters were obtained by varying the depth of the Woods-
Saxon potential for uncoupled case to reproduce the average
position of the experimental BD. The Coulumb barrier Vb,
barrier position rb, h̄ω the s-wave curvature at rb, mean and
variance of the experimental barrier destributions are listed in
Table II. The experimental values of mean and variance of the
BD are also listed in Table II. It is observed that the variance
of the BD increases as a function of charge and mass of the
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TABLE II. The Coulomb barrier Vb, barrier position rb, h̄ω the
s-wave curvature at rb, mean and variance of the experimental barrier
distributions.

Systems Vb rb h̄ω Mean Variance
(MeV) (fm) (MeV) (MeV) (MeV2)

11B+209Bi 48.1 11.72 4.73 48.1 7.96
12C+209Bi 57.7 11.72 4.94 57.7 8.88
13C+209Bi 57.5 11.76 4.72 57.5 9.36

projectile. The dotted lines in Figs. 4(a)–(c) are the uncoupled
or one-dimensional barrier-penetration-model calculations for
12C+209Bi, 13C+209Bi, and 11B+209Bi systems, respectively.
For the uncoupled cases, the calculated BD peaks are narrow,
high, symmetric, and structureless. To explain the shape of
the tails of the experimental BD on the high-energy side of
12C, 11B+209Bi systems and both low- and high-energy side
of 13C+209Bi system seem to require the presence of some
coupling to other channels such as inelastic and/or transfer in
CCDEF calculations.

The inelastic excitation coupling strength included in the
coupled-channels calculation is given by

Finel(r) = βλ√
4π

[
−R

dVn(r)

dr
+ 3ZpZte

2

2λ + 1

Rλ

rλ+1

]
, (11)

where R and βλ are the radius and deformation parameter
of the excited nucleus, λ the transition multipolarity, and
Vn the nuclear potential [24]. The inelastic coupling in-
cluded in the calculations are the lowest 3− (β3 = 0.122,
Ex = 2.62 MeV), 2+ (β2 = 0.05, Ex = 4.18 MeV), and 5− (β5

= 0.0802, Ex = 3.09 MeV) states of 209Bi that are treated in
the vibrational model [30]. The deformation parameter used
for the above inelastic states are that of the 208Pb instead
of 209Bi, which is valid in the framework of weak coupling
approximation. The predictions of CCDEF with the inclusion
of coupling due to inelastic channels are shown by dashed
lines for 12C+209Bi, 13C+209Bi, and 11B+209Bi systems in
Figs. 4(a)–(c) respectively.

The coupled-channels calculations including only the target
inelastic excitations are reasonably able to explain the barrier
distribution in 12C+209Bi reaction; however, it is not able
to completely reproduce the fusion BD structures in 13C,
11B+209Bi reactions. It is also known that the high-lying
states with excitation energies comparable to the curvature
of the fusion barrier do not effect the structure of the barrier
distribution but rather only give an overall shift to the barrier
position [3]. Hence, we have not considered the coupling of
projectile inelastic states in the present analysis. It is therefore
necessary to introduce additional channels coupling in terms of
one- and few-nucleon transfers in the fusion coupled-channels
calculations for a better comparison with the experimental
data.

The transfer channels couplings were included in the
code CCDEF with α, Qeff, and F (rb) values as listed in
Table I for the 12C, 13C+209Bi, and 11B+209Bi reactions. In
the case of 12C+209Bi reaction, inclusion of all the transfer
channels (+1n, +2n, −1p, −1p1n, and −2p) couplings has a

minor effect on the overall shape of the barrier distribution
except for a small increase in the width of the barrier
distribution, as shown in Fig. 4(a) by the solid line. In the case
of 13C+209Bi reaction, inclusion of all the transfer channels
(+1n, +2n, −1p, −1p1n, and −2p1n) coupling improves the
comparison between the experimental and CCDEF prediction
for high energy side of the barrier distribution. However, to
reproduce the lower-energy side of the experimental barrier
distribution, it was required to increase the strength of the
positive Q-value (+2n) channel to 1.2, as shown in Fig. 4(b)
by the solid line. It is observed that the main contributions
are due to the (+1n) and (+2n) transfer channels at the
higher- and lower-energy sides of the barrier distribution,
respectively, whereas other transfer channels are found to
have a negligible effect on the overall structure of the barrier
distribution. In the case of 11B+209Bi reaction, the coupling
of all the transfer channels listed in Table I were included
in the coupled-channels calculation. The shape of the barrier
distribution showed a very small improvement even after
including all the transfer channels. Though the (+1n) and
(−1n) transfer channels have similar Q values and strengths,
increasing the strength of (−1n) channel does not explain the
higher side of the barrier distribution. However, by increasing
the transfer strength of the (+1n) channel to twice the value as
listed in Table I, the peak and high-energy part of the barrier
distribution is well explained, as shown in Fig. 4(c) by the
solid line. The present work indicates the important role of
transfer channels toward the overall structure of the barrier
distribution despite a large contribution because of inelastic
channels.

V. SUMMARY AND CONCLUSION

The quasielastic excitation functions were measured at
the backward angle and the representation of fusion barrier
distributions were obtained for 12C, 13C+209Bi, and 11B+209Bi
reactions around 10 MeV below and above the Coulomb bar-
rier. The transfer strengths were extracted for 12C, 11B+209Bi
reactions from the transfer probability measurement using a
semiclassical method. The experimental BD were compared
with coupled channels predictions using both inelastic and
transfer channels coupling. In the case of 12C+209Bi reaction
the inelastic channels are good enough to explain the overall
barrier distribution. In the case of 13C+209Bi reaction the
coupling of (+1n) and (+2n) transfer channels are found
to be important to explain the overall structure of barrier
distribution, whereas the coupling of other charged-particle
transfer channels have a negligible effect on the barrier
distribution. In the case of 11B+209Bi reaction the shape of
barrier distribution is better reproduced by increasing the
coupling strength of (+1n) transfer channels.
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