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Effect of phase relaxation on quantum superpositions in complex collisions
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We study the effect of phase relaxation on coherent superpositions of rotating clockwise and anticlockwise
wave packets in the regime of strongly overlapping resonances of the intermediate complex. Such highly excited
deformed complexes may be created in binary collisions of heavy ions, molecules, and atomic clusters. It is shown
that phase relaxation leads to a reduction of the interference fringes, thus mimicking the effect of decoherence.
This reduction is crucial for the determination of the phase-relaxation width from the data on the excitation
function oscillations in heavy-ion collisions and bimolecular chemical reactions. The difference between the
effects of phase relaxation and decoherence is discussed.
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I. INTRODUCTION

For highly excited strongly interacting many-body systems,
the independent particle picture has very limited validity
[1]. For high excitations, the interaction results in a quick
decay of single-particle [2–4] as well as collective modes
[2,4], which are not eigenstates of the Hamiltonian of the
system. This decay leads to the formation of complicated
many-body configurations. Each of these many-body states is
characterized by a uniform occupation of the accessible phase
space and by the sharing of energy between many particles
of the system. The characteristic time for the formation of
such spatially extended ergodic many-body states, independent
of the initial conditions, is given by the inverse spreading
width, τerg = h̄/�spr [4]. Introduced by Wigner [5], �spr also
characterizes the width of the distribution of the expansion
coefficients of the many-body eigenstates over a noninteracting
mean-field basis. For sufficiently high excitation energy, the
decay of single-particle modes creates a linear superposition
of a very large number of many-body configurations. The
question is whether the phase relations between these indi-
vidually ergodic many-body states in the superposition may
still preserve a memory of the way the system was excited.
This question is of fundamental importance for the study
of relaxation phenomena in nuclear, atomic, molecular, and
mesoscopic many-body systems, and for many-qubit quantum
computation. In particular, if the phase relaxation is longer
than the energy relaxation time h̄/�spr, this can extend the
time for quantum computing [6,7] beyond the quantum-chaos
border [8,9].

To answer this question from first principles is difficult
because of computational limitations. Indeed, in order to solve
the full quantum many-body problem, one would require a
many-qubit quantum computer. Therefore, the only currently
available way to search for possible manifestations of long
phase relaxation is the experiment and a careful data analysis.
Nuclear systems are an ideal laboratory to study many-body
systems, since nuclear interactions are so strong that external
perturbations can often be neglected. In particular, the analysis

of Refs. [6,7,10] of the data on asymmetry around 90◦
c.m. in angular distributions of evaporated protons from
heavy nuclei in nucleon-induced and photonuclear reactions
clearly indicates that phase-relaxation time in highly excited
strongly interacting many-body systems can be up to eight
orders of magnitude [7] longer than the energy-relaxation
time h̄/�spr. This reveals a new form of matter—thermalized
non-equilibrated matter introduced in Refs. [11–13].

A more subtle indication of a slow phase relaxation is found
in light heavy-ion scattering [14–17]. It manifests itself in
the formation of rotating wave packets whose spreading time,
which is given by the inverse phase-relaxation width, is much
longer than the energy-relaxation time h̄/�spr. The approach
[15–17] treats time-delayed light heavy-ion scattering in terms
of the formation and decay of quasimolecular resonances [18].
The highly excited coherently rotating intermediate system
has the energy of the intrinsic excitation �10 MeV. The
intermediate system is in the regime of strongly overlapping
resonances. Therefore, this coherent rotation does not originate
from the discreteness of the spectrum, which is not resolved,
but is due to the spin off-diagonal correlations between partial
width amplitudes. Indeed, the period of the coherent rotation is
much shorter than the inverse level spacing of the intermediate
system. This reveals a new root, as compared to Bohr’s
correspondence principle, for a quantum-classical transition
in highly excited many-body systems.

The width of the rotating wave packets is about 1/d +
βt/h̄ ≈ 1/d + βϑ/h̄ω, where d is the effective number of
partial waves, β is the spin off-diagonal phase-relaxation
width, ω is the angular velocity, and t and ϑ are the time
and angle of the rotation, respectively. This seemingly allows
us to determine the wave-packet spreading rate from the
time power spectra at different scattering angles, which
can be reconstructed, for binary collisions, from the data
on energy fluctuations of the cross sections [16,17]. These
fluctuations originate from the energy-fluctuating collision
amplitude corresponding to a resonance time-delayed pro-
cess. However, for elastic heavy-ion scattering, such energy
fluctuations can be typically observed only at backward
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angles 140◦ � θ � 180◦, since for smaller θ the direct
reaction contribution grows exponentially and becomes much
greater than the time-delayed one. Therefore, since at the initial
moment of time the deformed intermediate system is oriented
in the forward direction θ ≈ 0◦, the spreading of the wave
packets within the backward angular interval 140◦ � θ � 180◦
can hardly be detected reliably. Moreover, the width of the
wave packets at this backward-angle range does not allow us
to determine β, since the angular dispersion 1/d at t = 0
is also unknown. In this paper, we show that both d and β

can indeed be determined unambiguously. This results from
the strong sensitivity of the interference fringes between the
rotating clockwise and anticlockwise wave packets for the
backward angle range to the phase-relaxation width: As β

grows, the interference fringes are suppressed more strongly.
The effect is considered in relation to heavy-ion scattering and
bimolecular chemical reactions. The difference between the
effects of phase relaxation and decoherence is discussed.

II. TIME POWER SPECTRUM OF TIME-DELAYED
COLLISIONS

Following Ref. [19], we consider spinless collision partners
in the entrance and exit channels. The time and angle depen-
dent intensity of the decay (the time power spectrum) P (t, θ )
is given by the modulus square of the Fourier component
of the energy-fluctuating collision amplitude. It can be also
expressed as the Fourier component of the amplitude energy
autocorrelation function. P (t, θ ) has been obtained in [19] by
summing over a very large number of strongly overlapping
resonance levels, �/D � 1, where � is the total decay
width and D is the average level spacing of the intermediate
complex. As a result, after changing from summation over the
resonance levels to integration, which is a good approximation
for t � h̄/D, P (t, θ ) takes the form

P (t, θ ) ∝ H (t)exp(−�t/h̄)

×
∑
JJ ′

(2J + 1)(2J ′ + 1) × [W (J )W (J ′)]1/2

× exp[i(� − ωt)(J − J ′) − β|J − J ′|t/h̄]PJ (θ )PJ ′ (θ ).

(1)

Here, H (t) is the Heaviside step function, β is the spin
phase-relaxation width, ω is the angular velocity of the
coherent rotation, � is the deflection given by the total
spin J (in h̄ units) derivative of the potential phase shifts
(direct reaction), and PJ (θ ) are the Legendre polynomials. The
physical meaning of the inverse spin phase-relaxation width,
h̄/β, is the characteristic time for the angular spreading of
the clockwise and anticlockwise rotating wave packets. The
partial average reaction probability is taken in the J-window
form, W (J ) = 〈|δSJ (E)|2〉 ∝ exp[ −(J − J̄ )2/d2], where J̄

is the average spin and d is the J-window width.
It should be noted that a similar effect of coherent rotation

of the nuclear molecule, as described by Eq. (1) with β = 0,
was found in Ref. [20] for a scattering of heavy nuclei.
However, while Eq. (1) has been obtained for a large number
of open channels and strongly overlapping resonances of the
intermediate system [19], the time power spectrum in Ref. [20]

was derived from one open channel and one resonance pole
form of the S-matrix elements. Therefore, the latter approach is
not applicable for the forthcoming analysis of the 12C+24Mg
system since, for this system, the number of open channels
is much greater than 1. Furthermore, the one-resonance pole
form of the S-matrix elements employed in Ref. [20] results in
isolated resonances with the energy spacing between them to
be about h̄ω. This is not the case for the 12C+24Mg elastic
scattering analyzed in this paper. Indeed, the data on the
excitation function for the 12C+24Mg elastic scattering at
θ = 180◦ reveal about 15 local maxima on the energy interval
	Ec.m. = 13–22 MeV [21]. Then the interpretation [20]
would mean that average level spacing, ≈0.6 MeV in our
case, between the local maxima is given by h̄ω. This, in
turn, would reflect the quasiperiodic behavior of the cross
section energy autocorrelation functions with the period of
about 0.6 MeV. This is inconsistent with the data [21] showing
the quasiperiodicity of the cross section with the period of
about 2.9 MeV yielding h̄ω = 1.35–1.45 MeV [16,17].
Moreover, the interpretation [20] implies that these local
maxima in the excitation function should be approximately
equidistant. Instead, the data [21,22] show big fluctuations,
from 0.3 to 1.3 MeV, for the energy spacing between the
nearest-neighboring local maxima in the excitation function.
Note that the indication against the interpretation in terms of
isolated resonances comes from the statistically insignificant
channel-channel correlations for the 12C+24Mg elastic and
inelastic scattering at θ = 180◦ [16]. Finally, the effect
of coherent rotation [20] does not survive a generalization
[23] by taking into account intermediate structure by means
of inclusion of many isolated resonances in the S-matrix
elements. On the basis of the above arguments, we believe
that the interpretation of the fine structure in the excitation
functions for the 12C+24Mg scattering at θ = 180◦ in
terms of overlapping, rather than isolated, resonances of the
intermediate system is a justified approach.

First, we calculate P (t, θ ) for the set of parameters obtained
from the description [17] of the experimental cross section
energy autocorrelation functions [21] for 12C+24Mg elastic
and inelastic scattering at θ = 180◦ [22]. For these collisions,
the analysis of the oscillations in the cross section energy
autocorrelation functions [16,17] indicates the formation of
stable rotational wave packets, in spite of the strong overlap of
resonance levels in the highly excited intermediate molecule.
The set of parameters [17] is � = 0, d = 3, J̄ = 14, β =
0.01 MeV, h̄ω =1.45 MeV, and � = 0.3 MeV.

In Fig. 1, we plot the quantity AP (t, θ )/〈σ (E, θ )〉 at four
moments of time, with T = 2π/ω being the period of one
complete revolution. Here, 〈σ (E, θ )〉 ∝ ∫ ∞

0 dtP (t, θ ) is the
energy-averaged differential cross section for the time-delayed
collision. In Fig. 1, P (t, θ ) is scaled with 〈σ (E, θ )〉 for the
reasons discussed in Ref. [19]. The constant A is determined
by the condition AP (t = 0, θ = 0)/〈σ (E, θ = 0)〉 = 1.
Figure 1(a) shows the two slightly overlapping wave packets
rotating toward each other in the backward direction. In
panels (b) and (c), the wave packets strongly overlap
around θ = 180◦, producing interference fringes. Finally, in
panel (d) the wave packets have passed each other and move
apart rotating in the forward direction.
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(a)

(b)

(c)

(d)

FIG. 1. (Color online) Angular dependence of the decay intensity
of the highly excited intermediate complex at different moments of
time for different combinations of β and d. Panel (a) corresponds to
time t = 3T/8; (b) t = 7T/16; (c) t = T/2; (d) t = 5T/8. Here,
T is the period of one complete revolution of the complex. Solid lines
(black) correspond to β = 0.01 MeV and d = 3; dashed (red) to
β = 0.04 MeV and d = 4; dashed-dotted (blue) to β = 0.075 MeV
and d = 8. As β gets bigger, the interference fringe contrast becomes
smaller.

In Fig. 1, we also plot AP (t, θ )/〈σ (E, θ )〉 with the same
constant A and the set of parameters as before, except for d
and β. We consider two other cases: d = 4, β = 0.04 MeV,
and d = 8, β = 0.075 MeV. One can see that when the wave
packets overlap only slightly [panels (a) and (d)] one can hardly
distinguish between the three combinations of d and β, even
though β changes by almost one order of magnitude. On the
other hand, from panels (b) and (c), we observe that a fringe
contrast due to the interference of the wave packets is very
sensitive to absolute values of β and d. This result is further
illustrated in Fig. 2, where we plot P (t, θ ) calculated for the
three sets of β and d values, as a function of t for θ = 170.6◦.
One observes that the smaller β is, the deeper the minima
are, because of the destructive interference between the wave
packets at t = T/2. However, for θ = 180◦, P (t, θ ) in Fig. 2
is insensitive to the three sets of β and d.

Note that to reproduce the width of the wave packets in
Figs. 1 and 2 for the maximal possible d = I value, one has

(b)

(a)

FIG. 2. (Color online) Time dependence of the decay intensity
of the highly excited intermediate complex at (a) θ = 180◦ and
(b) θ = 170.6◦, for the different sets of β and d. Solid lines (black)
correspond to β = 0.01 MeV and d = 3; dashed (red) to β =
0.04 MeV and d = 4; dashed-dotted (blue) to β = 0.075 MeV and
d = 8.

to take β = 0.1 MeV. Therefore, even the largest possible
β value is more than one order of magnitude smaller than
�spr. The latter is usually estimated from the width of giant
resonances [2,4]: �spr 
 5 MeV. This indicates that energy
relaxation, i.e., the process of formation of ergodic many-body
configurations, in highly excited nuclear systems can be much
faster than phase relaxation.

III. DETERMINATION OF THE TIME POWER SPECTRUM
FROM DATA ON EXCITATION FUNCTION

OSCILLATIONS

We consider a collision of the spinless reaction partners
in the entrance and exit channels. The cross section of
the collision is given by σ (E, θ ) = |f (E, θ )|2. Here E is
the energy in the entrance channel and θ is the scattering
angle. The reaction amplitude f (E, θ ) is a linear combination
of S-matrix elements SJ (E) corresponding to the different
total spin values J. Suppose that, for a fixed energy E1, a
measurement of detailed angular distribution is performed.
Then, using, e.g., the method [24], one can find SJ (E1) and,
therefore, f (E1, θ ). Measuring the angular distributions for
different energies on the energy interval I = Emin −Emax with
the energy step 	E and energy resolution smaller or about the
minimal characteristic energy scale of a variation of f (E, θ ),
one obtains detailed energy and angle dependencies of the
collision amplitude. Its Fourier component,

P(t, θ ) ∝
∫ Emax

Emin

dEexp(−iEt/h̄)f (E, θ )

≈ 	E

N∑
n=0

exp[−i(Emin + n	E)t/h̄]

×f (Emin + n	E, θ ), (2)
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is the instantaneous decay amplitude received at a detector at
time t with the time uncertainty of about h̄/I , for a collision
initiated at t = 0. In the sum in Eq. (2), N = I/	E

and (N + 1) is the number of equidistant energy values for
which the detailed angular distributions should be measured.
The summation in the r.h.s. of Eq. (2) may be changed to
the integration if we use a linear interpolation for f (E, θ )
in between the consequent energies En and En+1. This is
justified provided the energy step 	E is smaller or about the
minimal characteristic energy scale of a variation of the cross
section. For example, in Ref. [22] the energy step is 	Ec.m. =
133 keV, while the minimal characteristic scale of the variation
of σ (E, θ = 180◦) is � = 0.3 MeV [16,17].

Having reconstructed P(t, θ ) from the excitation function
data, one obtains the time power spectra P (t, θ ) = |P(t, θ )|2
for any angle. The latter quantity is equivalent to that directly
measured using real-time methods of femtochemistry, with
the energy bands of I for the pump and probe laser pulses,
to monitor chemical reaction dynamics [25,26]. Due to its
dependence on θ, P (t, θ ) determined by the proposed method
could provide even more detailed information on the collision
dynamics, as compared with the femtochemistry experiments,
since latter measurements often allow one to obtain P (t, θ )
averaged over θ .

For the energy interval I being long enough to provide a
sufficient time resolution h̄/I to resolve interference fringes
[27], the proposed experiment would allow us to test our
theoretical predictions. If these were confirmed by the data,
then the experimentally determined P (t, θ ) could be compared
with our calculations presented in Figs. 1 and 2 with the
purpose of evaluating β and d. In particular, the energy
interval of 10.5 MeV, over which the excitation function for the
12C+24Mg elastic scattering at θ = 180◦ was measured [22],
should be sufficient to resolve the interference fringes in
P (t, θ ) [27].

It should be noted that the method proposed above
allows the reconstruction of P (t, θ ), which includes both
potential scattering, i.e., fast processes, and the time-delayed
mechanism. Since the previous analysis [16,17] demonstrated
the presence of a strong potential scattering component, we
expect that this method will yield a strong potential scattering
contribution in P (t, θ ). However, this contribution is expected
to be restricted to relatively short times tps � h̄/	Eps, where
	Eps is a characteristic energy interval for the variation of the
potential scattering amplitude. For 	Eps 
 2–3 MeV [18],
tps 
 3–2 × 10−22 sec. Therefore, this potential scattering
contribution is expected to be restricted to t/T � 0.1 in
Fig. 2 and should not show up at all in Fig. 1.

The above method to obtain P (t, θ ) from the data is model
independent and, therefore, a most reliable one. However,
it is very demanding experimentally since σ (E, θ ) must be
measured for a very large number of angles [24]. There is
another way to extract P (t, θ ) from the data even if the
excitation function is measured for a single angle. This method
can be applied if the direct reaction process provides a major
contribution to the cross section [17]. We consider again a case
of spinless collision partners in the entrance and exit channels.
The main idea is based on the decomposition of the collision
amplitude, f (E, θ ) = fdir(E, θ ) + δf (E, θ ). Here fdir(E, θ )

is the energy smooth amplitude corresponding to potential
scattering or direct fast process, and δf (E, θ ) is the energy
fluctuating amplitude, 〈δf (E, θ )〉 = 0, corresponding to
the time-delayed collision. Consider first an idealized
case of energy-independent amplitude fdir(E, θ ) when it
coincides with the energy-averaged amplitude 〈f (E, θ )〉.
The collision cross section has the form σ (E, θ ) =
|f (E, θ )|2 = σdir(E, θ ) + σfl(E, θ ) + 2Re[δf(E,θ )fdir(E,θ )∗].
Here, the potential scattering or direct reaction cross section
σdir(θ ) = |fdir(E, θ )|2 is energy independent, and σfl(E, θ ) =
|δf (E, θ )|2. For a relative contribution of the potential scat-
tering or direct reaction cross section to be about 70% or
more of the total cross section, 	σ (E, θ ) = σ (E, θ ) −
〈σ (E, θ )〉 
 2Re[δf(E,θ )fdir(E,θ )∗], where 〈σ (E, θ )〉 =
σdir(θ ) +〈σfl(E, θ )〉 is the energy-averaged cross section. This
means that rapid energy variations of the cross section originate
mostly from interference between the energy fluctuating
δf (E, θ ) and the energy-independent amplitude fdir(E, θ ).
Suppose that the excitation function is measured on the energy
interval I = Emax −Emin with energy step 	E so that the total
number of steps is N + 1, where N = I/	E. Then, for t > 0,
we have [17]∫ Emax

Emin

dEexp(−iEt/h̄)	σ (E, θ )

∝
∫ Emax

Emin

dEexp(−iEt/h̄)δf (E, θ )

≈ 	E

N∑
n=0

exp[−i(Emin + n	E)t/h̄]

×δf (Emin + n	E, θ ) ∝ P(t, θ ), (3)

with P (t, θ ) = |P(t, θ )|2. In Eq. (3), we employed a causality
condition, P(t<0, θ ) = 0. This condition implies that the
molecule cannot decay before it is formed at t = 0. Again,
the above information on P (t, θ ) is equivalent to that obtained
directly using real-time methods of femtochemistry to monitor
unimolecular chemical reactions, with the energy bands of
I = (Emax − Emin) for the pump and probe laser pulses [25].

The above consideration can be extended to a case when the
potential scattering or direct reaction amplitude fdir(E, θ ) de-
pends on energy, but this dependence is considerably smoother
than the energy dependence of the amplitude δf (E, θ ) for
the time-delayed collision. We again assume that a relative
contribution of direct processes into the energy-averaged cross
section is about 70% or more. We define the characteristic
energy interval Id of a variation of fdir(E, θ ) with Id � �,
where � is the characteristic energy interval of variation of
δf (E, θ ). The energy interval Id can be evaluated using,
e.g., the trend reduction method [28]. In particular, for the
12C+24Mg scattering [22] analyzed in Sec. II, this interval
was evaluated to be about 4–5 MeV [21], i.e., much greater
than � = 0.3 MeV. Then one can find the best polynomial
fit of the energy dependence of the cross section σ (E, θ ) =
σd (E, θ ) + σfl(E, θ ) + 2Re[δf(E,θ )fdir(E,θ )∗] with the order
of polynomial being [I/Id ] + 1, where [I/Id ] is integer part
of I/Id . The resulting energy-smooth cross section is denoted
as σ̃ (E, θ ) ≈ σd (E, θ ) + 〈σfl(E, θ )〉 with 〈σfl(E, θ )〉 being
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the energy-averaged, i.e., energy-independent, cross section
of the time-delayed processes. It can be found using the
standard procedure employed for the analysis of Ericson
fluctuations (see, e.g., Refs. [21,22]). As a result, one finds
energy-smooth direct-reaction cross section σd (E, θ ). Con-
sider σ (E, θ ) − σ̃ (E, θ ) 
 2Re[δf(E,θ )fdir(E,θ )∗]. Assume

first that energy dependence of the phase of fdir(E, θ ) is
negligible, arg[fdir(E, θ )] = constant, and the smooth energy
dependence of σd (E, θ ) is due to the energy dependence
of |fdir(E, θ )| = σd (E, θ )1/2. Then, applying the same
arguments as those used to obtain Eq. (3), for t > 0, we
have

P(t, θ ) ∝
N∑

n=0

exp[ − i(Emin + n	E)t/h̄][σ (Emin + n	E, θ ) − σ̃ (Emin + n	E, θ )]

σd (Emin + n	E, θ )1/2 (4)

with P (t, θ ) = |P(t, θ )|2.
To generalize Eq. (4) by taking into account the energy

dependence of arg[fdir(E, θ )] ≡ φ(E, θ ) (fdir(E, θ ) =
|fdir(E, θ )|exp[iφ(E, θ )]), we use the linear approximation
φ(E, θ ) = φ(Ē, θ ) + (E − Ē)dφ(E, θ )/dE|E=Ē , where
Ē = (Emax − Emin)/2 and dφ(E, θ )/dE|E=Ē = tdir/h̄ with
tdir � h̄/� being the time delay due to the potential scattering
or direct reactions [29]. Then, it is easy to see that for t > tdir,
the r.h.s. of Eq. (4) is changed to P(t − tdir, θ ). This manifestly
demonstrates that the interference between time-delayed and
fast direct processes in the cross section is a precondition for
monitoring the time evolution; the fast process switches on
the clock at the initial moment of time td playing the role of
the pump pulse. In the absence of direct processes, the initial
moment of time is not defined.

Note that P (t, θ ) can also be expressed as a cosine half-
Fourier transform of the cross section energy autocorrelation
function C(ε, θ ), provided the relative contribution of potential
scattering is larger than 70% [16,17]. In Fig. 3, we plot
C(ε, θ )/C(ε = 0, θ ) = [

∫ ∞
0 dtcos(εt/h̄)P (t, θ )]/〈σ (E, θ )〉

for (a) θ = 180◦ and (b) θ = 170.6◦, for the three combinations
of β and d. Since the P (t, θ = 180◦) are close for the different
sets of β and d, the corresponding C(ε, θ = 180◦) can hardly
be distinguished reliably. This is the reason that the analysis at
θ = 180◦ [16,17] is not sufficient to determine unambiguously
the values of β and d. However, C(ε, θ = 170.6◦) is more
sensitive to the different sets of β and d. In particular, for
ε � 4–5 MeV, the oscillations in C(ε, θ = 170.6◦) for
β = 0.01 MeV, d = 3 and β = 0.075 MeV, d = 8
are out of phase, with the absolute value of their difference
being up to 0.4. Still, from the comparison of Figs. 1(c), 2(b),
and 3, we observe that the sensitivity of P (t, θ ) to different
values of β and d is considerably stronger than the sensitivity
of C(ε, θ ) to these values. Also P (t, θ ) obtained using
Eqs. (3) and (4) does not acquire statistical errors due to
the finite energy interval I. Indeed, such a method provides
information on P (t, θ ) equivalent to that obtained in the
femtochemistry experiments. Therefore, the only uncertainty
of this method is a finite time resolution, 	t ≈ h̄/I , which
is the uncertainty in the femtochemistry experiments with the
finite energy band I of the pump and probe laser pulses [25,26].
On the other hand, a reconstruction of P (t, θ ) from C(ε, θ )
may result in additional errors due to possible statistical

uncertainties in C(ε, θ ) related to the finite energy range
I [30]. Such additional statistical uncertainties may not be
excluded even though the effects studied in this paper can
clearly not be associated with Ericson fluctuations. Indeed,
unlike, e.g., oscillating structures in Fig. 3, Ericson theory
predicts angle-independent Lorentzian shapes for the C(ε, θ ).
Therefore, for the reasons described above, we suggest that a
reconstruction of P (t, θ ) directly from the excitation functions
[Eqs. (3) and (4)] is more reliable than from C(ε, θ ).

IV. FROM HEAVY-ION COLLISIONS TO BIMOLECULAR
CHEMICAL REACTIONS

An important question is whether the rotating wave packets
and their interference can occur in colliding systems for

(a)

(b)

FIG. 3. (Color online) Cross section energy autocorrelation func-
tions calculated at (a) θ = 180◦ and (b) θ = 170.6◦ for the different
sets of β and d. Solid lines (black) correspond to β = 0.01 MeV and
d = 3; dashed (red) to β = 0.04 MeV and d = 4; dashed-dotted
(blue) to β = 0.075 MeV and d = 8.
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which more rigorous approaches can be implemented. The
encouraging answer has been given by the calculations of
the time evolution of the H + D2 → HD + D bimolecular
chemical reaction [31–33]. The evidence for rotational wave
packets has been demonstrated (see, e.g., Fig. 3 in [31])
because of the interference of the overlapping resonances
[34] of the quasibound complex with J = 15–20 total spin
values (i.e., within our approach, d ≈ 5). In this peripheral
time-delayed collision, the rotational wave packets are stable
showing a moderate spreading during half a period of rotation.
Within our description, this reveals a small β value in the
time-delayed peripheral reaction mechanism, i.e., πβ/h̄ω �
1/d. Then, in accordance with our prediction, the coherent
superposition of the rotating wave packets should produce
a strong interference contrast. This is indeed the case as
clearly seen in Fig. 3 of Ref. [31]. Similar effects of the
stable rotating wave packets and their coherent superpositions
with strong interference contrast have also been found in
the calculations for F + HD → HF + D bimolecular
reaction [35,36].

The above results should allow us to test our suggestion
for the determination of the phase-relaxation time and, in
general, for the time evolution of the collision in bimolecular
chemical reactions. For example, in [32] a total time-dependent
amplitude was calculated for the H + D2 → HD + D

reaction. Then it was split into a short-time direct reaction
component and the time-delayed one. Taking the half-Fourier
transform, explicit energy and angle dependencies of both
the direct and time-delayed amplitudes were obtained. It was
found that in the region of backward angles θ � 70◦ and
for the c.m. energy interval 1.6–2 eV, the direct reaction cross
section is considerably bigger than the time-delayed one. Then
one can apply our method (Sec. III) to obtain P (t, θ ) of the
time-delayed reaction mechanism from the energy dependence
of the double-differential cross sections. This extracted P (t, θ )
can be compared with its actual exact form since the latter is
known and was used to generate the energy dependence of the
double-differential cross sections.

The calculations [32,33] suggest that in the forward angle
range, where the Schrödinger cat states originated from the
interference of the rotating toward each other wave packets
are observed, contribution of the direct reactions is negligible.
Therefore, for this particular H + D2 → HD + D reaction
for the c.m. energy less than 2 eV, our method cannot be
applied. Yet one can still check the sensitivity of the method
by artificially adding an energy-smooth background amplitude
to the calculated one for the time-delayed reaction mechanism.
The energy-smooth amplitude would play a role of the direct
reaction amplitude. This would enable one to directly test
the accuracy of the determination of the interference fringe
contrast from the data on the double differential cross sections
generated with the artificially added energy-smooth direct
reaction amplitude. Such a test may be important since for
the higher energy and/or for some other bimolecular chemical
reactions, a strong contribution of direct reactions is possible
for the same angle range at which the Schrödinger cat states
appear.

Note that pure energy resolution measurements of the
cross sections of bimolecular chemical reactions, in particular

H + D2 → D + HD [37] and F + HD → HF + D

[38] reactions, have recently become possible. Our results
suggest that this should enable experimentalists to extract
information on time dependence, in particular on the rotational
coherent dynamics and possible wave packet interference, of
the bimolecular chemical reactions which previously could
only be studied by the pump probe laser pulses technique to
monitor unimolecular chemical reactions [25,26].

V. PHASE RELAXATION VERSUS DECOHERENCE

Since phase relaxation results in washing out the interfer-
ence fringes and eventually, for a sufficiently large β, it can
destroy the Schrödinger cat states of Figs. 1 and 2, this effect
appears to be quite similar to decoherence [39]. Yet, there is an
essential difference between the two effects. It is instructive to
compare the extreme case of very fast phase relaxation (very
large β) with very fast decoherence. Very fast phase relaxation
corresponds to the regime of random matrix theory, i.e., to
random phase relations between all partial width amplitudes
corresponding to different strongly overlapping resonance
states [4]. This yields angle-independent exponential form for
the time power spectrum P (t, θ ) and unity for the normalized
variance of the fluctuating cross section. Analogous to the
fast phase relaxation would be quick decoherence between
all many-body quasistationary resonance states, similar to the
decoherence of Fock states due to the coupling of the system
to a phase reservoir [39]. Such a decoherence would destroy
interference terms between all the many-body eigenstates,
leading to the vanishing of interference between different
partial width amplitudes. It can be shown that in this case, the
time power spectrum would have the same angle-independent
exponential form as for fast phase relaxation. However, in
contrast to fast relaxation, quick decoherence would result in
washing out the cross section energy fluctuations, reducing its
normalized variance to D/� � 1 [40]. It should be noted that
the suppression of electron transmission intensity fluctuations
through nanostructures due to dephasing, an effect similar
to decoherence, can be described on the basis of different
arguments allowing the evaluation of dephasing rates from the
amplitude of conductance fluctuations [41].

VI. DISCUSSION AND CONCLUSIONS

Our approach is based on a new idea of slow phase
relaxation between partial width amplitudes in a regime of
strongly overlapping resonances. Contrary to the conventional
idea of random phase relations in this regime [4,42,43], our
analysis invokes spin off-diagonal phase correlations and their
slow decay for resonance time-delayed collisions. Though
these effects may occur for atomic cluster collisions [19]
and are already revealed for the bimolecular chemical reac-
tions [31–33,35,36], the present consideration is essentially
motivated by the pure energy resolution data on fluctuations
in 12C+24Mg elastic and inelastic scattering at θ = 180◦
[21,22], demonstrating both the fine energy structure of

0.3 MeV and quasiperiodicity with period 
3 MeV [16,17].
It is these peculiar features that led us to the interpretation
of the 12C+24Mg scattering in terms of highly excited
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quasimolecular states with strongly overlapping resonances,
stable rotational wave packets, and strong sensitivity of their
coherent superpositions to the phase-relaxation width. Note
that quasiperiodic structures in the excitation functions are
present also for other heavy-ion colliding systems [15]. We
have also described thoroughly how to extract the time
power spectrum from the data on the excitation function
oscillations.

It should be mentioned that a conceptually different optical
model description of the 12C+24Mg elastic scattering at
backward angles was presented in Ref. [44], where the
quasimolecular structures were ruled out. This conclusion
was based on a qualitative description of angular oscillations
at backward angles for only three energies within the same
energy range which is the subject of our study in this paper.
Unfortunately, that analysis is inconsistent with the presence
of the fine energy structure of ≈0.3 MeV at θ = 180◦ [21],
which unambiguously reveals the presence of time-delayed
processes at backward angles. On the contrary, the optical
model description relies on the energy average S-matrix and
therefore is expected to reproduce broad 
2–3 MeV energy
structures in the cross section. From our point of view, the fact
that the presence of the fine energy structures was not taken
into account led to an incorrect qualitative and then quantitative

identification of the physical picture of the collision process in
Ref. [44].

In conclusion, we have demonstrated a strong sensitivity
of Schrödinger cat states to the phase-relaxation width in
complex quantum collisions. This should permit to determine
the phase-relaxation time from measurements of the excitation
functions for 12C + 24Mg elastic scattering at backward angles.
Such an experiment would be desirable since the Schrödinger
cat states predicted in [19] for 12C+24Mg scattering involve
∼103–104 many-body configurations of the highly excited
intermediate complex. To the best of our knowledge, the
internal interactive complexity of these quantum macroscopic
superpositions dramatically exceeds [19] all those previously
experimentally realized. The proposed method can also be
applied for determination of the phase-relaxation time from
the data on excitation functions for bimolecular chemical
reactions.

ACKNOWLEDGMENTS

We are grateful to F. Leyvraz and T. H. Seligman for useful
discussions and suggestions. L. B. acknowledges financial
support from the projects IN-101603 (DGAPA-UNAM) and
43375-E (CONACyT).

[1] E. Wigner, in Statistical Properties of Nuclei, edited by J. B.
Gard (Plenum Press, New York, 1972), p. 11.

[2] O. Bohigas and H. A. Weidenmüller, Annu. Rev. Nucl. Part. Sci.
38, 421 (1988).

[3] B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys.
Rev. Lett. 78, 2803 (1997).

[4] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.
Rep. 299, 189 (1998).

[5] E. Wigner, Ann. Math. 62, 548 (1955); 65, 203 (1957).
[6] J. Flores, S. Yu. Kun, and T. H. Seligman, Phys. Rev. E 72,

017201 (2005); quant-ph/0502050.
[7] M. Bienert, J. Flores, S. Yu. Kun, and T. H. Seligman, SIGMA

2, Paper 027 (2006).
[8] B. Georgeot and D. L. Shepelyansky, Phys. Rev. E 62, 3504

(2000).
[9] D. L. Shepelyansky, Phys. Scr. T 90, 112 (2001).

[10] M. Bienert, J. Flores, and S. Yu. Kun, nucl-ex/0508020.
[11] S. Yu. Kun, Phys. Lett. B319, 16 (1993).
[12] S. Yu. Kun, Z. Phys. A 348, 273 (1994).
[13] S. Yu. Kun, Z. Phys. A 357, 255 (1997).
[14] S. Yu. Kun, A. V. Vagov, and O. K. Vorov, Phys. Rev. C 59,

R585 (1999).
[15] S. Yu. Kun, B. A. Robson, and A. V. Vagov, Phys. Rev. Lett. 83,

504 (1999).
[16] S. Yu. Kun, A. V. Vagov, and W. Greiner, Phys. Rev. C 63,

014608 (2001).
[17] S. Yu. Kun, A. V. Vagov, L. T. Chadderton, and W. Greiner, Int.

J. Mod. Phys. E 11, 273 (2002).
[18] W. Greiner, J. Y. Park, and W. Scheid, Nuclear Molecules (World

Scientific, Singapore, 1995).
[19] S. Yu. Kun, L. Benet, L. T. Chadderton, W. Greiner, and F. Haas,

Phys. Rev. C 67, 011604(R) (2003).

[20] U. Heinz, J. Reinhardt, B. Müller, W. Greiner, and W. T.
Pinkston, Z. Phys. A 316, 341 (1984).

[21] B. Ghosh and R. Singh, Pramana J. Phys. 29, 155 (1987).
[22] M. C. Mermaz, A. Greiner, B. T. Kim, M. J. LeVine, E. Muller,

M. Ruscev, M. Petrascu, M. Petrovici, and V. Simion Phys. Rev.
C 24, 1512 (1981).

[23] U. Heinz, U. Müller, J. Reinhardt, B. Müller, and W. Greiner,
Ann. Phys. (NY) 158, 476 (1984).
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