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Positive-energy one-particle levels in quadrupole-deformed Woods-Saxon potentials
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Positive-energy one-particle levels for neutrons in Y20 deformed Woods-Saxon potentials are examined using
the eigenphase representation. Taking the example of �π = 1/2+ levels, not only one-particle resonant levels
but also all solutions in the eigenphase representation within a model space are studied. It is shown that a
particular eigenphase solution among an infinite number of eigenphase solutions at a given energy plays a crucial
role in producing low-lying one-particle resonance, whereas for the excitation energy lower than a few MeV
the eigenphase sum is almost equal to the particular eigenphase when the sum is expressed by the value mod
nπ . Some one-particle resonant levels defined in terms of eigenphase, which have no correspondence to any
bound one-particle levels, are found and discussed. It is shown that the relative probability of the s1/2 component
estimated using the probabilities inside the Woods-Saxon potentials is a decisive factor for obtaining one-particle
resonant levels as a continuation of weakly bound �π = 1/2+ levels.

DOI: 10.1103/PhysRevC.73.064308 PACS number(s): 21.60.Ev, 21.10.Pc

I. INTRODUCTION

Recent experimental data on the nuclei far from the β

stability line provides a challenge to the conventional theory of
nuclear structure. Because the Fermi level of drip-line nuclei in
the mean-field approximation is very close to the continuum,
both weakly bound and positive-energy one-particle levels
play a crucial role in the many-body correlation of those
nuclei. The traditional harmonic-oscillator model is no longer
properly applicable to the study of drip-line nuclei. Thus, to
understand the structure of deformed drip-line nuclei, positive-
energy one-particle levels in deformed finite-well potentials
must be first understood. One-particle resonant levels are
well-defined in spherical potentials, whereas a systematic
study of one-particle resonant levels in deformed potentials
is scarcely found in the available literature.

In the study of positive-energy one-particle levels it is of
essential importance to solve the Schrödinger equation in
coordinate space with the appropriate asymptotic boundary
conditions, as is done in the present work. If one makes an
approximation of limiting the system to a finite box with a
boundary condition at the surface of the box, the numerical
results obtained depend inevitably on the size of the box. We
study positive-energy one-particle levels for neutrons using the
eigenphase representation, which is a natural extension of the
bound one-particle levels in deformed potentials. For a given
positive-energy, a given potential and a given quantum number
�π , where � expresses the component of one-particle angular-
momentum along the symmetry axis, there are an infinite
number of levels corresponding to different eigenphases. At
low excitation energies most eigenphases are very close to nπ ,
where n is an integer. Limiting the model space so as to exclude
those uninteresting eigenphases (≈nπ ), the dependence of
remaining interesting eigenphases on energies is examined.

While weakly bound s1/2 levels play a unique role in
spherical drip-line nuclei, weakly bound �π = 1/2+ levels,
which always contain some amount of s1/2 component, exhibit
a unique and important role in axially symmetric quadrupole-

deformed drip-line nuclei. Thus, as numerical examples in the
present article, positive-energy one-particle levels for neutrons
with �π = 1/2+ are examined in detail, in which the s1/2

component may play a unique role especially when the levels
become unbound. It is noted that in spherical potentials there is
no one-particle resonant level for the � = 0 channel, because of
the lack of the centrifugal potential. One-particle resonance in
spherical potentials is defined so that at the resonance energy
the phase shift for a given angular momentum � increases
through 1

2π as the one-particle energy increases [1].
A part of the present problem is studied in Ref. [2], in

which the possible continuation of weakly bound one-particle
(Nilsson) levels to the positive-energy region as one-particle
resonant levels is examined, depending on the values of the �π

quantum number. In Ref. [2] one-particle resonant levels in
deformed potentials are defined so that one of the eigenphases
increases through 1

2π as the one-particle energy increases.
The definition has a meaning analogous to that of one-particle
resonances in spherical potentials. We note that one-particle
resonant levels defined in a similar way are used also in
the study of proton emission in deformed nuclei outside the
proton drip line [3]. Whereas in the formulation of Ref. [3]
one-particle energy in the continuum is complex number, we
work on real variables irrespective of the sign of one-particle
energy, because it is favorable to have one-particle wave
functions expressed in real numbers, especially when various
observables are to be calculated.

In Sec. II our model is briefly described and the eigenphase
representation is explained, whereas numerical results and
discussions are given in Sec. III. Conclusions and perspectives
are given in Sec. IV.

II. MODEL AND EIGENPHASE REPRESENTATION

The structure of one-particle levels in axially symmet-
ric quadrupole-deformed Woods-Saxon potentials is studied,
solving the Schrödinger equation in coordinate space with
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appropriate asymptotic boundary conditions. All positive-
energy one-particle levels within a model space are calculated
in the eigenphase representation, whereas one-particle bound
levels in deformed potentials are obtained by solving the
well-known eigenvalue problem.

Because the same model Hamiltonian as that employed in
Ref. [2] is used, here we write only the minimum amount of
necessary formulas. Except the radius we employ the standard
parameters of the Woods-Saxon potentials used in β stable
nuclei [2,4]. The radius parameter R is varied so as to vary the
strength of our one-body potential. Writing the single-particle
wave function as

��(�r) = 1

r

∑
�j

R�j�(r)Y�j�(r̂), (1)

which satisfies

H�� = ε���, (2)

where � expresses the component of one-particle angular
momentum �j along the symmetry axis, which is a good
quantum number. The coupled equations for the radial wave
functions are written as{

d2

dr2
− �(� + 1)

r2
+ 2m

h̄2 [ε� − V (r) − Vso(r)]

}
R�j�(r)

= 2m

h̄2

∑
�′j ′

〈Y�j�|Vcoupl|Y�′j ′�〉R�′j ′�(r), (3)

where

V (r) = VWSf (r)

f (r) = 1

1 + exp[(r − R)/a]

k(r) = rVWS
df (r)

dr

〈Y�j�|Vcoupl|Y�′j ′�〉 = −βk(r)〈Y�j�|Y20(r̂)|Y�′j ′�〉
= −βk(r)(−1)�−1/2

×
√

(2j + 1)(2j ′ + 1)

20π

×C(j, j ′, 2; �,−�, 0)

×C

(
j, j ′, 2;

1

2
,−1

2
, 0

)
. (4)

The eigenvalues ε�(<0) of the coupled Eq. (3) for a
given value of �, which is equivalent to � appearing in
the asymptotic quantum numbers [Nnz��], are obtained by
solving the equations in coordinate space for a given set of
potential parameters, with both the condition, R�j�(r) = 0 at
r = 0, and the asymptotic behavior of R�j�(r) for r → ∞, as

R�j� ∝ rh�(αbr), (5)

where h�(−iz) ≡ j�(z) + in�(z), in which j� and n� are
spherical Bessel and Neumann functions, respectively, and

α2
b ≡ −2mε�

h̄2 . (6)

The normalization of bound one particle wave functions is
obtained from the condition

∑
�,j

∫ ∞

0
|R�j�(r)|2dr = 1. (7)

For positive-energy (ε� > 0) one-particle levels we solve
the coupled Eq. (3) in coordinate space for a given set of
potential parameters, requiring

R�j�(r) = 0 at r = 0 (8)

and the asymptotic behavior of R�j�(r) for r → ∞ as

R�j�(r) ∝ cos(δ�)αcrj�(αcr) − sin(δ�)αcrn�(αcr)

→ sin
(
αcr + δ� − �

π

2

)
, (9)

where

α2
c ≡ 2m

h̄2 ε�. (10)

Eigenphases δ� as well as the structure of respective positive-
energy one-particle wave functions, which are obtained in the
present way, are totally independent of the upper limit of radial
integration, Rmax, if f (r) and k(r) in (4) are already negligible
at r = Rmax 
 R.

For a given potential and at a given energy ε� we look for
all eigenphases which are common to all open channels (�, j )
for a given �. The way of solving the coupled-channel Eq. (3)
is taken from Ref. [5]. For a given potential and a given ε� we
have in principle an infinite number of eigenphase solutions
δ�. When we limit the model space (�, j ) for a given � to be
finite, the number of eigenphase solutions becomes equal to
that of wave function components with different (�, j ) values.
The value of δ� determines the relative amplitudes of different
(�, j ) components. The total normalization of the positive-
energy one-particle wave functions can be left arbitrary in the
present work.

The asymptotic behavior Eq. (9) defined using only one
of the eigenphases, is a natural choice so that the asymptotic
radial wave-functions behave in the same way for all angular
momentum components. This is analogous to the requirement
of the asymptotic behavior of bound-state wave functions,
Eq. (5). As one-particle resonant energies we look for the
values of ε�, for which one of the eigenphases δ� increases
through 1

2π as ε� increases. When we find one-particle
resonant levels thus defined, we calculate the width of the
resonance using the formula


 ≡ 2

dδ�/dε�|ε�=εres

, (11)

where the denominator is calculated at the resonance energy.
When we are interested in the low-energy one-particle resonant
levels, of which the energies are smoothly connected to eigen
energies of weakly bound one-particle levels for slightly
stronger potential strengths, inside the nuclear potential the
relative amplitudes of (�, j ) components of the radial wave
function are very similar to those of the weakly bound
one-particle level. In contrast, the relative amplitudes of (�, j )
components, which belong to other eigenphases (�= 1

2π ) for the
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same potential and the same one-particle energy, are different
from those of weakly bound one-particle levels.

In Ref. [6] a more general aspect of the eigenphase
representation, for example the role of eigenphase in scattering
problems, is considered and the usefulness of the sum of
eigenphases under certain circumstances is described. In
some literature [6,7] one finds the statement that the sum of
eigenphases

�(ε�) ≡
∑

n

δ
(n)
� (ε�) (12)

is the proper quantity to be used for the definition of
resonances. However, in the present context the sum of
eigenphases corresponds to a mixing of deformed one-particle
wave functions, which are orthogonal to each other and
have different asymptotic behaviors of radial wave functions.
Such kind of mixing might be expected when some broad
and/or overlapped resonances are present. As will be seen
later, when the low-energy one-particle resonant levels with
�π = 1/2+ are looked for, it hardly makes a difference to use
the eigenphase sum or a particular one of eigenphases. This
is because eigenphases other than the particular one vary very
slowly and smoothly as the energy increases from zero and,
consequently, the sum of those other eigenphases is nearly
equal to nπ where n expresses an integer. Nevertheless, as a
principle problem it seems meaningful to define one-particle
resonance by the condition that one of eigenphases increases
through 1

2π . Furthermore, in Ref. [7] it is stated that for
multichannel resonances the sum of eigenphases increases by
π as the energy passes through the resonance energy, showing
a numerical example of the � = 1 and � = 3 channels. As
shown in Sec.III, this statement is not applicable to the case
of �π = 1/2+ levels, of which the wave functions necessarily
contain some amount of s1/2 component.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

Because we have presented the numerical results of one-
particle resonant levels [2] as well as weakly bound one-
particle orbits [8] in the Y20-deformed Woods-Saxon potentials
taking examples of sd-shell nuclei, in the present article,
for convenience, we show numerical results for the same
mass-number region.

In Fig. 1 three �π = 1/2+ Nilsson levels in the sd-shell
are shown by thick solid curves with filled circles, which
are the same as those in Fig. 1 of Ref. [2]. When the three
�π = 1/2+ Nilsson levels are well bound, they are assigned
[9], from left to right, by the asymptotic quantum numbers
[Nnz��] = [220 1/2], [211 1/2], and [200 1/2]. Among those
three bound levels, for the deformation parameter β = 0.5 and
the diffuseness a = 0.67 fm only the weakly bound [2001/2]
level will continue to the region of ε� > 0 as a one-particle
resonant levels, when the potential strength becomes slightly
weaker. In the numerical calculations s1/2, d3/2, and d5/2

channels are included, because the inclusion of higher (�, j )
channels does not change the following discussion in the range
of (R/r0)3 values chosen in Fig. 1. Then, for a given potential
and at a given energy ε� (>0) we obtain three (and not an

Ωπ = 1/2+

VWS = − 51 MeV 

β = 0.5 
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FIG. 1. Neutron one-particle resonant and bound levels with
�π = 1/2+ in axially symmetric quadrupole-deformed Woods-
Saxon potentials as a function of the potential strength, (R/r0)3.
The radius of the Woods-Saxon potential is expressed by R, whereas
r0 = 1.27 fm is used. The asymptotic quantum numbers [Nnz��]
assigned traditionally to those three levels plotted by filled circles
connected with thick solid curves are [220 1/2], [211 1/2], and
[200 1/2], from left to right. The solid curves with open circles are
one-particle resonant levels obtained from the definition using one
of eigenphases, but no weakly bound Nilsson levels related to them
are present. The width of one-particle resonant levels with ε� > 0
denoted by thin vertical lines is defined by Eq. (11). For reference,
the energies of the bound Nilsson 1d5/2, 2s1/2, and 1d3/2 levels in
the spherical Woods-Saxon potential as a function of the potential
strength, (R/r0)3, are denoted by dotted curves. See the text for
details.

infinite number of ) eigenphases for �π = 1/2+ in our model
space. The width of one-particle resonant levels defined by
Eq. (11) is denoted by thin vertical lines. For reference, the
eigenenergies of bound 1d5/2, 2s1/2, and 1d3/2 orbits calculated
for the spherical Woods-Saxon potential, β = 0, are also
plotted by dotted curves as a function of the potential strength,
(R/r0)3. The open circles connected by the solid curve express
also one-particle resonant levels, following the definition that
at respective ε� values one of eigenphases increases through
1
2π as ε� increases. Those one-particle resonant levels, all of
which have very large width, indeed lack the weakly bound
Nilsson levels that are smoothly connected to them.

To illustrate the difference between the one-particle reso-
nant levels, which are denoted by the filled and open circles
in Fig. 1, in Figs. 2(a) and 2(b) the calculated eigenphases
expressed by the values mod nπ as a function of ε� > 0
are shown choosing the potential strength (R/r0)3 = 18 and
12, respectively. Because we have included three channels,
s1/2, d3/2, and d5/2, for the given potential and the given value
of ε�, we obtain three solutions of eigenphase, which are
shown by the thick solid, dotted, and dashed curves. The filled
and open circles in Figs. 2(a) and 2(b), respectively, denote
the one-particle resonances that correspond to the the same
symbols at respective ε� and (R/r0)3 values in Fig. 1. For
the potential with (R/r0)3 = 18 there is no weakly bound
�π = 1/2+ level, and the increase of the eigenphase expressed
by the dotted curve at very small values of ε� > 0 in Fig. 2(a)
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FIG. 2. (a) Eigenphases expressed by the values mod nπ as a
function of one-particle energy, for the potential strength (R/r0)3 =
18, for which no weakly bound �π = 1/2+ level is present. One-
particle resonance is indicated by the filled circle. The value of π/2
is denoted by the thin horizontal line, whereas the sum of three
eigenphases is expressed by the thin solid curve. (b) The same as
in Fig. 2(a), but for the potential strength (R/r0)3 = 12, for which a
weakly bound �π = 1/2+ level is present. One-particle resonance is
indicated by the open circle. The value of π/2 is denoted by the thin
horizontal line, whereas the sum of three eigenphases is expressed by
the thin solid curve.

is proportional to ε
1/2
� , which is known as the ε� dependence

of the phase shift in the s channel for spherical potentials. In
contrast, for the potential with (R/r0)3 = 12 a weakly bound
�π = 1/2+ level is present (see Fig. 1), and the solid curve in
Fig. 2(b) starts from δ� = π at ε� = 0 and steeply decreases
as ε� increases from zero. From the behavior of the solid
curve as a function of ε� it is also seen that there is no weakly
bound Nilsson level related to the “one-particle resonance”
indicated by the open circle. Indeed, the value of δ� = 1

2π is
realized at a larger value of ε�, and the energy of the resonance
indicated by the open circle in Fig. 2(b) cannot continuously
decrease to zero as the potential strength increases. Namely,
as the value of (R/r0)3 becomes larger, there is a minimum
value of the resonance energy at which the resonance width
becomes infinitely large (see also Fig. 4). In both Figs. 2(a)
and 2(b) the sum of three eigenphases, which is expressed
by the value mod nπ where n is an integer, is plotted by
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FIG. 3. One of the three eigenphases is plotted for various
strengths of the potential, (R/r0)3, as a function of one-particle
energy, ε�. The values of (R/r0)3 are written close to respective
dotted curves. A weakly bound level is present for (R/r0)3 = 18.5,
but not for 18. The curve for (R/r0)3 = 18 is the same as the dotted
curve in Fig. 2(a).

the thin curve. It is seen that for small values of ε� > 0 the
sum of eigenphases almost coincides with a particular one of
them that varies considerably, whereas other eigenphases vary
very slowly and smoothly as ε� starts to increase from 0. In
the literature [7] one finds a statement that, for multichannel
resonances, the eigenphase sum increases by π as the energy
passes through the resonance energy. This statement is not
applicable for the resonances with �π = 1/2+, in which the
s1/2 component plays a crucial role.

In Figs. 3 and 4 two of the three eigenphases are plotted
for various strengths of the potential as a function of ε�.
The curve denoted by the potential strength, (R/r0)3 = 18, in
Fig. 3 is the same as the dotted curve in Fig. 2(a), whereas the
one marked by (R/r0)3 = 18 in Fig. 4 is the same as the solid
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FIG. 4. One of the three eigenphases, which is different from that
shown in Fig. 3, is plotted for various strengths of the potential,
(R/r0)3, as a function of one-particle energy, ε�. The values of
(R/r0)3 are written close to respective solid curves. A weakly bound
level is present for (R/r0)3 = 11.5, but not for 11. The curve for
(R/r0)3 = 18 is the same as the solid curve in Fig. 2(a).
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curve in Fig. 2(a). We find that for a given potential strength
only one of the three eigenphases varies considerably as a
function of ε� and may eventually cross the line of 1

2π . This
behavior of eigenphases for �π = 1/2+ remains the same
when channels with higher (�, j ) values are included in the
present region of (R/r0)3 values.

In Ref. [2] the low-energy one-particle resonance with
�π = 1/2+, which can be regarded as a continuation of some
weakly bound Nilsson level for a slightly stronger strength
of the potential, is studied. The aim of the study is to find
out which one-particle levels in the continuum are important
in the many-body correlation of the ground or low-lying
excited states. In Ref. [2] it is also shown that for larger
deformations and more diffuse potentials it is more difficult
to obtain �π = 1/2+ one-particle resonant levels. Thus, for a
given diffuseness of the Woods-Saxon potential, we examine
what is the element crucial for the presence of low-energy
�π = 1/2+ one-particle resonant levels. If Nilsson levels are

sufficiently bound such as those well approximated by the
modified oscillator model, it is known that the [200 1/2]
level among the three �π = 1/2+ Nilsson levels in the
sd shell has the largest s1/2 component. For example, see
Tables 5–9 in Ref. [9]. Since one-particle resonant levels
with �π = 1/2+ would decay preferably through the � =
0 channel because of the absence of centrifugal barrier,
one expects that a smaller s1/2 component is preferred to
realize one-particle resonant levels. In contrast, as shown in
Fig. 1, the [200 1/2] level is the only �π = 1/2+ level that
can continue to the region of positive energy as a one-particle
resonant level, if we use the parameters chosen in Fig. 1.
Because the structure of the one-particle wave function inside
the potential varies continuously when a given weakly bound
Nilsson level becomes a one-particle resonant level for a
slightly weaker strength of the potential, we estimate the
relative probability of the s1/2 component inside the potential
defined by

P (s1/2) = 〈s1/2|V (r)|s1/2〉
〈d5/2|V (r)|d5/2〉 + 〈d3/2|V (r)|d3/2〉 + 〈s1/2|V (r)|s1/2〉 . (13)

In Fig. 5 the quantity in Eq. (13) is plotted for three �π = 1/2+
Nilsson levels as a function of ε�. It is seen that in the
case of deeply bound levels the [200 1/2] level has indeed
the largest P (s1/2) value, which approaches the total s1/2

probability tabulated in Table 5–9 of Ref. [9]. In contrast,
the [200 1/2] level has the smallest P (s1/2) value as ε�(< 0)
approaches 0. We note that the quantity defined in Eq. (13)
is indeed continuous when the sign of ε� changes from
negative to positive in the case that one-particle resonant
level can be present as in the [200 1/2] level. The maximum
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FIG. 5. The relative probability of the s1/2 component inside the
Woods-Saxon potential, (13), for the three �π = 1/2+ Nilsson levels
in the sd shell, as a function of ε�. The dashed curve for ε� > 0 is
obtained from the wave functions of the one-particle resonant levels,
which are related to the weakly bound [200 1/2] level.

value of P (s1/2) at ε� → 0, for which the continuation as
a one-particle resonant level can be found, depends on the
value of diffuseness of the potential and is larger for smaller
diffuseness. For the potential parameters used in Fig. 5
the [200 1/2] level is the only one that continues to the
positive energy region as one-particle resonant level. Then,
as ε� increases from zero, the relative probability of the s1/2

component inside the potential starts to steeply increase as
shown in Fig. 5 and, at the same time, the width of the
resonance soon becomes extremely large as seen in Fig. 1.
Consequently, before ε� becomes several hundred keV, the
meaning of the resonance is essentially lost.

To understand the variation of P (s1/2) values of three
Nilsson levels as a function of ε� < 0, which is exhibited
in Fig. 5, the eigenenergies of 1d5/2, 2s1/2, and 1d3/2 levels for
spherical potentials are shown in Fig. 1, for reference. In the
spherical Woods-Saxon potential, in which all three levels are
deeply bound, or in the case of a modified oscillator potential
[9] the 2s1/2 level lies around the middle of the 1d5/2 and 1d3/2

levels. However, the diagonal deformation energy for the 1d

orbits with �π = 1/2+ is negative for prolate deformation,
whereas the deformation energy is zero for the s1/2 orbit.
Consequently, for a sufficiently large prolate deformation the
[200 1/2] level, which is the highest lying �π = 1/2+ level
in the sd shell, obtains the largest s1/2 component. In contrast,
when the potential strength becomes weaker, the eigen energy
of the 2s1/2 level does not increase so much as that of 1d levels
and, consequently, the 2s1/2 level approaches the 1d5/2 level.
As a result of it, for ε�(< 0) → 0 the [220 1/2] level obtains
a large component of s1/2 as exhibited in Fig. 5. It is remarked
that in Fig. 5 the potential strengths for three Nilsson levels
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at a given value of ε� are different and, thus, the sum of the
relative s1/2 probability over three Nilsson levels at a given
value of ε� is different from unity.

IV. CONCLUSIONS AND PERSPECTIVES

Positive-energy one-particle levels for neutrons in axially
symmetric quadrupole-deformed Woods-Saxon potentials are
studied by solving the Schrödinger equation in coordinate
space with the appropriate asymptotic boundary conditions.
Limiting the model space to the sd shell, all three eigenphases
for �π = 1/2+ are studied for a given strength of the deformed
potential and at a given one-particle energy. It is found that in
the region of small one-particle energy ε�(>0) only one of the
eigenphases varies considerably, whereas the others start from
nπ at ε� = 0 and vary very slowly and smoothly.

There is no resonance in the s1/2 channel in spherical
potentials, whereas some amount of s1/2 component is always
admixed into all �π = 1/2+ levels in quadrupole-deformed
potentials. The role of those admixed s1/2 components in

possible one-particle resonances with �π = 1/2+ is one
of the subjects of present interest because the decay of
�π = 1/2+ resonances may most easily go through the s1/2

channel because the absence of centrifugal barrier. When
one-particle resonant levels defined in terms of eigenphase
are obtained in the low-energy region, some one-particle
resonant levels are found to be a smooth continuation of
specified weakly bound Nilsson levels, whereas the others
have no related bound Nilsson levels. The latter has usually
a large width and is hardly expected to play a unique role
as a resonance, but its possible role in any observable is
interesting to study. To obtain one-particle resonant levels as
the continuation of weakly bound �π = 1/2+ levels when
the potential strength becomes slightly weaker, the relative
probability of the s1/2 component of weakly bound one-particle
levels inside the potential has to be smaller than some critical
value. The critical value depends on the diffuseness of the
potential.

It is preferable to develop a simple analytical model finding
some crucial parameters to understand the physics obtained in
the present article.
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