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We present a new and efficient method to obtain a Gamow shell-model basis and matrix elements generated by
realistic nucleon-nucleon interactions. We derive a self-consistent Hartree-Fock potential from the renormalized
N3LO interaction model. The corresponding Gamow one-body eigenstates are generated in a plane wave basis
in order to build a Gamow shell-model set of basis states for the closed shell nuclei 4He and 16O. We address
also the problem of representing a realistic nucleon-nucleon interaction in a two-particle Berggren basis in the
laboratory frame. To achieve this, an expansion of matrix elements of the residual nucleon-nucleon interaction
in a finite set of harmonic oscillator wave functions is used. We show that all loosely bound and narrow
resonant states converge surprisingly fast. Even broad resonances in these two-particle valence systems converge
within a reasonable number of harmonic oscillator functions. Examples of 6He and 18O Gamow shell-model
calculations using 4He and 16O as closed shell cores are presented. This procedure allows Gamow shell-model
calculations to be performed with all realistic nucleon-nucleon interactions and with either momentum or position
space representations for the Gamow basis. Perspectives for nuclear structure calculations of dripline nuclei are
outlined.
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I. INTRODUCTION

A challenge in modern nuclear physics is the description
of nuclei far from the valley of stability. These nuclei
exhibit unusual features such as very low particle-emission
thresholds, halo densities and unbound ground states. A proper
understanding of the mechanisms underlying the formation of
such nuclei is presently a great challenge to nuclear theory,
especially the case of two-neutron Borromean halos such as
6He and 11Li. The theoretical description of such exotic nuclei
cannot be worked out within standard models because of the
appearance of strong couplings to the continuum.

The extreme clusterization of Borromean nuclei into an
ordinary core nucleus and a veil of halo nucleons has motivated
few-body approaches such as the hyperspherical harmonic
method and momentum space Faddeev equations to these
nuclei [1]. However, the few-body modeling of Borromean
and halo nuclei is not completely satisfying as the treatment
of core excitations and the antisymmetrization between core
and valence nucleons is therein approximate.

An ab initio description of these nuclei, taking into account
all relevant degrees of freedom, would alleviate the defects of
such cluster approaches. To achieve this, a reformulation of the
shell model using a single-particle basis of bound, resonant
and scattering states appears to be the most straightforward
method. The continuum shell model [2–6] and the recently
developed shell model embedded in the continuum (SMEC)
[7–10] offer such a possibility. In SMEC, two subspaces of
bound/quasibound states and scattering states are introduced
and their coupling taken into account following the techniques
discussed in, for example, Refs. [2,3]. However, most cal-
culations have been performed with only one-particle decay
channels. While the theoretical formulation of SMEC with
two-particle decay channels has been formulated (see Ref. [10]

with applications to two-proton radioactivity), exact three-
body asymptotics have never been applied numerically. The
very rapidly increasing complexity of SMEC with many-body
decay channels is a hindrance to the study of cluster-emitting
systems, such as in particular Borromean nuclei.

The newly developed Gamow shell model [11–20] has
proven to be a reliable tool in order to probe the structure
of such nuclei. This model unifies structure and reaction
properties of nuclei, and most importantly allows for an exact
treatment of antisymmetry and has no limitation on the number
of particles in the continuum. It is then particularly well suited
for the study of Borromean nuclei. The starting point of the
Gamow shell model is the Berggren completeness relation,
where bound, resonant and scattering states are treated on an
equal footing [21–25]. The completeness relation is built upon
bound, resonant states and an integral over a continuum of
scattering states with complex energy. This integral has to be
discretized in order to be applied in numerical calculations.
A complete many-body Berggren basis is then constructed
with Slater determinants integrating bound, resonant and
nonresonant discretized continuum orbitals. The Gamow shell
model can be seen as a direct generalization of the standard
shell model, where the standard harmonic oscillator set of
states is replaced by a Gamow basis.

An important question concerns the choice of the potential
to generate the one-body Gamow basis states. In Gamow
shell-model calculations, the single-particle basis has nor-
mally been constructed from a Woods-Saxon or a Gaussian
potential depicting 4He or 16O cores, fitted to reproduce the
single-particle states of 5He and 17O, respectively [11,20].
However, in a fully microscopic approach, the single-particle
basis should be constructed from the free nucleon-nucleon
interaction or more complicated three and/or many-body
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interactions. This can be done by summing various diagrams in
many-body perturbation theory. At lowest order this approach
is given by the Hartree-Fock approximation (see Ref. [11]
where a Gamow-Hartree-Fock basis was derived and applied
to schematic interactions.)

In many-body perturbation theory, one cannot use the free
nucleon-nucleon interaction, since it yields strongly repulsive
and/or diverging matrix elements at short internucleonic
distances. In order to remove these divergencies, renormalized
nucleon-nucleon interactions have been constructed from the
Brueckner G-matrix approach [26–28]. The G-matrix is a
soft interaction, which is obtained by resumming in-medium
particle-particle correlations.

Recently, an alternative renormalization scheme which
integrates out the high momentum components of the nucleon-
nucleon interactions has been proposed [29–33]. Using a
similarity transformation of the two-nucleon Hamiltonian, a
Hermitian soft-core effective nucleon-nucleon interaction is
obtained in a model space defined by a cutoff � in the
relative momentum between the nucleons. This renormalized
interaction has become known as a low-momentum nucleon-
nucleon interaction, labeled Vlow-k . The interaction Vlow-k is an
energy and nucleus independent effective interaction which
reproduces nucleon-nucleon scattering data, but displays a
sizable dependence on �.

In this work, the single-particle Gamow Hartree-Fock
basis is constructed using a renormalized interaction of the
Vlow-k type, derived by similarity transformation techniques of
the nucleon-nucleon interaction. Our renormalization scheme
requires a plane wave basis formulation of the Schrödinger
equation. Such a basis is a natural starting point since
nucleon-nucleon interactions are usually derived explicitly
in momentum space, as for example the N3LO interaction
[34,35]. In order to perform Gamow Hartree-Fock calcula-
tions, the nucleon-nucleon interaction has to be defined by the
coordinates of the laboratory system. The transformation of
the interaction from the relative and center of mass frame to
the laboratory frame is performed with the so-called vector
brackets [27,36–38]. These are the less known momentum
space analogs of the Moshinsky transformation coefficients of
the harmonic oscillator representation, generalizing the Talmi
transformation to arbitrary bases. In the presence of unbound
states such as in a Gamow basis, the single-particle potential
has to be analytically continued in the complex k-plane. In
Ref. [19], it was shown how a single-particle Berggren basis
can be obtained by the contour deformation method in a basis
of spherical Bessel functions.

For a microscopic approach to be fully consistent, the
realistic nucleon-nucleon interaction should generate both a
single-particle basis through Hartree-Fock calculations and
an effective nucleon-nucleon interaction to be diagonalized
in the Gamow shell model. We can obtain this by letting
the renormalized nucleon-nucleon interaction to be expressed
in a two-particle Berggren basis. However, the difficulty in
analytically continuing the vector transformation coefficients
to the complex k-space, prevents such a derivation. In this
work, an alternative approach to calculate realistic interactions
in Gamow bases is proposed. The method is based on an
expansion of the nucleon-nucleon interaction in a finite set of

harmonic oscillator wave functions. Within this framework,
the analytic continuation of the nuclear interaction is trivial,
and matrix elements can therein be very efficiently calculated
through the use of the standard Talmi transformation. As will
be shown, this method provides well converged energies and
wave functions in the Gamow shell-model calculations with
a small number of harmonic oscillator states. In addition, as
harmonic oscillator wave functions have a similar behavior
in momentum and position space, both momentum space and
coordinate space representations can be used for the Gamow
basis. This method may also provide a solution to the problem
of spurious center of mass motion in Gamow shell-model
calculations.

The outline of the paper is a follows. In Sec. II, the deriva-
tion of a renormalized nucleon-nucleon interaction suitable
for a perturbative many-body approach in the Gamow shell
model is described. In Sec. III, the self-energy and Gamow
Hartree-Fock single-particle basis of the Vlow-k interaction are
constructed and applied to the 4He and 16O closed-shell nuclei.
Section IV outlines the harmonic oscillator expansion method
for the nucleon-nucleon interaction, and Sec. V illustrates
applications in Gamow shell-model calculations for two
selected valence systems, 6He and 18O. There we discuss also
the convergence of narrow and broad resonances as functions
of the number of harmonic oscillator wave functions used in
the expansion. Section VI points out the equivalence between
the momentum and the position space formulations of the
Gamow shell model when the harmonic oscillator expansion
method is used. Finally, in Sec. VII we outline our conclusions
and future perspectives.

II. RENORMALIZED NUCLEON-NUCLEON
INTERACTION

In order to build the Gamow Hartree-Fock potential in k-
space and a Gamow shell-model Hamiltonian matrix, it is
necessary to construct the self-energy �(kalaja, kb) defined by
the inclusion of various diagrams in many-body perturbation
theory, discussed in Sec. III. Note here and in the following
discussion the distinction between ka, kb and k and la and l. The
notations ka or la (latin letters) refer to the quantum numbers
of a single-particle state a, whereas l or k without subscripts
(or with greek letters as subscripts) refer to the coordinates of
the relative motion.

To compute many-body perturbation diagrams, the
nucleon-nucleon interaction has to enter a perturbative treat-
ment. Hence, the free nucleon-nucleon interaction, giving rise
to diverging matrix elements, cannot be used directly and has
to be renormalized. Since parts of our formalism is based
on computing the self-energy in a momentum basis, it is
convenient here to use a renormalization scheme based on
a cutoff in momentum space as discussed by Bogner et al. [29]
and Fujii et al. [30,31].

This approach is based on two steps, a diagonalization in
momentum space for relative momenta k ∈ [0,∞) of the two-
body Schrödinger equation and a similarity transformation
[30,31] to relative momenta k ∈ [0,�],� defining the relative
momenta model space. Typical values of � are in the range of
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∼2 fm−1. The nucleon-nucleon interaction is diagonal in the
center of mass motion. One can therefore easily map the full
diagonalization problem onto a smaller space via a similarity
transformation and obtain thereby an effective interaction for
a model space defined for low momenta. This interaction
has been dubbed Vlow-k in the literature, see for example
Ref. [29]. The effective low-momentum interaction Vlow-k is
constructed in such a way that it reproduces exactly the main
characteristics of the nucleon-nucleon wave function in the full
space.

The interaction Vlow-k looks attractive at first glance,
but may generate undesirable features in the Gamow shell
model. Many-body calculations using a renormalized nucleon-
nucleon interaction of the low-momentum type introduce a
strong dependence on the cutoff � in momentum space. By
integrating out high momentum modes of the nucleon-nucleon
interaction, one excludes certain intermediate excitations in
the many-body problem. While the two-body problem is
exact with Vlow-k , the three-body problem will not be. In
Ref. [33]Vlow-k was accompanied with a �-dependent three-
body force in order to reproduce the ground-state energies
of 4He and 3H for each value of �. It is hoped that a
three-body force is sufficient to eliminate the � dependence
for heavier nuclei. However, if it turns out that one needs to go
beyond three-body forces for nuclei with A>4, many-body
calculations starting with Vlow-k are futile.

Alternatively, one could have defined a so-called G-matrix
in momentum space as effective interaction [26–28,39]. The
latter introduces a dependence on the chosen starting energy
and a reference to a given Fermi energy. This dependence
can be eliminated by introducing for example higher-order
terms in many-body perturbation theory [39]. We relegate
such a discussion to future work. It must be stressed that
the aim here is to demonstrate the feasibility of obtaining a
single-particle basis for Gamow shell-model calculations using
a realistic interaction. We adopt therefore a pragmatic approach
and use Vlow-k simply because it is easier to implement
numerically in order to renormalize the nucleon-nucleon
interaction.

In the following we outline the procedure to obtain a Her-
mitian interaction Vlow-k based on the similarity transformation
discussed in Refs. [30,31,40,41]. A unitary transformation can
be parametrized in terms of the model space P and the excluded
space Q via

U =
(

P (1 + ω†ω)−1/2P −Pω†(1 + ωω†)−1/2Q

Qω(1 + ω†ω)−1/2P Q(1 + ωω†)−1/2Q

)
, (1)

where the wave operator ω is defined to satisfy the condition

ω = QωP, (2)

the so-called decoupling condition [42]. Note that the unitary
transformation is by no means unique. In fact, one can
construct infinitely many different unitary transformations
which decouple the P and the Q subspaces, as discussed by
Kuo et al. [43]. The above transformation depends only on
the operator ω which mixes the P and Q subspaces and is
in some sense “the minimal possible” unitary transformation.

Following the method of Ref. [30], one obtains

U = (1 + ω − ω†)(1 + ωω† + ω†ω)−1/2. (3)

The above operator U leads to the effective interaction Ṽ using
the definition

Ṽ = U−1(T + V )U − T , (4)

where T is the kinetic energy of the nucleons and V is the free
nucleon-nucleon interaction.

To express the renormalized interaction in momentum
space, one starts with the Schrödinger equation for the relative
momentum k,∫

dk′ k′2〈k|T + V |k′〉〈k′|ψα〉 = Eα〈k|ψα〉, (5)

where the plane wave states are eigenfunctions of the kinetic
energy operator T in the relative system and form a complete
set ∫

dk k2|k〉〈k| = 1. (6)

The momentum space Schrödinger equation is solved as a
matrix equation by discretizing the integration interval by
some suitable rule, (here, the Gauss-Legendre quadrature is
used). The discretized Schrödinger equation reads

∑
γ

wγ k2
γ 〈kδ|T + V |kγ 〉〈kγ |ψα〉 = Eα〈kδ|ψα〉, (7)

where kγ are the integration points and wγ the corresponding
quadrature weights. Introducing |k̄δ〉 = kδ

√
wδ|kδ〉, Eq. (7)

becomes ∑
γ

〈k̄δ|T + V |k̄γ 〉〈k̄γ |ψα〉 = Eα〈k̄δ|ψα〉, (8)

where

N∑
δ=1

|k̄δ〉〈k̄δ| = 1, 〈k̄δ|k̄γ 〉 = δδ,γ . (9)

The matrix elements of the Hamiltonian are expressed in the
plane wave basis:

Hδ,γ = 〈k̄δ|T + V |k̄γ 〉 = k2
δ

m
δδ,γ + √

wδwγ kδkγ V (kδ, kγ ),

(10)
where m is the average of the proton and the neutron masses.
The full space is now divided in a model space P and an
orthogonal complement space Q. The model space P consists
in the NP plane wave states lying below the cutoff �, and the
Q-space consists of the remaining states, viz.

P = {|k̄〉, |k| � �}, Q = {|k̄〉,� < |k| < ∞}. (11)

The model space is thus defined for all momenta k ∈ [0,�]
fm−1. In order to obtain an effective interaction in the model
space P, the decoupling condition in Eq. (2) has to be
fulfilled. Once the transformation matrix ω in the plane wave
basis 〈k̄|QωP |k̄〉 is obtained, the low-momentum effective
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nucleon-nucleon interaction Vlow-k reads

〈k̄|PVlow-kP |k̄′〉 =
∑
k′′

∑
k′′′

〈k̄|P (P + ωTω)1/2P |k̄′′〉

× 〈k̄′′|P (T + V )P |k̄′′′〉
× 〈k̄′′′|P (P + ωTω)−1/2P |k̄′〉 − k2

m
δkk′,

(12)

see also Ref. [30] for further details. The effective model space
interaction in the original plane wave basis |kδ〉 is then given
by

〈kδ|Vlow-k|kγ 〉 = 〈k̄δ|Vlow-k|k̄γ 〉√
wδwγ kδkγ

, (13)

where {|kδ〉, |kγ 〉} ∈ P .

III. DERIVATION OF SELF-CONSISTENT GAMOW
HARTREE-FOCK BASIS

The renormalized nucleon-nucleon interaction Vlow-k is
defined in terms of various quantum numbers as follows:

〈klKL(J )STz|Vlow-k|k′l′KL(J )STz〉, (14)

where the variables k, k′ and l, l′ denote, respectively, relative
and angular momenta, while K and L are the quantum numbers
of the center of mass motion. J , S and Tz represent the total
angular momentum in the relative and center of mass system,
spin and isospin projections, respectively.

The A−body Hamiltonian H is defined as

H = 1

2m

A∑
i=1

k2
i +

A∑
i<j

Vlow-k(i, j ). (15)

The spurious center of mass energy is removed by writing the
internal kinetic energy as

Tin = T − Tc.m. =
(

1 − 1

A

) A∑
i=1

k2
i

2m
−

A∑
i<j

ki · kj

mA
. (16)

The introduction of an additional two-body term yields a
modified two-body interaction

HI = Vlow-k + Vc.m. =
A∑

i<j

(
Vlow-k(i, j ) − ki · kj

mA

)
, (17)

resulting in a total Hamiltonian given by

H =
(

1 − 1

A

) A∑
i=1

k2
i

2m
+ HI. (18)

In all calculations reported in this manuscript, the modified
two-body Hamiltonian defined in Eq. (17) is employed.

Starting from the renormalized momentum-space version of
the nucleon-nucleon interaction Vlow-k , with matrix elements
in the relative and center of mass system system, one can
obtain the corresponding matrix elements in the laboratory sys-
tem through appropriate transformation coefficients [36–38].

This transformation proceeds through the definition of a two-
particle state in the laboratory system. With these coefficients,
the expression for a two-body wave function in momentum
space using the laboratory coordinates can be written as

∣∣(kalajatza

)(
kblbjbtzb

)
JTz

〉

=
∑

lLλSJ

∫
k2dk

∫
K2dK




la lb λ
1
2

1
2 S

ja jb J


 (−1)λ+J−L−S

×F Ĵ λ̂2ĵa ĵbŜ

{
L l λ

S J J

}
〈klKL|kalakblbλ〉

× |klKL(J )SJTz〉 , (19)

where 〈klKL|kalakblbλ〉 is the transformation coefficient
(vector bracket) from the relative and center of mass system
to the laboratory system defined in Refs. [37,38]. The factor
F is defined as F = (1 − (−1)l+S+Tz )/

√
2 if we have identical

particles only (Tz = ±1) and F = 1 for different particles
(protons and neutrons here, Tz = 0).

The transformation coefficient 〈klKL|kalakblb〉 is given by
[36–38]

〈klKL|kalakblbλ〉 = 4π2

kKkakb

δ(w)θ (1 − x2)A(x), (20)

with

w = k2 + 1
4K2 − 1

2

(
k2
a + k2

b

)
, (21)

x = (
k2
a − k2 − 1

4K2) /kK, (22)

and

A(x) = 1

2λ + 1

∑
µ

[Y l(k̂) × YL(K̂)]λ∗
µ × [Y la (k̂a) × Y lb (k̂b)]λµ.

(23)
The functions Y l are the standard spherical harmonics, x is the
cosine of the angle between 	k and 	K so that the step function
takes input values from 0 to 1. In our codes, the coordinate
system of Kuo et al. [38] was chosen.

To compute the Hartree-Fock (HF) diagram [see Fig. 1 (a)]
we need matrix elements in a mixed representation of bound
and scattering states such as
〈(
kalajatza

)(
nblbjbtzb

)
JTz

∣∣HI

∣∣(kclcjctzc

)(
ndldjd tzd

)
JTZ

〉
,

(24)

where the labels a and c represent scattering states and b
and d represent bound states. All matrix elements discussed
here are assumed to be antisymmetrized (AS). Note that the
two-body center of mass correction term Vc.m. in Eq. (17)
is calculated directly in the laboratory coordinates using
the Wigner-Eckart theorem, while the renormalized nucleon-
nucleon interaction is given in laboratory coordinates using
the transformation given in Eq. (19). The calculation of these
matrix elements requires the knowledge of two-body states in
a mixed representation with for example harmonic oscillator
wave functions Rnala representing the bound states and plane
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(a) (b) (c)

a

c c c

a a

h hp1 p2 h1 p h2

FIG. 1. Diagrams through second order of the interaction HI.
Diagram (a) is the first order Hartree-Fock term while diagrams (b)
and (c) are the 2p-1h and 2h-1p corrections, respectively. The labels
a and c represent the outgoing and incoming states, respectively.
The intermediate particle states are labeled as p, p1, p2 with upward
arrows and the intermediate hole states as h, h1, h2 with downward
arrows. The dotted lines represent the interaction HI.

waves for the resonant or continuum states∣∣(nalajatza

)(
kblbjbtzb

)
JTz

〉 =
∫

k2
adkaRnala (ka)

∣∣(kalajatza

)
× (

kblbjbtzb

)
JTz

〉
, (25)

where kalaja and nalaja are, respectively, plane wave and
harmonic oscillator wave functions. The two-body state is
represented by the quantum numbers of the total angular
momentum J and isospin projection Tz.

With these matrix elements, the expression for the HF
diagram shown in Fig. 1(a) can be derived

VHF
(
kakclajatza

) = 1

ĵa
2

∑
J

∑
nhlhjhtzh

Ĵ 2
〈(
kalajatza

)(
nhlhjhtzh

)

× JTz|HI

∣∣(kclajatza

)(
nhlhjhtzh

)
JTz

〉
AS,

(26)

where x̂ = √
2x + 1 and nhlhjhtzh

are the quantum numbers of
the nucleon hole states. The variables la, ja, tza

are the orbital
angular momentum, total angular momentum and isospin
projection (tza

= ±1/2) of the incoming/outgoing nucleon,
and ka (kc) the outgoing (incoming) particle momenta. The
mixed matrix elements of the two-body center of mass
correction term needed in the HF calculation reads〈(

kalajatza

)(
nhlhjhtzh

)
JTz

∣∣
− k1 · k2

mA

∣∣(kclcjctzc

)(
nhlhjhtzh

)
JTz

〉
AS

= 1

mA
(2ja + 1)(2jh + 1)

(
ja 1 jh

1/2 0 −1/2

)2

×
{

ja jh J

jc jh 1

} {
1 + (−1)la+lh+1

2

}

× kakcRnhlh (ka)Rnhlh (kc)δjajc
δla lc δtza tzh

δtzc tzh
. (27)

In summary, if we limit ourselves to the computation of the
HF contribution, the expression for the self-energy reads

�(jalakakc) = VHF(jalakakc). (28)

In this work, only the HF contribution is considered, while
in Ref. [26] the authors also studied contributions from 2p-1h
and 2h-1p intermediate states. They yield an imaginary term
which can be related to its real part via a dispersion relation.

To calculate the contributions from the 2p-1h diagrams like
the example displayed in Fig. 1(b) [or similarly the 2h-1p
diagram of Fig. 1 (c)] we evaluate the imaginary part first.
The real part is obtained through the dispersion relations to be
defined below. The analytical expression for the imaginary
contribution of the 2p-1h diagram, which gives rise to an
explicit energy dependence of the self-energy, is

W2p-1h
(
jalakakctza

ω
)

= − 1

ĵa
2

∑
nhlhjhtzh

∑
J

∑
lLSJ

∫
k2dk

∫
K2dKĴ T̂

× 〈(
kalajatza

)(
nhlhjhtzh

)
JTz

∣∣HI|klKL(J )SJTz〉
× 〈klKL(J )SJTz|HI

∣∣(kclajatza

)(
nhlhjhtzh

)
JTz

〉

×πδ

(
ω + εh − K2

4MN

− k2

MN

)
, (29)

where ω is the energy of the incoming nucleon in a
state a. The quantities klKL(J )SJTz are the quantum
numbers of the intermediate two-particle state. To compute
the two-particle-one-hole diagram given by the second-order
diagram of Fig. 1(b), the following matrix elements are needed:〈(

kalajatza

)(
nblbjbtzb

)
JTZ

∣∣HI|klKL(J )STz〉. (30)

The contributions to the real part of the self-energy from
Eq. (29) can be obtained through the following dispersion
relation:

V2p-1h
(
jalakakctza

ω
) = P

π

∫ ∞

−∞

W2p-1h
(
jalakakctza

ω′)
ω′ − ω

dω′,

(31)
where P takes the principal value of the integral. Since W2p-1h

is different from zero only for positive values of ω′ and its
diagonal matrix elements are negative, this dispersion relation
implies that the diagonal elements of V2p-1h will be attractive
for negative values of ω. This attraction should increase for
small positive energies. It will eventually decrease and become
repulsive only for large positive values of the energy of the
interacting nucleon. Similar expressions can also be derived
for second-order diagrams with 2h-1p intermediate states [26].
Inclusion of these terms will be presented in a future work (see
also the discussion in Sec. VII).

The equations above for the nucleon self-energy are only
valid along the real-energy axis. However, �(jalakakc) has to
be analytically continued from the real k-axis to the complex k-
plane in order to obtain a genuine Gamow shell-model single-
particle basis. The derivation of a Berggren basis in momentum
space with the contour deformation method was described in
Ref. [19]. The analytical continuation of �(jalakakc) to the
complex k-plane leads to theoretical and practical difficulties
due to the appearance of Dirac and Heaviside distributions
in vector brackets [see Eq. (20)]. However, once the self-
consistent self-energy has been obtained along the real k-axis,
the HF potential can be simply continued to the complex
plane via two sets of Fourier-Bessel transformations. To obtain
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TABLE I. HF calculation of single-particle energies in 16O using the low-momentum N3LO nucleon-
nucleon interaction for three different model spaces. The single-particle energies E are given in MeV for
both real and imaginary parts. Experimental data are from Ref. [44].

lj � = 1.9 fm−1 � = 2 fm−1 � = 2.1 fm−1 Expt.

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

s1/2 −73.977 0.000 −68.496 0.000 −63.078 0.000 −44.000 0.000
p2/3 −37.082 0.000 −33.824 0.000 −30.650 0.000 −21.840 0.000
p1/2 −23.981 0.000 −21.749 0.000 −19.680 0.000 −15.664 0.000
d5/2 −5.060 0.000 −3.810 0.000 −2.541 0.000 −4.143 0.000
s1/2 −3.531 0.000 −2.556 0.000 −1.781 0.000 −3.273 0.000
d3/2 5.189 −1.669 5.353 −1.928 5.419 −2.155 0.937 −0.048

a self-consistent HF potential in the complex k-plane, the
following scheme is employed:

(i) The first step is to calculate VHF self-consistently on a
grid on the real momentum axis using the interaction HI

of Eqs. (17) and (26).
(ii) When a self-consistent solution has been obtained, VHF is

calculated in position space via a double Fourier-Bessel
transform,

VHF(j lrr ′) = 2

π

∫ ∞

0
dkk2

×
∫ ∞

0
dkk2jl(kr)jl(k

′r ′)VHF(j lkk′).

(32)

(iii) Having obtained VHF in the r-plane we may go back
to the complex k-plane using one more Fourier-Bessel
transformation. On an inversion symmetric contour L+
in the complex k-plane, the HF potential becomes

VHF(j lkk′) =
∫ ∞

0
drr2

∫ ∞

0
dr ′r ′2jl(kr)jl(k

′r ′)VHF(j lrr ′),

(33)

where k and k′ belong to the contour L+ and are therefore com-
plex. The analytically continued single-particle Schrödinger
equation on a general inversion symmetric contour then takes
the form

h̄2

meff
k2ψnlj (k) +

∫
L+

dk′k′2VHF(j lkk′)ψnl(k
′) = Enlψnl(k),

(34)
with meff = 2m(1 − 1/A)−1. Here both k and k′ are defined on
an inversion symmetric contour L+ in the lower half complex
k-plane, resulting in a closed integral equation. In order to solve
this equation, the integral has to be discretized, and we finally
end up with a complex symmetric matrix diagonalization
problem, in analogy with Eq. (7). This procedure results in a
self-consistent Gamow Hartree-Fock basis, which is complete
within the discretization space, and includes bound, resonant
and a finite set of nonresonant continuum states (see Ref. [19]
for details about one-body Berggren completeness relations in
momentum space).

Based on this approach, the single-particle Gamow Hartree-
Fock states of the closed-shell 4He and 16O are calculated with

a low-momentum nucleon-nucleon interaction constructed
from the realistic N3LO nucleon-nucleon interaction [34,35].
For 16O we used the models spaces defined by � = 1.9, 2.0
and 2.1 fm−1, and for 4He the models spaces defined by � =
1.8, 1.9 and 2.0 fm−1.

Table I presents the neutron single-particle energies ob-
tained with a 16O core. We note that holes states are in general
overbound for all chosen cutoffs � and that the spin-orbit
splitting between the p2/3 and p1/2 states is too large. The
particle states are in better agreement with data and for all
model spaces the d3/2 state is the only one which comes out
as a resonance, in agreement with experiment. The spin-orbit
spacing the d5/2 and d3/2 states is also fairly well reproduced.
Figure 2 shows the convergence of the 0p2/3 and the 0p1/2

spin-orbit partners in 16O with respect to the number of
iterations in the self-consistent HF calculation.

Table II presents the calculated self-consistent neutron
single-particle energies with respect to a 4He closed shell
core. The calculated values for the p2/3 and the p1/2 energies
are not so far from the experimental values. For a model
space � = 1.8 fm−1, the obtained width of the p2/3 resonance
coincides with the experimental width 0.648 MeV, while the
calculated width of the p1/2 resonance (∼7.4 MeV) is larger
than the experimental value 5.57 MeV. The spin-orbit splitting
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FIG. 2. Convergence of the 0p2/3 and the 0p1/2 energies in 16O
with respect to iteration number in the self-consistent HF calculation.
Here we used a model space � = 1.9 fm−1 in the construction of
Vlow-k .
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TABLE II. Same as in Table I for 4He. Experimental data from Ref. [45].

lj � = 1.8 fm−1 � = 1.9 fm−1 � = 2.0 fm−1 Expt.

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

s1/2 −25.731 0.000 −24.541 0.000 −23.079 0.000 −20.578 0.000
p2/3 0.819 −0.325 1.041 −0.479 1.287 −0.667 0.890 −0.324
p1/2 2.497 −3.697 2.514 −3.777 2.648 −4.029 2.160 −2.785

between the p2/3 and the p1/2 levels is fairly well reproduced,
the experimental value is 1.27 MeV [45] while our values vary
from 1.36 to 1.68 MeV. Noting that our calculations are done at
the Hartree-Fock level, there is clearly room for improvements.
However, although our results for hole states are overbound,
we obtain a qualitatively correct spectrum. Higher-order
corrections should improve the agreement with experiment,
since 2p-1h and 2h-1p correlations provide additional binding
and improved spin-orbit splittings for particle states.

Many-body calculations using a renormalized nucleon-
nucleon interaction of the low-momentum type will unfor-
tunately introduce a model space dependence in momentum
space (see Tables I and II). The model space dependence can
only be eliminated by introducing the corresponding three-
and many-body forces which the low-momentum two-body
interaction induces. In Gamow shell-model calculations, the
inclusion of three-body forces is not feasible for the moment.
If one wants to minimize the effect from many-body forces,
a better approach might be to use a G-matrix for nuclear
matter as in Refs. [26,39]. However, higher-order correlations
such as 2p-1h or 2h-1p contributions are necessary in order to
minimize the dependence on the starting energy and the chosen
Fermi energy [39]. Whether the model space dependence
of Vlow-k can be softened by the inclusion of higher-order
correlations such as 2p-1h and 2h-1p will be investigated in
a future work. Furthermore, although the G-matrix carries an
explicit starting energy dependence, this dependence is needed
when one wants to compute for example spectral functions.

IV. MATRIX ELEMENTS OF REALISTIC
NUCLEON-NUCLEON INTERACTION WITH A

GAMOW HARTREE-FOCK BASIS

As discussed in the previous section, starting from matrix
elements of the nucleon-nucleon interaction in the relative and
center of mass system system, one can obtain the correspond-
ing matrix elements in the laboratory system through appropri-
ate transformation coefficients, see for example Refs. [36–38]
and the discussion in the previous section. This transformation
proceeds through the definition of a two-particle state in the
laboratory system using the vector bracket transformation.
However, the latter is very complicated to handle in practical
calculations beyond the Hartree-Fock level. One has also
to face the problem of two-particle intermediate states not
orthogonal to the incoming and outgoing states [see Eq. (29)].
Another method is then needed in order to efficiently calculate
effective nucleon-nucleon matrix elements in the complex
k-plane and laboratory frame with a Gamow shell-model basis.

The renormalized nucleon-nucleon interaction in an arbi-
trary two-particle basis in the laboratory frame is given by

〈ab|Vlow-k|cd〉 = 〈(
nalajatza

)(
nblbjbtzb

)
JTz|Vlow-k|

× (
nclcjctzc

)(
ndldjd tzd

)
JTz

〉
. (35)

The two-body state |ab〉 is implicitly coupled to good angular
momentum J. The labels na...d number all bound, resonant and
discretized scattering states with orbital and angular momenta
(la...d , ja...d ).

In order to efficiently calculate the matrix elements of
Eq. (35), we introduce a two-particle harmonic oscillator basis
completeness relation

∑
α� β

|αβ〉〈αβ| = 1, (36)

where the sum is not restricted in the neutron-proton case. We
introduce the greek single particle labels α, β for the single-
particle harmonic oscillator states in order to distinguish them
from the latin single-particle labels a, b referring to Gamow
states. The interaction can then be expressed in the complete
basis of Eq. (36)

Vosc =
∑
α� β

∑
γ � δ

|αβ〉〈αβ|Vlow-k|γ δ〉〈γ δ|, (37)

where the sums over two-particle harmonic oscillator states
are infinite. The expansion coefficients

〈αβ|Vlow-k|γ δ〉 = 〈(
nαlαjαtzα

)(
nβlβjβtzβ

)
JTz

× |Vlow-k|
(
nγ lγ jγ tzγ

)(
nδlδjδtzδ

)
JTz

〉
, (38)

represent the nucleon-nucleon interaction in an antisym-
metrized two-particle harmonic oscillator basis, and may
easily be calculated using the well known Moshinsky transfor-
mation coefficients, see for example Ref. [46] for expressions.

Matrix elements of Eq. (35) are calculated numerically
in an arbitrary two-particle Gamow basis by truncating the
completeness expansion of Eq. (37) up to N harmonic oscillator
two-body states

〈ab|Vosc|cd〉 ≈
N∑

α� β

N∑
γ � δ

〈ab|αβ〉〈αβ|Vlow-k|γ δ〉〈γ δ|cd〉.

(39)
The two-particle overlap integrals 〈ab|αβ〉 read

〈ab|αβ〉 = 〈a|α〉〈b|β〉 − (−1)J−jα−jβ 〈a|β〉〈b|α〉√
(1 + δab)(1 + δαβ)

(40)
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for identical particles (proton-proton or neutron-neutron
states) and

〈ab|αβ〉 = 〈a|α〉〈b|β〉 (41)

for the proton-neutron case. The one-body overlaps 〈a|α〉 are
given by

〈a|α〉 =
∫

dτ τ 2ϕa(τ )Rα(τ ) δla lα δjajα
δta tα , (42)

where ϕa is a Gamow single-particle state and Rα is a
harmonic oscillator wave function. The radial integral is either
evaluated in momentum or position space, indicated by the
integration variable τ . The important point to notice is that
the only numerical calculations involving Gamow states are
the overlaps of Eq. (42). Hence, this expansion provides a
simple analytical continuation of the nuclear interaction in the
complex k-plane. More precisely, the expansion coefficients
of Eq. (38) can always be calculated with real harmonic
oscillator wave functions, and in the case of Gamow functions
spanning a complex contour L+ (as in the momentum space
representation), it is only the overlap integrals of Eq. (42)
which are analytically continued in the complex plane. These
one-body overlap integrals converge in all regions of the
complex plane which are of physical importance, due to the
gaussian fall off of the harmonic oscillator wave functions.

The convergence with the number of harmonic oscillator
states N of the nuclear interaction expansion of Eq. (38) can
however not be checked by considering the matrix elements
of Eq. (39) when N → +∞. Indeed, they generally diverge
when N → +∞, due to the long-range character of the nuclear
interaction in laboratory coordinates. This reflects the fact
that the convergence of the Gamow shell-model Hamiltonian
with N is weak, because the representation of a Hamiltonian
such as Vlow-k in terms of a continuous Gamow basis is a
distribution. Actually, only eigenvalues and eigenfunctions of
the Gamow shell-model Hamiltonian converge with N, which
will be shown in particular cases in Sec. V.

V. GAMOW SHELL-MODEL CALCULATIONS OF
6He AND 18O.

In Sec. III we constructed a self-consistent single-particle
Gamow Hartree-Fock basis starting from a realistic renormal-
ized nucleon-nucleon interaction. Ultimately this basis should
be used to construct the effective interaction in a given model
space and diagonalize the shell-model Hamiltonian. Using the
harmonic oscillator expansion method of the nucleon-nucleon
interaction, we have a practical way of constructing the
effective interaction to be incorporated in Gamow shell-model
calculations. It is our aim to investigate whether a finite
truncation of the harmonic oscillator expansion given in
Eq. (39) may yield converged energies and wave functions
in Gamow shell-model calculations. As a first application we
consider two nucleons moving outside a closed core. The
Gamow shell-model Hamiltonian used reads

H (1, 2) = hHF(1) + hHF(2) + Veff(1, 2), (43)

where hHF is the self-consistently derived single-particle
Hartree-Fock potential and Veff (1, 2) is the effective interaction
acting between valence particles. In this work, all calculations
are implemented up to first order in many-body perturbation
theory, where the effective interaction is defined as

Veff(1, 2) = Vlow-k(1, 2) − k1· k2

mA
. (44)

It should be noted that we utilize the harmonic oscillator ex-
pansion method only for the nucleon-nucleon interaction part,
i.e., Vlow-k(1, 2) ≈ Vosc, while the center of mass correction
term is treated exactly in the laboratory frame. The matrix
elements of the center of mass term are given by

〈(
nalajatza

)(
nblbjbtzb

)
JTz|k1 · k2|

(
nclcjctzc

)(
ndldjd tzd

)
JTz

〉

= −h̄2(−1)jc+ja+J

{
ja jb J

jd jc 1

}
〈nalaja‖∇1‖nclcjc〉

× 〈nblbjb‖∇2‖ndldjd〉, (45)

where the expression for the reduced matrix elements can
be found in Ref. [46]. In our Gamow shell-model study of
the two-particle valence systems with realistic interactions,
6He and 18O, a two-particle model space built from the
s1/2, p2/3, p1/2, d5/2 and d3/2 single-particle states is used.
Each combination of the quantum numbers lj consists of
25 single-particle orbitals, totalling 115 orbitals. The same
integration contour L+ in the complex k-plane is used for all
partial waves (see Fig. 3). In our 6He calculations the contour
is defined with A = 0.28 − 0.12i fm−1, B = 0.5 fm−1 and
C = 4 fm−1 , and in our 18O calculations it is defined with
A = 0.52 − 0.12i fm−1, B = 0.64 fm−1 and C = 4 fm−1 .
Using Gauss-Legendre quadrature, the discretization of L+
has been carried out with 5 points in the interval (0, A),
seven points in the interval (A,B) and 13 points in the
interval (B,C). Convergence of the two-particle states with
respect to the number of integration points has been checked.
Our discretization of L+ yields a precision of the energy
calculation better than 0.1 keV for all states considered.

L+

Re[k]

Im[k]

CB

A

FIG. 3. Contour L+ in the complex k-plane used in construction
of the single-particle Berggren basis. The contour in specified by the
points A, B and C discussed in the text.
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TABLE III. Convergence of the 01
+ and the 21

+ energies in 6He as
functions of the number of harmonic oscillator nodes in the expansion
of the realistic low-momentum N3LO nucleon-nucleon interaction.
The model space is given by � = 1.9 fm−1. The harmonic oscillator
length is chosen at b = 2 fm. Energies are given in units of MeV.

nmax J π = 01
+ J π = 21

+

Re[E] Im[E] Re[E] Im[E]

4 −0.4760 0.0000 0.9504 −0.0467
6 −0.4714 0.0000 0.9546 −0.0461
8 −0.4719 0.0000 0.9597 −0.0453

10 −0.4721 0.0000 0.9602 −0.0452
12 −0.4721 0.0000 0.9600 −0.0452
14 −0.4721 0.0000 0.9601 −0.0452
16 −0.4721 0.0000 0.9601 −0.0453
18 −0.4721 0.0000 0.9601 −0.0453
20 −0.4721 0.0000 0.9601 −0.0453

In the following discussion a model space defined by � =
1.9 fm−1 is employed. The oscillator length is fixed at
b = 2 fm.

A. 6He results

Table III gives the convergence of the 0+
1 ground state and

the 2+
1 excited state of 6He as functions of increasing number of

nodes in the harmonic oscillator expansion of the interaction. A
remarkable observation is that the 0+

1 ground and the 2+
1 excited

states of 6He converge rather fast with respect to the number
of harmonic oscillator functions, since nmax = 10 is sufficient
to reach convergence. Our calculations are comparable with
the experimental values of −0.98 MeV for the 0+ ground
state and 1.8 − 0.06i MeV for the 2+ excited state in 6He.
Especially the 2+ excited state is well reproduced. A splitting
of ∼1.5 MeV is obtained between the 0+ ground state and
the 2+ excited state, to be compared with the experimental
value of 1.8 MeV. The binding energy of the 0+ ground-state
may be improved by going beyond first order in many-body
perturbation theory, as shown in for example Ref. [28]. The 2p-
1h and 1p-2h diagrams may yield extra binding and improve
spin-orbit splitting for the HF single-particle states of 4He. In
addition, it is well-known that the two-body core-polarization
contributions improve the spectroscopy of systems with two
and more valence nucleons [28]. These findings agree also with
Brueckner-Hartree-Fock calculations for oxygen isotopes, see
for examples Ref. [47]. At first order in perturbation theory,
the spectrum is very much compressed. The agreement with
experiment is partly improved with the introduction of core-
polarization contributions.

It can be concluded that the energies considered here
for 6He, converge with respect to the number of harmonic
oscillator functions in the expansion of the nucleon-nucleon
interaction. However, this does not imply that other observ-
ables converge with the same speed, especially those which
are sensitive to the tail of the wave function.

In order to investigate such a dependence, the single-particle
radial density operator is considered for the 0+

1 ground state in
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FIG. 4. Plot of the radial density of the 0+ ground state of 6He
for three different harmonic oscillator expansions with, respectively,
nmax = 4, 10, and 16.

6He. The single-particle radial density operator is given by

ρ̂ =
N∑
i

|ri〉〈ri |, (46)

where N is the total number of valence particles (N = 2 for
6He in a 4He core). This operator measures the probability for
either particle 1 or 2 is to be found at the position ri . Figure 4
shows plots of the diagonal part of ρ̂, that is ρ(r = r1 = r2)
for the 0+0+ ground state of 6He, with nmax = 4, 10, and 16
in the harmonic oscillator expansion of the nucleon-nucleon
interaction. In Fig. 4 there is no observable difference between
the nmax = 4, 10 and 16 results. In Fig. 5 we examine the tail
of the wave function. The densities obtained for nmax = 10 and
16 are indistinguishable, while the nmax = 4 displays a very
small deviation from the converged results.

B. 18O results

Table IV gives the convergence of the 01
+, 02

+, 41
+,

and 42
+ state energies and Table V the convergence of the

21
+, 22

+, 23
+, and 24

+ of 18O, as the number of nodes in
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FIG. 5. Same as in Fig. 4, but for the radial interval 8 � r � 10.
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TABLE IV. Convergence of the 01
+, 02

+, 41
+, and the 42

+ energies in 18O as functions of the number of harmonic oscillator nodes in
the harmonic oscillator expansion. A model space defined by � = 1.9 fm−1 was used. The harmonic oscillator length is fixed at b = 2 fm.
Energies are in units of MeV.

nmax J π = 01
+ J π = 02

+ J π = 41
+ J π = 42

+

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

4 −12.225 0.000 −8.438 0.000 −11.0641 0.0000 −1.4373 −0.8275
6 −12.226 0.000 −8.498 0.000 −11.0907 0.0000 −1.4292 −0.7600
8 −12.228 0.000 −8.499 0.000 −11.0922 0.0000 −1.4380 −0.7405

10 −12.229 0.000 −8.499 0.000 −11.0921 0.0000 −1.4400 −0.7390
12 −12.228 0.000 −8.499 0.000 −11.0923 0.0000 −1.4393 −0.7401
14 −12.228 0.000 −8.499 0.000 −11.0923 0.0000 −1.4394 −0.7401
16 −12.228 0.000 −8.499 0.000 −11.0923 0.0000 −1.4394 −0.7401
18 −12.228 0.000 −8.499 0.000 −11.0923 0.0000 −1.4394 −0.7401
20 −12.228 0.000 −8.499 0.000 −11.0923 0.0000 −1.4394 −0.7401

the harmonic oscillator expansion increases. All of the states
converge with a reasonable low number of harmonic oscillator
functions nmax ∼ 10. Our calculation of the 0+

1 ground-state
energy comes at −12.23 MeV which is very close to the
experimental value of −12.18 MeV. The calculated splitting
between the 0+

1 ground-state and the 0+
2 excited state is

∼3.73 MeV which is also very close to the experimental
value 3.63 MeV. We are also able to predict that the first
excited resonant state is the 42

+ state coming at energy
−1.44 − 0.74i MeV, which is in agreement with experiment.
However, we are not able to correctly describe the splitting
between the 01

+, 21
+, and the 41

+ states. In our calculations
the 01

+ and 21
+ are almost degenerate. The discrepancy with

experimental data is expected to be reduced by going beyond
first order in perturbation theory, including contributions such
as the core-polarization diagrams to the effective interaction.
In Ref. [28], it was shown how the splitting of the 01

+, 21
+,

and the 41
+ states of 18O is indeed improved by going to

higher order in perturbation theory. In order to improve our
Gamow shell-model calculations for 18O starting from realistic
interactions, we must include higher order diagrams in the
perturbation series for the nucleon self-energy and the effective

interaction. This is a topic which will be followed up in the
future.

VI. EQUIVALENCE BETWEEN POSITION AND
MOMENTUM SPACE REPRESENTATIONS

While the momentum representation of one-body Gamow
states has been used in Refs. [19,20] and here, the Gamow
shell-model was first introduced employing a position space
representation, see for example Refs. [14,16]. A momentum
space representation has however normally been preferred
in constructions of effective interactions based on realistic
nucleon-nucleon interaction models. There are several reasons
for this. Realistic interactions are usually derived in k-space,
so that plane wave expansions are the most natural bases.
Moreover, in connection with Gamow shell-model calcula-
tions, the momentum space representation was meant to lead to
a faster convergence with the number of discretized scattering
states, as Gamow wave functions in momentum space are
usually more localized compared to those in the coordinate
representation. Moreover, the momentum space representation
of the one-body Schrödinger equation is an integral equation

TABLE V. Convergence of the 21
+, 22

+, 23
+, and the 24

+ energies in 18O as functions of the number of harmonic oscillator nodes in the
harmonic oscillator expansion. A model space defined by � = 1.9 fm−1 was used. The harmonic oscillator length is fixed at b = 2 fm. Energies
are in units of MeV.

nmax J π = 21
+ J π = 22

+ J π = 23
+ J π = 24

+

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

4 −12.1398 0.0000 −10.0488 0.0000 −0.0772 −1.4465 1.1632 −1.4478
6 −12.1465 0.0000 −10.0830 0.0000 −0.1321 −1.3038 1.1628 −1.5059
8 −12.1452 0.0000 −10.0853 0.0000 −0.1539 −1.2929 1.1836 −1.5346

10 −12.1450 0.0000 −10.0857 0.0000 −0.1595 −1.2922 1.1807 −1.5331
12 −12.1453 0.0000 −10.0858 0.0000 −0.1570 −1.2938 1.1820 −1.5343
14 −12.1453 0.0000 −10.0858 0.0000 −0.1571 −1.2938 1.1821 −1.5342
16 −12.1453 0.0000 −10.0858 0.0000 −0.1573 −1.2936 1.1822 −1.5342
18 −12.1453 0.0000 −10.0858 0.0000 −0.1573 −1.2936 1.1822 −1.5342
20 −12.1453 0.0000 −10.0858 0.0000 −0.1573 −1.2936 1.1822 −1.5342
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in the general case, contrary to its integro-differential form
in r-space, known to be much more difficult to solve. The
necessity of imposing the asymptotics of the Gamow state in
r-space was also thought to give rise to a slower convergence
with the number of discretized scattering states. Finally, the
use of complex scaling [48] to calculate two-body matrix
elements in the position representation leads to extremely slow
calculations and cannot even regularize a large class of infinite
matrix elements occurring in long-range interactions. It was
this last nuisance which motivated the use of surface-peaked
interactions in position space calculations, namely the surface
delta interaction (SDI) [14,15] and the surface Gaussian
interaction (SGI) [11,12]. One will see however that both
representations are in fact equivalent theoretically but also
numerically, where the computational cost to obtain a given
precision is comparable in both cases. The main point is that
the possibility to use the harmonic oscillator expansion method
of Sec. IV removes all the problems previously encountered
with both representations.

In order to obtain a self-consistent Gamow Hartree-Fock
basis in position space, one has to solve the one-body integro-
differential Schrödinger equation

h̄2

meff
ϕ′′

nlj (r) +
∫ +∞

0
dr ′VHF(j lrr ′)ϕnlj (r ′) = Enlϕnlj (r),

(47)

where VHF(j lrr ′) is the self-consistent HF potential given
in Eq. (32). The wave function |ϕnlj 〉 has to exhibit a pure
outgoing wave function behavior for bound and resonant states
for r → +∞, whereas it has both incoming and outgoing
components if it is a scattering state. In the last case, n
must be understood as representing its wave number k. Even
though it is an integrodifferential equation, it can be solved
with standard methods with the use of locally equivalent
potentials [49], so that its integration has the same complexity
as differential equations occurring with purely local potentials.
This generates a self-consistent procedure, as the locally
equivalent potential depends on the state that it generates. This
is of no importance in practical situations, as the integrated
potential will be nonlocal in r-space only if it is a HF potential
generated by a finite-range interaction. As HF potentials
have to be solved self-consistently, no numerical overhead
can occur. The slow convergence noted in Ref. [14] was
due only to the use of the trapezoidal rule to discretized
the nonresonant continuum. With the use of the Gauss-
Legendre integration, as performed in k-space calculations
from the beginning, results have improved dramatically in
r-space calculations, reaching k-space calculations quality
[50].

In fact, the fundamental difference between the r and the k
representations for Gamow shell-model applications lies in
their different discretization schemes. In k-space, it is the
Bessel completeness relation of Eq. (6) which is discretized.
The |ψnlj 〉 states are then obtained by diagonalization of
VHF(j lkk′) in the discretized Fourier-Bessel basis space. They
will be denoted as |ψnl〉Dk . In r-space, it is the completeness
relation spanned by the |ϕnl〉 states themselves which is

discretized. Indeed, one has
∑

n∈(b,d)

|ϕnl〉〈ϕnl| +
∫

L+
|ϕkl〉〈ϕkl| dk = 11 (48)

N∑
i=1

wn|ϕnl〉〈ϕnl | � 11, (49)

where n ∈ (b, d) means that one sums over all bound (b)
and decaying (d) states above the contour L+. The first
completeness relation, exact, becomes the second discretized
completeness relation, approximate, where wn is 1 for bound
and resonant states, and the Gauss-Legendre weight for
scattering states. As a consequence, the |ϕnl〉 states of r-space,
that we label |ϕnl〉Dr are exact up to numerical precision,
since they come from a direct integration of the Schrödinger
equation. Approximations arise only from their discrete and
finite number in Eq. (49). The corresponding |ψnl〉Dk states
have to be approximate, as they are generated by a finite
number of Bessel basis states, meaning that there are not
enough frequencies to expand them exactly. As a consequence,
one has |ψnl〉Dk → |ψnl〉Dr only at the continuum limit, that is
for N → +∞.

This difference may appear for observables that depend on
large values of r or k, such as particle densities at large r or
momentum densities at large values of k. But this is of no
importance as discretization effects become preponderant in
these regions, and may thereby most likely lead to numerically
unstable results.

Consequently, both representations can be used in shell-
model problems without any loss of precision. The remaining
question of the method to handle two-body matrix elements
in purely numerical bases has been answered in Sec. IV
with the use of harmonic oscillator expansions. One has
seen in the latter section that the only numerical calculations
involving Gamow states are the overlaps between Gamow and
harmonic oscillator states of Eq. (42), which are obviously fast
numerically. The Gaussian decrease of harmonic oscillator
states in momentum or position representation allows a
very accurate implementation of overlaps in both represen-
tations. Hence, the implementation of the Gamow shell-model
matrix becomes very similar from one representation to
another.

The Coulomb interaction, not considered in this paper, may
however generate difficulties in the momentum representation.
Its infinite range character can indeed be treated exactly in the
r-representation at the basis level through the use of Coulomb
wave functions, whereas approximations have to be performed
in k-space calculation as the Fourier-Bessel transform of the
Coulomb interaction does not exist. The use of the harmonic
oscillator expansion method may be indeed slowly converging
for its low multipoles. This question will have to be answered
with Gamow shell-model calculations of nuclei close to the
proton drip-line.

VII. CONCLUSION AND FUTURE PERSPECTIVES

In this paper we have presented a calculational algorithm
which can be used to obtain a self-consistent single-particle
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basis in the complex energy plane, starting from a renormalized
and realistic nucleon-nucleon interaction. In this work we
used the simplest possible approximation to the nucleon
self-energy, including the Hartree-Fock diagram only in order
to demonstrate the feasibility of our method. With our
approach we studied the single-particle spectra of 4He and
16O. For 4He we found that both the p2/3 and the p1/2 states
appeared as resonances. Their widths are in fair agreement
with experiment. For 16O we found the hole states to be
largely overbound, while the s1/2 and d5/2 particle states
agree well with the experimental values. The d3/2 states
comes out as a resonance, in agreement with experiment
although our width is larger than the experimental value.
Higher order corrections such as 2p-1h and 1h-2p contributions
may improve the agreement with experiment, in particular the
spin-orbit splittings for the hole states, and will be included in
future self-energy calculations.

With the Gamow Hartree-Fock single-particle basis, de-
rived from realistic interactions, the problem of representing
the nucleon-nucleon interaction in the derived basis comes
to the fore. As the nucleon-nucleon interaction is typically
given in momentum space, a transformation from the relative
and center of mass frame to the laboratory frame involves
mathematical functions which are not easy to continue analyt-
ically in the complex k-plane. To that end, we investigated
whether a method based on an expansion of the nucleon-
nucleon interaction as function of a finite set of harmonic
oscillator functions could be a promising route. This expansion
allows for a straightforward calculation of matrix elements
in the laboratory frame for any Gamow basis. The harmonic
oscillator functions are indeed very flexible in both position
and momentum space, and the analytic continuation of the
two-body interaction in the complex plane turns out to be very
easy to implement from both a theoretical and a numerical
point of view. With this method, we have shown that for the
example of the 6He and 18O nuclei, all states converge with a
low number of harmonic oscillator functions in the expansion
of the interaction. This method offers also a practical way of
calculating higher order diagrams in many-body perturbation
theory. There are diagrams which enter for example the
definition of the self-energy and two or three-body effective

interactions. In particular, this method provides a solution
to the problem of nonorthogonal intermediate particle states,
a problem which arises when one uses the vector brackets.
Utilizing the harmonic oscillator expansion of the interaction,
we ensure that all intermediate states are orthogonal in all
diagrams beyond first order in many-body perturbation theory.
However, the renormalization of the Coulomb interaction
and the two-body center of mass contribution need further
considerations.

The procedure outlined in this work allows for several
interesting applications related to the study of weakly bound
and unbound nuclei along the driplines. Of particular interest
is the possibility to apply our approach within the framework
of the coupled-cluster method, see for example Refs. [54–59].
The coupled-cluster approach is a promising candidate for
the development of practical methods for fully microscopic
ab initio studies of nuclei. The coupled-cluster methods
are capable of providing a precise description of many-
particle correlation effects at relatively low computer costs,
when compared to shell-model or configuration interaction
techniques aimed at similar accuracies. In approaches such as
the coupled cluster, an extension to the complex energy plane
is in principle possible. Coupled-cluster calculations starting
with a HF basis in the complex plane, along with the inclusion
of realistic interactions, are planned in near future. Then, it
might be possible to perform coupled-cluster calculations of
states with a multi-particle resonant structure starting with a
realistic interaction.
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A539, 189 (1992).
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