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The phase diagram of models with configuration mixing is investigated in mean-field approximation. The
configurations correspond to different limits of a dynamical algebra U(n), such as U(n − 1) and SO(n), and
are allowed to mix. It is shown that this diagram has unusual properties not present in models with a single
configuration. Applications to nuclear and molecular physics are discussed.
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Qualitative changes in the properties of physical systems
are called phase transitions. The properties of a system are
characterized by order parameters, the expectation values
of some suitable chosen operators in the ground state, 〈P̂ 〉.
Phase transitions occur as some of the parameters, called
control parameters, that constrain the system, are varied. Phase
transitions in which the control parameter is the temperature
T (so-called thermodynamic phase transitions) have been
known for many years. In the late 1970’s, Gilmore et al. [1]
introduced phase transitions in which the control parameter,
ξ , is a parameter appearing in the quantum Hamiltonian
describing the system, Ĥ = (1 − ξ )Ĥ 1 + ξĤ 2. They called
these “ground-state-energy phase transitions,” and pointed
out the analogy with the thermodynamic phase transitions.
In recent years, they have been renamed “quantum phase
transitions” and have become very popular in connection with
condensed-matter systems. Particularly well-suited systems
for studying quantum phase transitions are those described
by algebraic Hamiltonians with a dynamical group U(n), for
instance in atomic nuclei with U(6) [2], and in molecules with
U(4), U(3), and U(2) [3]. An important aspect of the study
of phase transitions is the construction of the phase diagram.
For algebraic models, this can be achieved with the theory
of coherent states. An algorithm has been devised, wherein
the order of the phase transition according to Ehrenfest’s
classification can be determined [4]. The expectation value
of the Hamiltonian in the ground coherent state is called its
classical limit [5,6].

Quantum phase transitions in algebraic models were studied
early on [6–8] and have been the subject of many recent
investigations [9–11], including the study of finite-particle-
number effects [12]. We briefly recapitulate, for purposes
of later comparison, the results for the phase transition
U(n − 1)–SO(n), investigated in general in Ref. [8], and in
particular the phase transition U(5)–SO(6) which occurs in the
interacting boson model [6,7]. Consider the Hamiltonian
describing a system of interacting s and d bosons undergoing
a phase transition between so-called spherical and γ -unstable

phases [2, p. 113],

Ĥ = (1 − ξ )
n̂d

N
+ ξ

P̂ 6

N (N − 1)
, (1)

where N is the number of bosons (a constant), n̂d the number
operator for d bosons, P̂ 6 the pairing operator associated with
SO(6) and ξ the control parameter with 0 � ξ � 1. The
expectation value of this Hamiltonian in the group coherent
state [8, p. 37] is

〈Ĥ 〉 ≡ E(β; ξ ) = (1 − ξ )
β2

1 + β2
+ ξ

1

4

(
1 − β2

1 + β2

)2

, (2)

where β is the deformation. (The value of β at equilibrium,
β0, is the order parameter. The energy E(β; ξ ) is often called
the Landau potential.) The nature of the phase transition as a
function of the control parameter ξ can be studied analytically.
There is a second-order phase transition at the critical value
ξ = ξc = 1

2 , as one can see by evaluating the minimum
energy and its derivatives with respect to the control parameter
ξ and noting that the second derivative is discontinuous at
ξc (Ehrenfest classification). The same result is obtained in
the Landau approach, where the critical value is obtained by
requiring that the coefficient of β2 in E(β; ξ ) ≈ 1

4ξ + (1 −
2ξ )β2 − (1 − 3ξ )β4 + . . . vanishes. The order parameter is
β0 = 0 for ξ � 1

2 and β0 = √
2ξ − 1 for ξ � 1

2 .
Both in nuclei and molecules it has been found that,

in some cases, two different intrinsic configurations occur,
either nucleonic (in nuclei) or electronic (in molecules). These
coexisting configurations cannot be accounted for by a single
Hamiltonian but rather by two coupled Hamiltonians. Their
properties have been investigated by quantum calculations,
e.g., within the framework of the interacting boson model with
configuration mixing, the so-called IBM-CM [13]. Since the
two configurations may have different ground-state properties,
it is of interest to investigate quantum phase transitions in
configuration-mixed situations. In this Rapid Communication,
we present results for the case in which the first configuration
has U(n−1) symmetry, while the second has SO(n) symmetry,
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and compare the results with those obtained for the single
configuration, summarized above. In particular, we investigate
the U(5)–SO(6) transition within the framework of IBM-CM.

In models with configuration mixing the quantum Hamil-
tonian has the matrix form[

(1 − ξ )Ĥ 1 Ŵ

Ŵ ξĤ 2 + �

]
, (3)

where Ĥ 1 acts on a first and Ĥ 2 on a second configuration
space, Ŵ mixes both spaces and � represents an energy
off-set. In nuclei, the first space typically corresponds to
valence excitations, while the second involves core-excited
configurations. Phase transitions associated with this kind of
Hamiltonian shall be called of type II.

Ground-state phase transitions for configuration-mixed
systems can be studied by introducing the concept of eigenpo-
tential [14]. The expectation value between appropriate group
coherent states yields the classical limit of each element of the
matrix (3), the lowest eigenstate of which describes the ground
state of the configuration-mixed system. (Eigenpotentials had
been introduced in molecular physics earlier [15, p. 296],
although not with the same name.) As an example, we consider
the case in which the Landau potential matrix has the form




(1 − ξ )
β2

1 + β2
ω

ω ξ
1

4

(
1 − β2

1 + β2

)2

+ �


 . (4)

This form can be obtained from Eq. (3) by taking the
expectation values of Ĥ 1 = n̂d , Ĥ 2 = P̂ 6, and Ŵ =
s†s† + d† · d† + hc (scaled with the appropriate values of N1

and N2) between group coherent states. This potential matrix
has three control parameters, ξ, ω, and �. For � = 0 the
two configurations are degenerate. The range of the control
parameters is 0 � ξ � 1, 0 � ω<+∞, and −∞ � � � +∞.
We restrict our attention to � � 0.

The phase diagram of the eigenpotential (4) can be
obtained by studying the properties of its lowest eigenvalue
E−(β; ξ, ω,�). This represents a challenge, as E−(β; ξ, ω,�)
is not a polynomial in the variable β, and thus not considered
in the usual Landau treatment of phase transitions. It is the
purpose of this Rapid Communication to determine the phase
diagram of the eigenpotential (4) as a function of the control
parameters ξ, ω, and �.

We first expand E−(β; ξ, ω,�) about β = 0,

E−(β; ξ, ω,�)

≈ 1

8

(
4� + ξ −

√
(4� + ξ )2 + 64ω2

)

+ 1

2

(
1 − 2ξ + 4� + ξ√

(4� + ξ )2 + 64ω2

)
β2 − 1

2

(
1 − 3ξ

+ (4� + ξ )3(1 + ξ ) + 64ω2[2 + (1 + ξ )(4� + ξ )]

[(4� + ξ )2 + 64ω2]3/2

)
β4.

This expansion shows that there is always an extremum at
β = 0; it is a minimum if the coefficient of β2 is positive and a
maximum if this coefficient is negative. (The minimum at β =
0 will henceforth be called spherical and a minimum at β �= 0
deformed.) A first critical line (called the anti-spinodal curve,
defined as the locus of points at which the minimum at β = 0
disappears) can be found analytically by requiring that the
coefficient of β2 vanishes. This gives the following equation:

ω = (4� + ξ )
√

(1 − ξ )ξ

4(2ξ − 1)
, (5)

defined for 1
2<ξ � 1. To the right of the curve (5) in the (ξ, ω)

plane, the potential has a maximum at β = 0; to the left it has a
minimum. The curve tends to ω → ∞ as ξ → 1

2 . There are two
special points on (5) for which the coefficient of β4 vanishes
as well. This happens for (ξ, ω) = (1, 0) and (ξ, ω) = 1

7 (4(1+
�),

√
4(1 + �)(3 − 4�)). In the first point, the lowest eigen-

value of Eq. (4) is zero for all β. In the second, the potential
behaves as β6 around β = 0. These points meet for � = 3

4 . The
curve (5) is shown in the phase diagram of Fig. 1 for various
values of �. (Anti-spinodal values of ξ will be denoted by ξ ∗∗ .)

The anti-spinodal curve satisfies the equations

∂E−
∂β

∣∣∣∣
β=β0

= 0,
∂2E−
∂β2

∣∣∣∣
β=β0

= 0, (6)

with β0 = 0. One obtains a second critical line (henceforth
called the spinodal curve, defined as the locus of points where
a deformed minimum appears) satisfying the same equations
but with β0 �= 0. These equations also define points where
the character of the potential changes. For each � and for
a given choice of β0, they can be solved numerically in the
two control parameters ξ and ω, and this procedure leads to a
parametric curve in the (ξ, ω) plane, where β0 plays the role of
the parameter. The range of values available to β0 depends on
�. The spinodal curve is also shown in Fig. 1. (Spinodal values

FIG. 1. Phase diagram for the eigenpotential (4) for several values
of � � 0. The figure shows the physical region of the parameter space
with 0 � ξ � 1 and 0 � ω. The locus of spinodal points ξ ∗ and
anti-spinodal points ξ ∗∗ is indicated by full lines and that of critical
or Maxwell points ξc by dashed lines. The inset plots illustrate the
potentials in the different regions. The region corresponding to the
cadmium isotopes 110,112,114Cd is indicated in grey.
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of ξ will be denoted by ξ ∗ .) Its structure is more complex than
that of the anti-spinodal curve since it cannot be obtained from
an expansion around β = 0.

In the region where the potential has two minima, the so-
called coexistence region, it is of interest to know which of the
two lies lowest. This (Maxwell or critical) set of (ξ, ω) points
where the potential has two degenerate minima can be found
by solving the equations

∂E−
∂β

∣∣∣∣
β=β0

= 0, E−(β0; ξ, ω,�) = E−(0; ξ, ω,�), (7)

which again gives a parametric curve (depending on �) in
the (ξ, ω) plane in terms of β0, henceforth called the critical
curve. On the left of this curve the spherical minimum is
lowest whereas on the right of it the deformed minimum is.
The critical curve is also shown in Fig. 1. (Critical values of ξ

will be denoted by ξc.)
The phase diagrams of Fig. 1 have some interesting features

worth commenting. We begin with � = 0. For ω = 0 the
potential has two degenerate minima at β0 = 0 and β0 = 1
for any value of ξ . The entire line 0 � ξ � 1 is critical. For
ω �= 0 the critical curve has the following limiting values:
ω → 0, ξc → 2

3 and ω → ∞, ξc → 1
2 . The spinodal

and anti-spinodal curves have the following limiting values:
ω → 0, ξ ∗ → 0, ξ ∗∗ → 1 and ω → ∞, ξ ∗ → 1

2 , ξ ∗∗ → 1
2 .

For fixed, small ω �= 0 the system undergoes a first-order
transition, as one can see by plotting the order parameter β0

as a function of control parameter ξ , Fig. 2. As ω increases
from zero, the region of coexistence between the spinodal and
antispinodal curves shrinks, the phase transition becomes of
second order, and tends to the phase transition for a single
configuration summarized above. For increasing values of
� > 0 the region between the spinodal and antispinodal lines
shrinks and a region develops around the point (ξ, ω) = (1, 0)
with a single spherical minimum. The latter region grows until
the two spherical regions become connected and the region
of coexistence splits in two regions that become smaller as �

increases and disappear completely for � = 3
4 . Above this

value of �, the lowest energy surface of the matrix (4) must
necessarily have either a spherical minimum or a deformed
one. Already at � ≈ 0.1, the situation is clear as only a
very small coexistence region remains for a limited range of
ω values and the critical, spinodal and anti-spinodal curves
essentially coincide for all ω.

FIG. 2. Behavior of the order parameter β0 as a function of the
control parameter ξ for the eigenpotential (4) for two sets of values of
� and ω. The region of coexistence (grey) is bordered by the spinodal
and anti-spinodal points ξ ∗ and ξ ∗∗ , and contains the critical point
ξc.

Experimental evidence for type-II phase transitions should
be searched for in nuclei where configuration mixing is
known to occur. The main feature of type-II phase transitions
is the occurrence of first-order transitions with a large
coexistence region. The order of the phase transition can be
determined experimentally from ground-state energies. If the
phase transition is first order, there should be a discontinuity
in the first derivative of Emin, i.e., in the separation energies.
For second-order transitions the discontinuity is in the second
derivative.

Configuration mixing is known to occur in many nuclei,
most notably in the Pb–Hg–Pt, Sn–Cd–Pd, Sr–Zr–Mo and
Ge–Se regions [16]. One of the main results of this Rapid
Communication is that the order of the phase transition is
greatly influenced by the strength of the coupling ω and by
the energy off-set �. A small value of ω is necessary for the
transition to be of first order; as ω increases the transition
becomes similar to that in the single configuration (second
order). Furthermore, the region of coexistence disappears for
large � (i.e., if � � 0.1).

The strength of the coupling ω is essentially proportional
to the number of active pairs, which in the Pb–Hg–Pt (and
in the Sn–Cd–Pd) region is the number of proton hole pairs.
This should be contrasted with � which is independent of
boson number. Our results thus indicate that phase transitions
between the two configurations, if they occur at all, are
expected to be sharp first-order transitions in Pb (Sn) and
to become progressively less sharp in Hg (Cd) and Pt (Pd).
This qualitative finding appears to be confirmed by quantum
calculations. In Pt (strong coupling), data can be fitted either
with [17] or without [18,19] configuration mixing.

We illustrate these qualitative arguments with the exam-
ple of the Cd nuclei. The isotopes 110,112,114Cd have been
extensively studied by Lehmann and Jolie [20] in the context
of U(5)–SO(6) coexistence in the IBM-CM. The Landau
potential matrix of the Hamiltonian is


(1 − ξ )
β2

1 + β2
ω

ω ξ
1

4

(
1 − β2

1 + β2

)2

+ ζ
β2

1 + β2
+ �


 , (8)

and can be analyzed in the same way as above. The effect of
the additional term in ζ is to shrink the regions of deformation
and coexistence of the phase diagram. All parameters can be
obtained from Ref. [20] except the strength of the pairing
P̂ 6 (unknown for the core-excited configuration in the Cd
nuclei) which, from I-spin arguments [21], is determined from
106,108,110Ru. In this way one obtains ξ ≈ 0.2 to 0.3, ω ≈
0.03 to 0.06, and � ≈ 0.1 to 0.2. This allows to locate the
Cd isotopes in the region indicated in Fig. 1. The transition is
at best of second order or, more likely, there is no transition at
all because of the additional term in ζ . This is consistent with
measured neutron separation energies (see Fig. 3).

The situation is different in the Zr–Mo [22] and Ge–Se [23]
regions, where � approaches zero and even becomes negative.
Experimental evidence for type-II phase transitions should be
looked for in these nuclei. The separation energies in the Sr–
Zr–Mo region suggest that a first-order phase transition occurs
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FIG. 3. Two-neutron separation energies S2n as a function of
neutron number N in the Sr–Zr–Mo–Ru–Pd–Cd isotopes. The points
involving binding-energy differences between the cadmium isotopes
110,112,114Cd are indicated.

in Sr and Zr at neutron number N = 58 and a second-order
phase transition in Mo at the same N (see Fig. 3). Other
nuclear regions, for example associated with the coexistence
of axially deformed and spherical shapes or of more than two
configurations, can be investigated likewise. The formalism
proposed in this paper offers the possibility to undertake a

systematic study of nuclear coexistence in the framework of
IBM-CM [24], with the aim to locate nuclei on the type-II
phase diagram.

In molecules, configuration mixing has been known for
years, although one potential usually has a minimun whereas
the other does not. However, configuration mixing plays an
important role in the phenomenon of predissociation, as in
the case of the molecules AlH and BH [15]. To treat this
problem, the scheme presented here should be modified to
include situations in which β0 → ∞. The case in which the
eigenpotential has a second minimum at finite β0 may be of
importance in van der Waals molecules. This is where evidence
for Type-II phase transitions should be looked for.

In conclusion, we presented an analysis of quantum phase
transitions in coexistence models and developed a geometric
framework that opens up a wide area of research to test
phase-transitional/coexistence behavior of quantum systems.
The structure of the phase diagram is rather complex and it has
some unusual features not present in the single configuration
because the eigenpotential is no longer a polynomial in β.
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