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Maximum mass of neutron stars
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We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic
nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum
masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong
compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the
presence of nonbaryonic “quark” matter in the interior of heavy stars.
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The only way to obtain information on the structure and
properties of baryonic matter at extreme densities of several
times normal nuclear matter density py ~ 0.17 fm™3 seems
to be the theoretical modelling of neutron stars, the unique
environment where such densities are actually reached in
nature, and the subsequent confrontation with observational
data. Any given equation of state (EOS) of baryonic matter
determines uniquely the mass-radius relation of neutron star
sequences and in particular the maximum mass a neutron star
can achieve before collapsing into a black hole.

Most theoretical investigations performed so far point to
an important feature of high-density B-stable matter, namely
that hyperons will appear at densities of about 2,...,3 pg
and strongly soften the EOS. The main consequence is a
substantial reduction of the maximum mass [1]. This seems
to be an inevitable feature of any approach taking into
account the hyperons, caused simply by the availability of
additional degrees of freedom of the matter at high density.
Any theoretical study of neutron stars without allowing for the
presence of hyperons is therefore unrealistic.

Evidently it is then important to carry out microscopic
calculations as precisely as possible in order to make re-
liable predictions for the maximum mass of a neutron star
composed of baryonic matter and the eventual confrontation
with observational data. In this work we report on recent
results following this motivation. We try to present strong
evidence that the maximum mass of baryonic neutron stars is
very low and that therefore neutron stars with larger masses
(above ca. 1.5 solar masses) must necessarily contain quark
matter.

Our theoretical framework is the nonrelativistic Brueckner-
Hartree-Fock (BHF) approach based on microscopic nucleon-
nucleon (NN), nucleon-hyperon (NY), and hyperon-hyperon
(YY) potentials that are fitted to scattering phase shifts, where
possible. Nucleonic three-body forces (TBF) are included in
order to (slighty) shift the saturation point of purely nucleonic
matter to the empirical value.
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It has been demonstrated that the theoretical basis of the
BHF method, the hole-line expansion, is well founded: the
nuclear EOS can be calculated with good accuracy in the BHF
two hole-line approximation with the continuous choice for the
single-particle potential, since the results in this scheme are
quite close to the full convergent calculations which include
also the three hole-line contribution [2]. Due to these facts,
combined with the absence of adjustable parameters, the BHF
model is a reliable and well-controlled theoretical approach
for the study of dense baryonic matter.

We begin with a short review of the BHF approach including
hyperons. Detailed accounts can be found in Refs. [3] and [4].
The basic input quantities in the Bethe-Goldstone equation
are the NN, NY, and YY potentials. In our work we use
the Argonne Vig NN potential [5] supplemented by either
the semiphenomenological Urbana UIX nucleonic TBF of
Ref. [6] or the microscopic GLMM three-body forces of
Refs. [7,8], and the Nijmegen soft-core NY and YY potentials
(either NSC89 [9] or the NSC97¢ model of Ref. [10]) that
are well adapted to the existing experimental NY scattering
data and also compatible with A hypernuclear levels [11,12].
Unfortunately, up to date no YY scattering data exist and
therefore no reliable YY potentials are available. Thus the
NSC89 potentials contain no YY components, whereas the
NSC97 potentials comprise extensions to the YY sector based
on SU(3) symmetry. Nevertheless the importance of YY
potentials should be minor as long as the hyperonic partial
densities remain limited.

With these potentials, the various G matrices are evaluated
by solving numerically the Bethe-Goldstone equation, which
can be written in operatorial form as

GaWl=Var+ Y > vac|pp/>%c+ie<pp/|ccb[m,
c pp ¢
e))

where the indices a, b, ¢ indicate pairs of baryons and the
Pauli operator Q and energy E determine the propagation of
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intermediate baryon pairs. The pair energy in a given channel
c = (B]Bz) is

Ep,p,) = Tp, (kBl) + TBz(sz) + Us, (kBl) + Us, (kBZ) 2

with Tg(k) = mp + k2/ 2m g, where the various single-particle
potentials are given by

Ushy = )

B'=n,p,A, X~

UL (k) 3)

and are determined self-consistently from the G matrices,

U () = Y Re(kK'|Gom s Ewsy k. KINKK).  (4)
K<k

The coupled equations (1)—(4) define the BHF scheme with the
continuous choice of the single-particle energies. In contrast
to the standard purely nucleonic calculation, the additional
coupled channel structure renders the calculations quite time-
consuming.

Once the different single-particle potentials are known,
the total nonrelativistic baryonic energy density, €, can be
evaluated:

1
€= Z Z |:T3(k)+ EUB(k)] =ey+ ey, (5)

B=n,p, A 27 <P

where

1 ,
ev= Y, > [TN<k>+§U}V”’<k>], 6)

!= (N)
N.N'=n.p <k

1 /

(N) x7)
r= >y > [Ty(k)-l— Uy (k) + 5Uy (k)]. (7

Y, Y'=A%" k<k¥,)
N=n,p

Knowing the baryonic energy density Eq. (5), and
adding the contributions of the noninteracting leptons, the
various chemical potentials w; = de/dp; (of the species
i=n,p,A, ¥ ,e, ) can be computed straightforwardly

V18 + UIX
0.3 T T

V18 + Ul
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and the equations for beta-equilibrium, u; = b;, — gile,
(b; and ¢g; denoting baryon number and charge of species i)
and charge neutrality, > . p;g; = 0, allow one to determine the
equilibrium composition p;(p) at given baryon density p and
finally the EOS,

2 d €pi(p)) _ de

p—— — €. @)
do p dp

p(p)=p

Knowing the EOS, the equilibrium configurations of

static neutron stars are obtained by solving the Tolman-

Oppenheimer-Volkoff (TOV) equations [1] for the pressure
p(r) and the enclosed mass m(r),

dp _ Gme(1+p/e)(l +4nrip/m)

= , 9
dr r2 1—2Gm/r ©)
dm 2
— =A4nr-e, (10)
dr

being G the gravitational constant. Starting with a central mass
density e(r = 0) = €., one integrates out until the surface
density equals the one of iron. This gives the stellar radius
R and its gravitational mass M = m(R). For the description
of the NS crust, we have joined the hadronic EOS with the
ones by Negele and Vautherin [13] in the medium-density
regime, and the ones by Feynman-Metropolis-Teller [14] and
Baym-Pethick-Sutherland [15] for the outer crust.

Due to the large number of configurations of hypernuclear
matter that need to be calculated for a complete self-consistent
determination of the EOS, a comparative study of several
mass-radius relations based on independent choices of NN, NY,
and YY potentials would be at the moment prohibitively time-
consuming. We nevertheless think that the most important
qualitative and even quantitative results are covered by the
calculations that we carried out and explain in the following
discussion of our numerical results.

We begin in Fig. 1 with the composition (particle fractions)
and the EOS (pressure and energy density) of beta-stable
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FIG. 1. Composition of S-stable matter (upper panels) and equation of state (lower panels) for different models.
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matter obtained with three different EOS, namely the purely
nucleonic V18+4-UIX and the hyperonic V18+UIX+NSC89
and V184-UIX4NSC97. One notes in the latter case the
differences in the hyperon populations caused by the different
characteristics of the NY and YY forces: The NSC97e potential
contains quite attractive nX~ and X~ X~ forces, see, e.g.,
Ref. [4] for a detailed account of these aspects of this
interaction model, leading to an earlier onset and a stronger
population of ¥~ in the matter compared to the NSC89, while
the A population remains much lower with the NSC97 due
to repulsive AA and AX~ forces. Within our many-body
approach, no hyperons other than £~ and A appear at densities
below p = 1.6 fm—3. These results differ from some present
mean field calculations [16], where all kind of hyperons can
appear at the densities considered here. Both hyperonic EOS
are much softer (lower pressure and energy density) than the
nucleonic one, which is essentially due to a decrease of the
kinetic energy because the hyperons can be accomodated in
lower momentum states and in addition have a large bare mass.
The consequences of this softening are seen in the following
results.

Figure 2 shows the mass-radius and mass-central density
relations obtained with the different EOS. We first compare
results [bold grey (online green) curves] obtained with three
different purely nucleonic EOS, disallowing the appearance of
hyperons, namely the V184UIX, the V18+GLMM, and an
EOS based on a variational calculation of nuclear matter [17],
using the parametrization of Ref. [18], denoted APR in the
following. The resulting maximum masses are relatively large,
ranging from about 1.8 (V18+4UIX) to 2.4 (VI8+GLMM)
solar masses.

In the next step [thin (red) curves] we include the hyperons
and study the effect of changing only the nucleonic part of the
EOS. In order to save substantial computation time this is done
in an approximate manner, namely by performing the coupled
BHF calculations described before with the complete set of
NSC97 potentials, also including the NN components (the
NSC97 NN potentials in this case are not of high precision [10]
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and also nucleonic TBF are not included), but maintaining only
the hyperonic contribution €y, Eq. (7), to the energy density
from these calculations, while replacing the nucleonic part
€y with one of the three different nucleonic EOS mentioned
before. In this way the effect of the different NN potentials
on the hyperons and also the rearrangement effects on the
nucleons due to the presence of hyperons are neglected.
However, this approximation is good enough for our purposes.

Doing so, one obtains a reduction of the maximum mass
to about 1.5 M, but most importantly a strong reduction
of the variation of the result with the nucleonic component
of the EOS. The maximum masses obtained with the three
EOS lie within a range of 0.15 Mg, compared to a range of
0.5 Mg, in the case without hyperons. This clearly emphasizes
the important and well-known role of the hyperons as equal-
izing the effects of different nucleonic interactions: A stiffer
nucleonic EOS causes an earlier onset and larger concentration
of hyperons and therefore a stronger softening of the total
EOS.

Finally, the bold black curves show our main and “best”
results based on fully self-consistent calculations involving
the coupled treatment of hyperons and nucleons as described
above, with the Argonne V18+4-UIX NN and either the NSC89
or the NSC97 NY and YY potentials. The overall effect is a
further reduction of the maximum mass by about 0.2 Mg, to
1.35 M, with the NSC97 and 1.31 M with the NSC89 model.
These values are quite similar in spite of the great differences
of the composition of matter illustrated in Fig. 1.

We observe thus several compensation mechanisms, always
leading to a soft EOS and keeping the maximum mass low:
A stiffer nucleonic EOS will lead to an earlier onset of
hyperons and thus enhanced softening due to their presence.
Conversely, later onset of a certain hyperon species will favor
the appearance of other species leading also to a softer EOS
[24]. The resulting maximum mass is surprisingly insensitive
to the purely nucleonic EOS and even to details of the NY
and YY interactions. There remain, however, characteristic
differences between the mass-radius relations that would
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FIG. 2. (Color online) Mass-radius and mass-central density relations for different equations of state. Details are given in the text.
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eventually allow one to determine the EOS from a combined
M, R measurement, which is much awaited since a long time.

We have thus shown that a reliable microscopic EOS of
high-density baryonic matter based on realistic NN and NY
forces leads to very low masses of “neutron stars,” even below
the current observational limit of 1.44 M.

This feature has been demonstrated to be largely indepen-
dent of the nucleonic part of the EOS due to a strong compen-
sation mechanism caused by the appearance of hyperons. We
have also used two completely different NY potentials (fitted to
the same scattering data, however) which yield quite different
internal compositions of the stars, but nevertheless the same
maximum mass within 0.05 M.

Due to the complete lack of experimental and theoretical
information, we have not included hyperonic TBF, but it seems
difficult to imagine that these could strongly increase the
maximum mass in view of various compensation mechanisms:
Any delayed appearance and weaker concentration of a given
species will favor the presence of the other baryons and restore
a soft EOS.
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Thus the only remaining possibility of increasing sub-
stantially the maximum mass appears to be the presence of
non-baryonic, i.e., “quark” matter, in the star’s interior. Indeed,
our previous calculations using different effective quark matter
EOS (bag model [19], NJL model [20], color dielectric model
[21]) allow maximum masses of up to 1.8 Mg,

However, neutron star masses substantially above 2 Mg
seem to be out of reach even for these hybrid stars. The
observational confirmation of such a heavy neutron star [23]
would in our opinion indeed present a great challenge to our
present theoretical understanding of high-density matter.

In the meantime it remains very important to construct im-
proved NY and YY potentials and hyperonic TBF (constrained
by future experimental data) in order to narrow even more the
theoretical margin of uncertainty of the maximum mass of a
baryonic star.
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