
PHYSICAL REVIEW C 73, 055203 (2006)

The π N → ππ N reaction around the N∗(1440) energy
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We study the πN → ππN reaction around the N∗(1440) mass-shell energy. Considering the total cross
sections and invariant mass distributions, we discuss the role of N∗(1440) and its decay processes on this
reaction. The calculation is performed by extending our previous approach [Phys. Rev. C 69, 025206 (2004)],
in which only the nucleon and �(1232) were considered as intermediate baryon states. The characteristics in
the recent data of the π−p → π 0π 0n reaction measured by Crystal Ball Collaboration can be understood as
a strong interference between the two decay processes: N∗(1440) → π� and N∗(1440) → N (ππ )I=0

S wave. It is
also found that the scalar-isoscalar ππ rescattering effect in the NN∗(ππ )I=0

S wave vertex, which corresponds to
the propagation of σ meson, seems to be necessary for explaining the several observables of the πN → ππN

reaction: the large asymmetric shape in the π 0π 0 invariant mass distributions of the π−p → π 0π 0n reaction and
the π+p → π+π+n total cross section.
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I. INTRODUCTION

In many pion-induced reactions on the nucleon, the single-
pion production reaction πN → ππN has been studied with
a particular interest because of its role as a major inelastic
process. The partial-wave analyses of this reaction, together
with other reaction channels such as the elastic and πN → ηN

reactions, have revealed various properties of the nonstrange
baryon resonances, N∗s and �s (e.g., see Refs. [1–3]). A
number of theoretical investigations have also been performed
on the basis of the phenomenological approaches using
the effective Lagrangian [4–8] and the chiral perturbation
theory [9–12].

In Ref. [13], we have discussed the total cross sections of
this reaction up to Tπ = 400 MeV, making use of the chiral
reduction formula proposed by Yamagishi and Zahed [14]. We
focused on the role of �(1232), i.e., the influence of π�� and
ρN� interactions on the reaction processes. Because these
interactions are not directly observed through the two-body
decay of �(1232) in contrast to the πN� interaction, their
coupling constants are difficult to determine. We found that
the π±p → π±π0p reactions are sensitive to the π�� and
ρN� interactions and could be a source of information of their
coupling constants.

In addition to being useful for clarifying the properties of
�(1232), the πN → ππN reaction is expected to provide
us valuable information about the Roper resonance N∗(1440)
and its decay to the ππN channel. N∗(1440) decays to the
ππN channel via the N∗(1440) → π� and N∗(1440) →
N (ππ )I=0

S wave processes, which have the branching ratios of
about 25% and 7.5%, respectively [15]. The importance of
the latter process has already been pointed out in several
studies [4,9].
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The importance of N∗(1440) and its subsequent decays
has been discussed extensively also in the pp → ppπ+π−
and pn → d(ππ )I=0 reactions [16–20]. However, such two-
pion decay of N∗(1440) is not easy to study in the elastic
πN → πN scattering and in the γN → ππN reaction
because N∗(1440) has small electromagnetic transition rate
compared to other relevant resonances such as �(1232) and
N∗(1520) [21].

Recently, the π−p → π0π0n reaction has been measured
up to pπ− = 750 MeV/c (i.e., Tπ ∼ 620 MeV) by Crystal Ball
Collaboration (CBC) [22,23]. These high-precision data cover
the energy region far from the threshold, in particular around
the N∗(1440) mass-shell energy, Tπ ∼ 480 MeV. Several new
interesting results related to N∗(1440) and its decay processes
were reported: (i) The energy dependence of the total cross
section shows a shoulderlike shape just below the N∗(1440)
energy (see Fig. 14 in Ref. [23], and it should be compared
with the γp → π0π0n total cross section displayed in the
same figure, for which no such shape appears because of the
small radiative coupling of N∗(1440)). (ii) The π0n invariant
mass distribution shows a peak near the invariant mass equal to
the �(1232) energy, which would be produced via the process
N∗(1440) → π�. (iii) The π0π0 invariant mass distributions
shows a large asymmetric shape in population of the events,
i.e., the peak at large value of m2(π0π0) is larger than that at
small value of m2(π0π0).

When the total energy increases, the correlation between
the outgoing pions will become visible. The scalar-isoscalar
correlation of two pions via the N∗(1440) → N (ππ )I=0

S wave
decay is particularly interesting, because such correlation may
generate the σ meson pole. In view of the sizable contribution
of N∗(1440) → N (ππ )I=0

S wave, the πN → ππN reaction is
a possible source of information about this controversial
scalar meson. It is worth noting that several literatures have
suggested that this “σ” degree of freedom is important also in
understanding the structure of N∗(1440) [24,25].

In this article, we investigate the πN → ππN reaction in
the energy region up to Tπ = 620 MeV, especially around the
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N∗(1440) mass-shell energy. Through the comparison with the
recent CBC data, we particularly discuss the role of N∗(1440)
and its decay processes on this reaction. Furthermore, we try to
discuss the possibility of extracting the information about the
σ meson such as its existence. The calculation is performed
by extending and improving the theoretical framework of our
previous study [13] in which the contributions of �(1232)
have been discussed in detail in the energy region up to Tπ =
400 MeV.

This article is organized as follows. In Sec. II, we give a brief
summary of our previous study and explain new ingredients
introduced in this work. The numerical results are presented in
Sec. III and the contributions of N∗(1440) to the πN → ππN

reaction are discussed. Then our results are compared with
the recent CBC data. Summary and conclusions are given in
Sec. IV. In the appendices we summarize some details of
phenomenological treatment in the calculation.

II. THEORETICAL TREATMENT OF π N → ππ N
REACTION

A. Brief summary of our previous study

The starting point of our previous study [13] is the chiral
Ward identity satisfied by the invariant amplitude MππN .
Assigning the four-momentum and isospin indices of the
external nucleons and pions as in Fig. 1, we have

MππN = (Mπ + MA + MSA + MVA) + (k1, a ↔ −k3, c)

+ (k2, b ↔ k3, c) + MAAA, (1)

where the symbol (↔) represents a permutation of the
momentum and isospin indices of the pion in the first four
terms, and

Mπ = 1

f 2
π

[
(k1−k2)2 −m2

π

]
δab〈N (p2)|π̂ c(0)|N (p1)〉, (2)

MA = − i

2f 3
π

(k2 − k1)µδab〈N (p2)|jc
Aµ(0)|N (p1)〉, (3)

MSA = −m2
π

f 2
π

k
µ

3 δab

∫
d4xe−i(k1−k2)x

×〈N (p2)|T ∗[σ̂ (x)jc
Aµ(0)

]|N (p1)〉, (4)

MVA = − i

2f 3
π

(k1 + k2)µkν
3εabe

∫
d4xe−i(k1−k2)x

×〈N (p2)|T ∗ [
je
V µ(x)jc

Aν(0)
] |N (p1)〉, (5)

MAAA = i

f 3
π

k
µ

1 kν
2kλ

3

∫
d4x1d

4x2e
−ik1x1+ik2x2

×〈N (p2)|T ∗ [
ja
Aµ(x1)jb

Aν(x2)jc
Aλ(0)

] |N (p1)〉. (6)

The pseudoscalar density π̂ a(x) is the interpolating pion field
with the asymptotic form π̂ a(x) → πin,out(x) + · · · (x0 →
∓∞). The one-pion reduced axial current ja

Aµ(x) is de-
fined by ja

Aµ(x) = Aa
µ(x) + fπ∂µπ̂a(x), where Aa

µ(x) is the
ordinary axial current with the asymptotic form Aa

µ(x) →
−fπ∂µπin,out(x) + · · · (x0 → ∓∞). The vector current and the
scalar density are represented by ja

V µ(x) and σ̂ (x), respectively.

FIG. 1. The πN → ππN reaction. Pions have the isospin index
(a, b, c) and the four-momentum ki (i = 1, 2, 3), and nucleons have
the four-momentum pj (j = 1, 2).

The Ward identity [Eqs. (1)–(6)] was first derived by
Yamagishi and Zahed making use of the chiral reduction for-
mula [14,26]. Owing to this formula the invariant amplitude is
expressed in terms of Green’s functions of well-defined current
and density operators. Then the consequences of broken chiral
symmetry subject to the asymptotic condition ∂µAa

µ(x) →
fπm2

ππin,out(x) + · · · (x0 → ∓∞) are exactly embodied on the
amplitude without relying on any specific model or expansion
scheme. Thus, by using the chiral reduction formula at the
beginning of the discussion, we can consider the detail of each
reaction mechanism separately from the general framework
required by broken chiral symmetry. This nature of the chiral
reduction formula has a great advantage in tackling on the
hadronic processes in the resonance region in which the
systematic chiral expansion scheme becomes difficult to be
implemented.

Green’s functions (i.e., the matrix elements of current and
density operators) appearing in Eqs. (2)–(6) are not uniquely
determined by broken chiral symmetry. Therefore we need to
employ a model to evaluate Green’s functions. In Ref. [13] they
were calculated by taking a phenomenological approach based
on the relativistic tree-level diagrams as shown in Fig. 2. We
considered only the nucleon and �(1232) as the intermediate

(a) (b)

(d)(c)

(e)

FIG. 2. The diagrams considered in our previous study [13] to
evaluate Green’s functions in Eqs. (2)–(6). Crossed versions are also
considered for all of these diagrams. The double line represents the
propagation of the nucleon or �(1232). Note that �(1232) does not
propagate in MSA because the N -� transition is not brought about
by the scalar-density operator σ̂ . The pseudoscalar density π̂ and
the vector current jV are dominated by the pion and ρ meson pole,
respectively.

055203-2



THE πN → ππN REACTION AROUND THE N∗(1440) ENERGY PHYSICAL REVIEW C 73, 055203 (2006)

baryons, and π and ρ as the intermediate mesons. Details of
our model [13] are summarized in Appendix A.

B. Contribution of N∗(1440)

Now we extend our previous approach by including
N∗(1440). As for the contributions of N∗(1440) on the
reaction, we consider the πNN∗, NN∗(ππ )I=0

S wave, and π�N∗
interactions. The first two interactions have already been
considered in many theoretical investigations of the πN →
ππN reaction near threshold. Although the π�N∗ interac-
tion has often been neglected, this interaction will become
important in the energy region considered in this article:
Indeed, the importance of N∗ → �π decay is suggested
experimentally [22,23].

1. π N N∗ and π�N∗ interactions

The πNN∗ and π�N∗ vertices with the one-pion leg are
generally related to the matrix elements of axial current ja

Aµ

for the N -N∗ transition as

〈N (p′)|ja
Aµ(0)|N∗(p)〉

= ūN (p′)
[
FNN∗

A,1 (t)γµ + FNN∗
A,2 (t)qµ

]
γ5

τ a

2
uN∗ (p) (7)

and for the �-N∗ transition as

〈�(p′)|ja
Aµ(0)|N∗(p)〉

= Ū ν(p′)
[
F�N∗

A,1 (t)gνµ + F�N∗
A,2 (t)Qνγµ + F�N∗

A,3 (t)QνQµ

+F�N∗
A,4 (t)QνiσµλQ

λ
]
I a

(
3
2 , 1

2

)
uN∗ (p), (8)

respectively, where qµ = (p′ − p)µ,Qµ = −qµ, and t =
(p′ − p)2; τ a is the isospin Pauli matrix; and I a(i, j ) is the
j → i isospin transition (2i + 1) × (2j + 1) matrix. The iso-
quadruplet Rarita-Schwinger vector-spinor and the isodoublet
Dirac spinor are denoted as Uµ(p) and ui(p) (i = N,N∗),
respectively. By employing Eqs. (B5) and (B6) as the effective
πNN∗ and π�N∗ interactions, some of the form factors in
Eqs. (7) and (8) can be exactly related to the renormalized
coupling constants

fπNN∗ (t) = mπ

fπ

[
1

2
FNN∗

A,1 (t) + t

4mN∗
FNN∗

A,2 (t)

]
, (9)

fπ�N∗ (t) = mπ

fπ

[
F�N∗

A,1 (t) + (mN∗ − m�)

×F�N∗
A,2 (t) + tF�N∗

A,3 (t)
]
. (10)

At tree level, all the form factors are reduced to constants.
Because it is difficult to fix all of their value in the present status
of experimental data, we eliminate FNN∗

A,2 and F�N∗
A,3 by us-

ing the PCAC hypothesis fπNN∗,π�N∗ (m2
π ) 
 fπNN∗,π�N∗ (0).

Then, at tree level, we obtain the analogs of Goldberger-
Treiman relation for the πNN interaction,

fπNN∗
(
m2

π

) = mπ

2fπ

FNN∗
A,1 (11)

and

fπ�N∗
(
m2

π

) = mπ

fπ

[
F�N∗

A,1 + (mN∗ − m�)F�N∗
A,2

]
, (12)

respectively.
Furthermore, in this article we neglect F�N∗

A,2 for simplicity.
This would be partly justified by the fact that, in the case
of πN� interaction, the contribution of the FA,2 term is
considerably small compared to the FA,1 term [13]. The form
factor F�N∗

A,4 (t) does not appear in our calculation as long as
we consider the Lagrangian (B6) for the π�N∗ interaction.

Using the central values of the N∗(1440) → πN and
N∗(1440) → π� decay widths listed in the particle data table
of Ref. [15], we obtain fπNN∗ (m2

π ) = 0.465 and fπ�N∗ (m2
π ) =

1.71. As for fπ�N∗ (m2
π ), we take account of the finite width

of �(1232) in the same manner as in Ref. [21]. Those values
lead to FNN∗

A,1 = 0.63 and F�N∗
A,1 = 1.15, respectively.

2. N N∗(ππ )I=0
S wave interaction

We next consider the NN∗(ππ )I=0
S wave interaction with the

two-pion leg. Recently, we have discussed in detail its general
and phenomenological aspects on the basis of chiral reduction
formula [27]. We make use of our results also in the present
work.

Using the chiral reduction formula, we find that the
NN∗(ππ )I=0

S wave vertex is generally described by the following
matrix elements of currents and density operators (see Fig. 3).
One is the scalar matrix element of the N -N∗ transition
[Fig. 3(a)], which is factorized as

〈N (p′)|σ̂ (0)|N∗(p)〉 = −σRN(t)

fπm2
π

ūN (p′)uN∗ (p). (13)

Another is the matrix element of the N -N∗ transition caused by
the contact, scalar-isoscalar combination of two axial currents
[Fig. 3(b)], which is expressed as∫

d4xeikx 〈N (p′)|T ∗(ja
Aµ(x)jb

Aν(0)
)|N∗(p)〉∣∣

scalar-contact

= −iδabgµνFAA(t)ūN (p′)uN∗ (p), (14)

where k represents the four-momentum of external pion
with the isospin index a. Note that FAA(t) does not contain

(a) (b)

FIG. 3. The diagrammatical interpretation for the chiral reduction
of the NN∗(ππ )I=0

S wave vertex. The decay amplitude is decomposed
into two contributions arising from the different origin in the chiral
structure: one includes (a) the scalar N∗-N transition matrix element
and another includes (b) the N∗-N transition matrix element of
the contact, scalar-isoscalar combination of two axial currents. The
former is because of the explicit breaking of chiral symmetry and
thus vanishes in the chiral limit, whereas the latter does not.
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(a) (b)

FIG. 4. The “minimal model” for the NN∗(ππ )I=0
S wave vertex. The

form factors σRN(t) and FAA(t) are dominated by the processes:
(a) the contact term and (b) the ππ rescattering together with the
contact scalar-isoscalar baryon-pion interaction (the meshed blob
represents ππ rescattering in the I = J = 0 channel).

any single baryon poles owing to the definition for the
N∗(1440) → N (ππ )I=0

S wave decay given in Ref. [15]. We then
obtain the general expression for the NN∗(ππ )I=0

S wave vertex as

MNN∗(ππ)S = δab

f 2
π

[
σRN(t) − t − 2m2

π

2
FAA(t)

]
× ūN (p′)uN∗ (p). (15)

When σRN(t) and FAA(t) are constants, this expression reduces
to the result obtained from the effective chiral Lagrangian to
order q2 [9].

Instead of taking σRN(t) and FAA(t) as constants, we
proposed in Ref. [27] the “minimal model,” which explicitly
includes the scalar-isoscalar correlation of two-pions by con-
sidering the ππ rescattering mechanism in I = J = 0 channel
(Fig. 4). This model gives the following parametrizations of
σRN(t) and FAA(t),

σRN(t) → σRN × [
1 + 1

6G(t)t I=0
ππ (t)

]
, (16)

FAA(t) → FAA × [
1 + 1

6G(t)t I=0
ππ (t)

]
, (17)

where G(t) and t I=0
ππ (t) are the pion loop integral and I =

0 ππ rescattering amplitude,

G(t) = i

∫
d4l

(2π )4

1

l2 − m2
π + iε

1

(l − P )2 − m2
π + iε

(18)

with P 2 = t , and

t I=0
ππ (t) = − 6

f 2
π

t − m2
π/2

1 + (
1/f 2

π

)(
t − m2

π/2
)
G(t)

, (19)

respectively [27]. Based on the dimensional regularization
scheme with a renormalization scale µ = 1.2 GeV, the loop
integral G(t) can be expressed as

G(t) = 1

(4π )2

(
−1 + ln

m2
π

µ2
+ σ ln

1 + σ

1 − σ
− iπσ

)
(20)

for t > 4m2
π ,

G(t) = 1

(4π )2

(
−1 + ln

m2
π

µ2
+ σ ln

σ + 1

σ − 1

)
(21)

for t < 0, and

G(t) = 1

(4π )2

[
−1 + ln

m2
π

µ2
+ σ (π − 2 arctan σ )

]
(22)

for 0 < t < 4m2
π , where σ = √|1 − (4m2

π/t)|.
Using Eqs. (15)–(17) and performing the phase-space inte-

gral, we obtain the following expression for the N∗(1440) →
N (ππ )I=0

S wave decay width

NN∗(ππ)S = α(c∗
1)2 + β(c∗

2)2 + γ c∗
1c

∗
2, (23)

where c∗
1 = −σRN/(2m2

π ) and c∗
2 = FAA/2. The numerical

value of the coefficients α, β, and γ is α = 1.199 ×
10−3 GeV3, β = 14.06 × 10−3 GeV3, and γ = 7.754 ×
10−3 GeV3, respectively. We note that these values are
different from those of Refs. [9,16]. This difference arises
from the ππ rescattering and the relativistic effects. Both c∗

1
and c∗

2 are not fixed by the N∗(1440) → N (ππ )I=0
S wave decay

width, and we can take any value on the ellipse (23) on the
c∗

1-c∗
2 plane.

C. Cutoff factor

We shall introduce the cutoff factors, which stem from the
finite size of hadrons, for each vertex in a phenomenological
manner. In Ref. [13] we treated all hadrons as the pointlike
particles. They are, however, the bound states of quarks and
gluons and thus have the finite size. Although in principle
those effects should be directly derived from QCD, it is
very difficult and still an open question which deserves
the theoretical challenges. Instead, we consider those effects
phenomenologically according to the discussions of Ref. [28].
We attach the four-dimensional cutoff factors,

fα

(
p2

α

) = �4
α

�4
α + (

p2
α − m2

α

)2 , (24)

to each leg α of the vertex (where we assume nα = 1 [28]).
Here pα and mα are the four-momentum and mass of the
particle corresponding to the leg α, respectively. The cutoff
factor fα is normalized to one on the mass-shell, and thus
exhibits its effect only for the internal lines. There are five
cutoff parameters: �N,��, and �N∗ for the intermediate
baryons, and �π and �ρ for the pion and ρ meson poles
appearing in Figs. 2(a) and 2(d). In this article we assume
�N = �� = �N∗ ≡ �B and �π = �ρ ≡ �M .

III. RESULTS AND DISCUSSIONS

Putting together all diagrams introduced in our previous
study (Fig. 2) and this work (Fig. 5), we calculate the
πN → ππN total cross sections up to Tπ = 620 MeV. We
also calculate the π0π0 and π0n invariant mass distributions
for the π−p → π0π0n reactions whose experimental data
were reported by CBC [23]. We especially try to discuss the
contributions of N∗(1440) around its mass-shell energy.
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(a)

(b)

(c)

FIG. 5. The diagrams including N∗(1440) taken into account in
the present article. All crossed versions of these diagrams are also
considered.

A. Fixing parameters

Before showing our results, we mention how to fix the
parameters: the cutoff parameters �B and �M , and the cou-
pling constants of the π�� and ρN� interactions (denoted
as fπ�� and fρN�, respectively), and the parameters c∗

1 and
c∗

2 that characterize NN∗(ππ )I=0
S wave interaction.

Because the value of fπ�� and fρN� cannot be directly
determined by the two-body decay width, they are usually
extracted from the data using the meson exchange model or
estimated by using theoretical approach such as the quark
model and QCD sum rule. Many reports on their value
fall into the ranges of 0.4 <∼ fπ�� <∼ 0.8 and 3.5 <∼ fρN� <∼
7.8 (see [13] and references therein). For instance, the
quark model relations lead to fπ�� = 0.8 and fρN� = 5.5
[29,30].

In Ref. [13], it is found that, at least in the low-energy
region up to Tπ = 400 MeV, the influences of the π��

and ρN� interactions are negligible for the π−p → π+π−n

and π−p → π0π0n channels. However, the NN∗(ππ )I=0
S wave

interaction (i.e., c∗
1 and c∗

2) gives a negligible contribution
to other three channels, i.e., π±p → π±π0p and π+p →
π+π+n [4]. This fact allows us to consider (fρN�, fπ��) and
(c∗

1, c
∗
2) separately in the parameter fixing. Thus we first try to

investigate the influences of �B,�M, fπ��, and fρN� on the

total cross sections of π±p → π±π0p and π+p → π+π+n

channels and to estimate the value of these parameters.

1. Cutoff dependence

In Fig. 6 we show the cutoff dependence of the total
cross sections. In this calculation, we include all diagrams but
Fig. 5(a), which includes the NN∗(ππ )I=0

S wave vertex, and take
fπ�� = 0.4 and fρN� = 7.8, which are in the range explained
above.1

First, if we do not take account of the cutoff factor (24) for
each leg of the vertices, i.e., if we treat the hadrons as pointlike
particle, the resulting total cross sections obviously overshoot
the experimental data above Tπ ∼ 300 MeV.

We choose three typical values �B = �M = 750, 850, and
950 MeV and calculate the cross sections for each value. As
shown in Fig. 6, we can see clear difference among these results
above Tπ ∼ 300 MeV. For the π+p → π+π+n channel, the
case of �B = �M = 850 MeV seems most appropriate. The
difference is obviously seen in the results for the π+p →
π+π0p channel. The case of �B = �M = 950 MeV is quite
different from the data compared to the other two cases. For the
π−p → π−π0p channel, all results somewhat underestimate
the data.

Next we consider several cases of �B �=�M : �M =
0.5�B, 1.5�B, and 2�B for each value of �B . As for the
π+p → π+π+n and π+p → π+π0p channels the results
change only within 10% when we vary the value of �M ,
whereas the π−p → π−π0p channel is sensitive to the
variation of �M . We find that the larger value of �M for
each �B seems appropriate: the thick solid line in Fig. 6(c)
for �B = 850 MeV and �M = 2�B = 1700 MeV (this line
should be compared to the thin solid line with �B = �M =
850 MeV).

In the following discussions, we take �B = 850 MeV and
�M = 1700 MeV.

1The reason for taking these values is discussed later.

200 300 400 500 600
0

0.5

1

1.5

σ 
(m

b)

Tπ(MeV)

(a) π+ p −> π+ π+ n

200 300 400 500 600
0

1

2

3

4

5

6

Tπ(MeV)

σ 
(m

b)

(b) π+ p −> π+ π0 p

200 300 400 500 600
0

1

2

3

4

σ 
(m

b)

Tπ(MeV)

(c) π− p −> π− π0 p

FIG. 6. The cutoff dependence of the total cross sections. The results are shown for the cases of �B = �M = 750 MeV (dashed line),
�B = �M = 850 MeV (solid line), and �B = �M = 950 MeV (dashed-dotted line). The results without considering the cutoff factors are
shown by the dotted line. The thick solid line in (c) corresponds to the case of �B = 850 MeV and �M = 2�B = 1700 MeV. The data are
from Refs. [31–52].
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FIG. 7. The dependence of numerical results
on fπ�� and fρN�: (a) the π+p → π+π 0p

channel with (fπ��, fρN�) = (0.4, 7.8) (solid
line), (fπ��, fρN�) = (0.6, 7.8) (dashed line), and
(fπ��, fρN�) = (0.8, 7.8) (dotted line) and (b)
the π−p → π−π 0p channel with (fπ��, fρN�) =
(0.4, 7.8) (solid line), (fπ��, fρN�) = (0.4, 5.7)
(dashed line), and (fπ��, fρN�) = (0.4, 3.5) (dot-
ted line). The contribution of Fig. 5(a) is not taken
into account. We use �B = 850 MeV and �M =
1700 MeV. The data are the same as in Fig. 6.

2. The π�� and ρN� interactions

Here we try to examine how the total cross section changes
according to the variation of fπ�� and fρN� in their allowed
range. For the π+p → π+π+n channel, the change is small
and the results are still compatible with the data. For the
π+p → π+π0p channel, the influence of the ρN� interaction
can be hardly seen for 3.5 <∼ fρN� <∼ 7.8, whereas the π��

interaction generates visible change on this channel [Fig. 7(a)].
The lower value of fπ�� seems appropriate to the data.
In contrast, for the variation of fρN� the change of the
π−p → π−π0p channel is clearly seen [Fig. 7(b)] but is
negligible for that of fπ��. The higher value of fρN� seems
appropriate to the data.

This is why we used fπ�� = 0.4 and fρN� = 7.8 in the
discussions of cutoff dependence of the total cross sections.
Also in the following we continue to use these values for fπ��

and fρN�.

3. The dependence on c∗
1 and c∗

2

As mentioned in Sec. II B, the values of c∗
1 and c∗

2
cannot be fixed by the relation (23) with the decay width of
N∗(1440) → N (ππ )I=0

S wave, which just represents the ellipse
on the c∗

1-c∗
2 plane as shown in Fig. 8. Although the case of

c∗
2 = 0 and c∗

1 < 0 (point A in Fig. 8) is conventionally used
in the phenomenological models of hadron reactions (e.g.,
see Refs. [5,21]), it was first pointed out in Ref. [9] that
the c∗

2 contribution should be also considered in view of the
general chiral effective Lagrangian. Several attempts have
been recently performed to determine the values of c∗

1 and
c∗

2 [16,53].
Calculating the total cross sections for all five channels up to

Tπ = 620 MeV with allowed values of c∗
1 and c∗

2, we find that
the appropriate values would be on the solid curve in Fig. 8.
The values on the dotted-curve generate obvious disagreement
in the total cross section, which is consistent with other studies
of the πN → ππN reaction [4].

In Fig. 9, we show the total cross sections calculated with
several values of c∗

1 and c∗
2 on the solid curve in Fig. 8. The

recent CBC data for the π−p → π0π0n channel are plotted as
the filled square in Fig. 9(e). We notice the CBC data exhibit a
bump below the N∗(1440) energy, i.e., 350 <∼ Tπ <∼ 500 MeV,
and this bump is called the “shoulder” in Ref. [23].

For the π±p → π±π0p channels, the results show only a
small increase in the total cross section above Tπ = 500 MeV
except for c∗

1 and c∗
2 around point C [see Figs. 9(b) and (c)].

Below Tπ = 500 MeV, however, the NN∗(ππ )I=0
S wave interac-

tion has no influence on the total cross section. This result is
consistent with other studies [4,13].

However, the π−p → π+π−n and π−p → π0π0n chan-
nels are sensitive to the variation of c∗

1 and c∗
2 [Figs. 9(d)

and 9(e)]. This fact is expected from other studies at low
energy [4,9]. The results with c∗

1 and c∗
2 near points B and

C are obviously incompatible with the experimental data. The
preferable value of c∗

1 seems to be found between points A and
C in view of the data.

The π+p → π+π+n channel is also sensitive to the
variation of c∗

1 and c∗
2 [see Fig. 9(a)]. The total cross section

above Tπ = 400 MeV is increased by the contribution of the
process Fig. 5(a): the lower the value of c∗

1 becomes, the
larger its increase is. Because this channel is, however, already
reproduced well without N∗(1440), accurate data of the
π+p → π+π+n reaction above Tπ = 400 MeV will strongly
constrain the value of c∗

1 and c∗
2. From the current π+p →

π+π+n data, we find that c∗
1 � −8.0 GeV−1 is preferable in

our model.

10 0 10

−4

−2

0

2

4

c 2
  [

(G
eV

)−1
]

c1  [(GeV)−1]

A

B

C

FIG. 8. The ellipse (23) representing the allowed values of c∗
1 and

c∗
2 . Here NN∗(ππ )S = 26.25 MeV is used, which is the central value

listed in the particle data table [15]. Point A, which is (c∗
1, c

∗
2) =

(−4.68, 0) GeV−1 in our case, corresponds to the point often used
in the study of hadron reactions. The points B and C correspond
to (c∗

1, c
∗
2) = (0,−1.37) GeV−1 and (c∗

1, c
∗
2) = (−14.2, 3.92) GeV−1,

respectively. See the text for the meanings of the solid and dotted
parts of this ellipse.
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FIG. 9. The c∗
1 and c∗

2 dependence of the total cross sections. The solid line is the result with (c∗
1, c

∗
2) at point A on the ellipse, whereas the

dashed and dotted lines are at points B and C, respectively. The dotted-dashed line is for (c∗
1, c

∗
2) = (−8.0, 1.08) GeV−1. The data are the same

as in Fig. 8 for (a)–(c), whereas for (d) and (e) the data are taken from Refs. [42–49,52,54–69]. The CBC data are plotted as the filled square
in (e).

It is worth noting that, in contrast to other three channels,
our results for the π−p → π+π−n and π−p → π0π0n

channels show peak structure around the N∗(1440) energy
corresponding to Tπ ∼ 480 MeV, except for those with

extremely low values of c∗
1 near the point C. This feature

should be compared with the CBC data for the π−p → π0π0n

total cross section, which shows the shoulder at the N∗(1440)
energy.
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FIG. 10. The contribution of each diagram including N∗(1440) to the total cross sections. The value of (c∗
1, c

∗
2) is taken as

(−8.0, 1.08) GeV−1. Each line expresses the result, including (i) all diagrams (solid line), (ii) no π�N∗ vertex (dotted-dashed line),
(iii) no NN∗(ππ )I=0

S wave vertex (two-dotted-dashed line), and (iv) neither contribution (dotted line). The data are the same as in Fig. 9.

055203-7



HIROYUKI KAMANO AND MASAKI ARIMA PHYSICAL REVIEW C 73, 055203 (2006)

FIG. 11. The π 0n invariant mass distribu-
tions for the π−p → π 0π 0n reaction for several
values of Tπ (pπ ). The CBC data [23] are
plotted as the histogram. Each line expresses the
results, including (i) all diagrams (solid line),
(ii) no π�N∗ vertex (dotted-dashed line), (iii)
no NN∗(ππ )I=0

S wave vertex (two-dotted-dashed
line), and (iv) neither contribution (dotted
line). The m2(π 0n) = (1.210)2 = 1.464 GeV2

and m2(π 0n) = (1.232)2 = 1.518 GeV2 corre-
sponds to the real part of the �(1232) pole and
the Breit-Wigner mass of �(1232), respectively.

Considering all above results, we choose c∗
1 = −8.0 GeV−1

(this leads to c∗
2 = 1.08 GeV−1) as a plausible value for this

parameter.

B. Each contribution of the diagram including N∗(1440)

Now we discuss the contribution of each diagram including
N∗(1440). The results are shown in Fig. 10. We find that
the process Fig. 5(b) gives a negligible contribution for all
channels. The process Fig. 5(c) does not give visible influence
on the π+p → π+π+n and π+p → π+π0p channels but
brings 30–50% increase to the total cross section above
Tπ = 400 MeV for other three channels.

In the π−p → π0π0n channel, the process including
NN∗(ππ )I=0

S wave vertex dominates the total cross sections near
the threshold, whereas its contribution decreases gradually
above Tπ = 400 MeV. Instead the contribution of the process
Fig. 5(c) grows in this energy region. We find that the shoulder
of the π−p → π0π0n data at the N∗(1440) energy reported
in Ref. [23] can be understood as a result of interference
between these two processes rather than the sole contribution
of N∗(1440) pole.

With regard to the diagrams including N∗(1440), the
π−p → π+π−n and π−p → π0π0n channels show similar
behavior. It is thus expected that the shoulder at N∗(1440)
energy may be observed also in the π−p → π+π−n channel.
To see this, however, more accurate data in those energy region
are necessary.

Here we notice that our result underestimates the data above
Tπ ∼ 500 MeV in the π−p → π−π0p, π−p → π+π−n, and
π−p → π0π0n channels (particularly remarkable for π−p →
π−π0p). This is not surprising because that energy region is
above the Roper mass-shell energy. The higher resonances
such as N∗(1520) and N∗(1535), which do not consider in this
work, will become relevant to these channels. In particular,
N∗(1520) would play a key role because this resonance
has a large branching ratio about 45% for the ππN decay
[whereas N∗(1535) has only about the 5% branching ratio].
Indeed, the total cross-section data for these three reaction
channels show a small bump around the N∗(1520) energy [see,
e.g., Fig. 5(b) and 5(c) in Ref. [1] for the π−p → π−π0p

and π−p → π+π−n channels and the CBC data [23] for
π−p → π0π0n channel]. However, such structure is not seen
in the π+p → π+π+n and π+p → π+π0p channels [see,
e.g., Fig. 5(d) and 5(e) in Ref. [1]].

C. Invariant mass distribution of π− p → π 0π 0n reaction

Figure 11 shows the π0n invariant mass distributions for
several values of Tπ . Our result captures the qualitative features
of the data well. At Tπ = 288 MeV, the mass distribution is
almost determined by the process including NN∗(ππ )I=0

S wave
vertex. The contribution of this process decreases gradually
when Tπ becomes higher. Instead, the contribution of the pro-
cess including π�N∗ vertex dominates the mass distributions.
As suggested in Ref. [23], a peak near the �(1232) energy,
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FIG. 12. The π 0π 0 invariant mass distribu-
tions for the π−p → π 0π 0n reaction for several
values of Tπ (pπ ). The meaning of each line and
histogram is the same as in Fig. 11.

which can be found above Tπ = 488 MeV, is indeed generated
by the N∗(1440) → �π process. Although the �(1232) mass
is taken as m� = 1232 MeV, the peak occurs at the energy
m2(π0n) 
 (1.210)2 GeV2. In Ref. [23] the authors said that
the shift of the peak is natural because the nucleon pole term,
which is large background for the πN elastic channel, has
small contribution to this reaction. However, in view of our
numerical result, we find that the peak position is obtained as
a result of the interference of several processes.

We next consider the π0π0 invariant mass distribution
(Fig. 12). For low Tπ , the results are dominated by the process
including NN∗(ππ )I=0

S wave vertex, which is the same as the
case of π0n invariant mass distribution. We observe that our
result reproduces the large asymmetry in the mass distributions
around the N∗(1440) energy: a small (large) peak in small
(large) value of m2(π0π0) and a depletion in between (see the
result of Tπ = 488 MeV in Fig. 12). In our results, the process
with NN∗(ππ )I=0

S wave vertex decreases the distribution for small
value of m2(π0π0), whereas it increases for large value of
m2(π0π0). Without this process, the large peak at large value of
m2(π0π0) cannot be reproduced. This result indicates that the
large asymmetry in the π0π0 mass distribution at the N∗(1440)
energy is because of the strong interference between the decay
processes N∗(1440) → �π and N∗(1440) → N (ππ )I=0

S wave.
Our numerical results up to Tπ = 500 MeV agree with the
data qualitatively. Above Tπ = 500 MeV, however, our results

do not reproduce a large peak at larger m2(π0π0). This would
be because the contributions of higher mass resonances such
as N∗(1520) and N∗(1535) are not taken into account.

It is worth mentioning that the above features of the
π0π0 and π0n mass distributions at the N∗(1440) energy are
characteristic of the two-pion decay of the Roper resonance,
N∗(1440) → Nππ [13,70]. This indicates that N∗(1440)
indeed gives visible effect to the observables of πN → ππN

reaction in those energy region.

D. I = J = 0 ππ rescattering in N N∗(ππ )I=0
S wave vertex

Finally we discuss the ππ rescattering represent-
ing the scalar-isoscalar ππ correlation explicitly in the
NN∗(ππ )I=0

S wave vertex, which is depicted in Fig. 4(b). It has
been suggested in several articles (see, e.g., Refs. [71,72])
that the σ meson pole can be dynamically generated around
450 − 225i MeV by such rescattering in I = J = 0 channel.
In view of the πN → ππN reaction being sensitive to the
process including NN∗(ππ )I=0

S wave vertex, we can expect that
this reaction also becomes a source of information about this
meson. However, no direct evidence of σ meson is seen in the
measured data of π−p → π0π0n reaction in Ref. [23].

First we try to calculate the π−p → π0π0n total cross
section without the process including ππ rescattering in the
NN∗(ππ )I=0

S wave vertex, i.e., we consider only the contact
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FIG. 13. The ππ rescattering effect in
the πN → ππN reaction: the (a) π−p →
π 0π 0n and (b) π+p → π+π+n total cross
sections and (c) the π 0π 0 invariant mass
distribution of π−p → π 0π 0n at Tπ =
488 MeV. The dashed line is the full
result including the ππ rescattering with
(c∗

1, c
∗
2) = (−8.0, 1.08) GeV−1, whereas

the solid line is the result including no ππ

rescattering but with the readjusted value
(c∗

1, c
∗
2) = (−13.0, 1.89) GeV−1.

interaction Fig. 4(a) for this vertex. We find that, even if the
ππ rescattering is not considered, we can readjust c∗

1 and
c∗

2 within their allowed values so as to reproduce our results
including the ππ rescattering effect.2 For instance, the total
cross section with c∗

1 = −8.0 [i.e., the solid line in Fig. 9(e)]
is reproduced by choosing c∗

1 = −13.0 and c∗
2 = 1.89 [see

Fig. 13(a)]. The similar results are also obtained for the
π−p → π+π−n and π±p → π±π0p total cross sections and
for the π0n invariant mass distributions of π−p → π0π0n.
Therefore, although the NN∗(ππ )I=0

S wave vertex is necessary
to explain the πN → ππN reaction, it seems difficult to
conclude whether the σ meson pole dominates the form factors
of the vertices as long as we consider only these total cross
sections and invariant mass distributions.

However, the situation is somewhat different in the π+p →
π+π+n total cross section and the π0π0 invariant mass
distributions of π−p → π0π0n. The above value (c∗

1, c
∗
2) =

(−13.0, 1.89) GeV−1 is not acceptable for the π+p →
π+π+n total cross section because these values lead to the
numerical results far from the data [Fig. 13(b)]. Also, it is
remarkable that the large asymmetric shape in the π0π0 invari-
ant mass distribution at Tπ = 488 MeV cannot be reproduced
without considering the ππ rescattering effect. These results
suggest that the ππ rescattering effect in the NN∗(ππ )I=0

S wave
vertex is necessary to our calculation of πN → ππN

reaction.

2Note that in this case the coefficients in the decay width
formula (23) become as α = 0.476 × 10−3 GeV3, β = 5.29 ×
10−3 GeV3, and γ = 2.98 × 10−3 GeV3. Thus the range of allowed
values of c∗

1 and c∗
2 changes.

IV. SUMMARY AND CONCLUSIONS

We have studied the πN → ππN reaction in the energy
region up to Tπ = 620 MeV, especially around the N∗(1440)
mass-shell energy. Being motivated by several interesting
observations related to N∗(1440) in the recent CBC experiment
of the π−p → π0π0n reaction, we have discussed the role of
N∗(1440) and its decay processes in the reaction processes.
The calculation has been performed by extending the theoret-
ical approach constructed in Ref. [13].

We have found that N∗(1440) shows a significant contribu-
tion to the πN → ππN reaction through the decay processes
N∗(1440) → N (ππ )I=0

S wave and N∗(1440) → π�. In contrast,
the N∗ → πN process just gives a negligible contribu-
tion. Although the contribution of N∗(1440) → N (ππ )I=0

S wave
process already appears in the threshold region in several
channels, the N∗(1440) → π� process becomes important
above Tπ = 400 MeV. The characteristics of the CBC data for
π−p → π0π0n are generated by a strong interference effect
between them.

We have also found that, above Tπ = 400 MeV, the π+p →
π+π+n total cross section is remarkably sensitive to the
variation of c∗

1 and c∗
2 within their allowed values. Because this

reaction is almost saturated by the contributions of the nucleon
and �(1232), more accurate data of this channel would give
strong constraints on the range of c∗

1 and c∗
2. This nature of

π+p → π+π+n cannot be seen in other theoretical studies
that have mainly focused on the πN → ππN reaction below
Tπ = 400 MeV.

The remarkable contribution of the process including
the N∗N (ππ )I=0

S wave vertex leads to the expectation that the
πN → ππN reaction becomes a source of information about
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the controversial scalar-isoscalar σ meson. In the present work,
the σ meson is considered as a dynamical object generated
by the rescattering mechanism of two-pion in the I = J = 0
channel. We have obtained the following interesting results
related to this meson: if we do not include the ππ rescattering
effect in the N∗N (ππ )I=0

wave vertex, then (i) the large asymmetry
in the π0π0 invariant mass distribution for π−p → π0π0n

cannot be reproduced and (ii) it is difficult to simultaneously
describe the total cross section of all channels. The systematic
analyses of all channels would provide an indication of the
existence of σ meson.

Here we mention the similarity about the role of N∗(1440)
between the πN → ππN reaction and the NN induced
two-pion production reactions. The interference between
N∗(1440) → N (ππ )I=0

S wave and N∗(1440) → �π is observed
also in the pp → ppπ+π− and pn → d(ππ )I=0 reac-
tions [17,18] and actually plays a important role for explaining
the data [19,20]. In view of this similarity, we could also
discuss the indications of σ meson through those reactions.

Finally, we comment on other baryon resonances related
to the πN → ππN reaction, which have been referred in
several places. In the present work, we did not include
the higher resonances such as N∗(1520) and N∗(1535). We
have seen that, below the N∗(1440) mass-shell energy (i.e.,
Tπ <∼ 480 MeV), the πN → ππN data is almost saturated
by the nucleon, �(1232) and N∗(1440). Therefore the higher
resonances would become the relevant degrees of freedom
at least above Tπ ∼ 480 MeV. Several discrepancies be-
tween the data and our results above Tπ = 500 MeV in
the π−p → π−π0p, π−p → π+π−n, and π−p → π0π0n

channels would be cured by the consideration of such higher
resonances. Anyway, we need further investigations on these
resonances.
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APPENDIX A: DETAILS OF THE MODEL IN
NUCLEON-� SECTOR

As mentioned in Sec. II A, in this appendix we explain some
details of the model used in our previous study of πN →
ππN [13]. To calculate the diagrams in Fig. 2, we need to
evaluate seven matrix elements shown in Table I.

TABLE I. The matrix elements necessary to cal-
culate the diagrams in Fig. 2.

〈N |jV |N〉 〈N |jA|N〉 〈N |σ̂ |N〉 〈N |π̂ |N〉
〈�|jV |N〉 〈�|jA|N〉

〈�|jA|�〉

1. Vector-isovector part

The vector current matrix elements are

〈N (p′)|ja
V µ(0)|N (p)〉

= ū(p′)
[
FN

V,1(t)γµ + FN
V,2(t)

i

2mN

σµνq
ν

]
τ a

2
u(p) (A1)

for the nucleon, and

〈�(p′)|ja
V µ(0)|N (p)〉

= Ū ν(p′)
[
FN�

V,1 (t)gνµ + FN�
V,2 (t)Qνγµ + FN�

V,3 (t)QνQµ

+ iFN�
V,4 (t)QνσµλQ

λ
]
γ5I

a( 3
2 , 1

2 )u(p) (A2)

for the N -� transition. In this appendix the isodoublet Dirac
spinor for the nucleon is denoted as u(p).

Based on the phenomenology of vector meson dominance
(VMD) that at low energy the matrix elements of vector current
jV are dominated by the ρ meson pole, we write the nucleon
form factors as

FN
V,1(t) = m2

ρ

m2
ρ − t − imρρ(t)

, (A3)

FN
V,2(t) = κV FN

V,1(t), (A4)

where mρ is the ρ meson mass and κV is the isovector magnetic
moment. The phenomenological width of the ρ meson is
parameterized as

ρ(t) = ρ

mρ√
t

(
t − 4m2

π

m2
ρ − 4m2

π

)3/2

θ
(
t − 4m2

π

)
, (A5)

where ρ is the total width at t = m2
ρ [73]. As for the N -�

transition form factors, we obtain

FN�
V,1 (t) = fρN�

fρ

(
mN + m�

mρ

)
m2

ρ

m2
ρ − t − imρρ(t)

, (A6)

FN�
V,2 (t) = 1

mN + m�

FN�
V,1 (t), (A7)

where we use the ρN� interaction (B4). The ρN� coupling
constant is denoted as fρN�, and fρ corresponds to the gauge
coupling constant of the hidden local symmetry model for the
vector mesons [74,75]. The other form factors FN�

V,3 (t) and
FN�

V,4 (t) in Eq. (A2) are fixed to zero as long as we consider
the Lagrangian (B4) for the ρN� interaction.

2. Axial-isovector part

The matrix elements of jA are written as [76,77]

〈N (p′)|ja
Aµ(0)|N (p)〉

= ū(p′)
[
FN

A,1(t)γµ + FN
A,2(t)qµ

]
γ5

τ a

2
u(p), (A8)

〈�(p′)|ja
Aµ(0)|N (p)〉

= Ū ν(p′)
[
FN�

A,1 (t)gνµ + FN�
A,2 (t)Qνγµ + FN�

A,3 (t)QνQµ

+ iFN�
A,4 (t)QνσµλQ

λ
]
I a

(
3
2 , 1

2

)
u(p), (A9)
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〈�(p′)|ja
Aµ(0)|�(p)〉

= Ū ν(p′)
[
F�

A,1(t)gνλγµ + F�
A,2(t)gνλq

µ + F�
A,3(t)(qνgµλ

+ gνµqλ) + F�
A,4(t)qνγµqλ + F�

A,5(t)qνqµqλ

]
× γ5I

a
(

3
2 , 3

2

)
Uλ(p). (A10)

Same as in the case of N -N∗ and �-N∗ transitions caused
by the axial current jA, some of the form factors in Eqs. (A8)–
(A10) are exactly related to the renormalized coupling con-
stants for the corresponding pion-baryon interaction,

fπNN (t) = mπ

fπ

[
1

2
FN

A,1(t) + t

4mN

FN
A,2(t)

]
, (A11)

fπN�(t) = mπ

fπ

[
FN�

A,1 (t) + (mN − m�)FN�
A,2 (t) + tFN�

A,3 (t)
]
,

(A12)

fπ��(t) = mπ

fπ

[
F�

A,1(t) + t

2m�

F�
A,2(t)

]
, (A13)

where we employ Eqs. (B1)–(B3) as the effective
πNN,πN�, and π�� interactions. The other form factors
[i.e., FN�

A,4 (t), F�
A,3(t), F�

A,4(t), and F�
A,5(t)] are fixed to zero. In

our calculation all the form factors are taken as constants, and
we eliminate FN�

A,3 and F�
A,2 by using the PCAC hypothesis

fπN�,π��(m2
π ) 
 fπN�,π��(0).

3. Scalar-isoscalar part

Because �(1232) dose not contribute to MSA, we only
need the nucleon matrix element for the σ̂ current,

〈N (p′)|σ̂ (0)|N (p)〉 = S(t)u(p′)u(p). (A14)

According to the definition in Ref. [14], the form factor S(t)
is equal to −σπN (t)/fπm2

π , where σπN (t) is the pion-nucleon
σ term that becomes independent of t at tree level.

4. Pseudoscalar-isovector part

The nucleon matrix element of the π̂ current appearing in
Mπ is written as

〈N (p′)|π̂ a(0)|N (p)〉 = P (t)u(p′)iγ5τ
au(p). (A15)

The form factor P (t) are related to the renormalized πNN

coupling constant (A10),

P (t) = 1

m2
π − t

(
2mN

mπ

)
fπNN (t), (A16)

where the pion pole contribution is taken into account.
In Table II, we summarize the constants necessary to

calculate the diagrams in Fig. 2.

APPENDIX B: PHENOMENOLOGY OF MESON-BARYON
SYSTEM

In this appendix, we summarize the phenomenological
Lagrangians used to estimate the form factors and mention
a treatment of the finite width of baryon resonances. The

TABLE II. The value of constants used in the previous work. The
mass and width of each particle or resonance are shown in MeV.

Masses and widths Parameters

mN 939 fπ 93 MeV
mπ 138 fρ 5.80a

m� 1232 κV 3.71
mρ 770 σπN 45 MeVb

� 120 F N
A,1(= gA) 1.265

ρ 149 F N
A,2 5.67 × 10−3 MeV−1c

F N�
A,1 1.382d

F N�
A,2 −4.24 × 10−4 MeV−1d

aSee p. 33 in Ref. [75].
bReference [78].
cReference [26]. Note that the relation F N

A,2 = −2�πN/m2
π .

dReference [77].

Lagrangians of meson-baryon interaction are written as fol-
lows:

LπNN = fπNN

mπ

N̄γµγ5τ
aN∂µπa, (B1)

LπN� = fπN�

mπ

�̄ν�νµ(Z1)I a
(

3
2 , 1

2

)
N∂µπa + H.c., (B2)

Lπ�� = fπ��

mπ

�̄α�αβ(Z2)γµγ5I
a
(

3
2 , 3

2

)
×�β

δ(Z2)�δ∂µπa, (B3)

LρN� = i
fρN�

mρ

�̄σ�σµ(Z3)γνγ5I
a
(

3
2 , 1

2

)
×N (∂νρµa − ∂µρνa) + H.c., (B4)

LπNN∗ = fπNN∗

mπ

N̄γµγ5τ
aN∗∂µπa + H.c., (B5)

Lπ�N∗ = fπ�N∗

mπ

�̄ν�νµ(Z4)I a
(

3
2 , 1

2

)
N∗∂µπa + H.c.,

(B6)

where N and N∗, are the isodoublet Dirac fields describing
the nucleon and N∗(1440), respectively, and �µ is the
isoquadruplet Rarita-Schwinger field describing the �(1232).
The second-rank Lorentz tensor �µν is defined by �µν(Z) ≡
gµν − 1

2 (1 + 2Z)γµγν (where we take A = −1 [79]). The
second term of this tensor vanishes if �(1232) is on the
mass-shell [because of γµUµ(p) = 0], and so Z is called the
off-shell parameter. In this article we assume Zi = −1/2 (i =
1...4) for simplicity, i.e., �µν → gµν .

The �(1232) propagator is

Sµν(p) = ( �p + m�)

3
(
p2 − m2

�

) (
−2gµν + 2pµpν

m2
�

− iσµν + γµpν − γνpµ

m�

)
. (B7)

However, the nucleon and N∗(1440) propagators are expressed
by the Dirac propagator which is familiar.
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To take account of the width of baryon resonances
phenomenologically, we modify the denominator of the
�(1232) and N∗(1440) propagators as p2 − m2

R → p2 −
m2

R + imRR(s), where R = � or N∗. The widths �(s) and
N∗ (s) are taken as [4,5]

�(s) = �

m�√
s

|q(
√

s)|3
|q(m�)|3 θ (

√
s − mN − mπ ), (B8)

and

N∗ (s) = N∗
|q(

√
s)|3

|q(mN∗ )|3 θ (
√

s − mN − mπ ), (B9)

respectively. Here q = q(
√

s) is the pion spatial momentum
in the center-of-mass πN system with the total energy

√
s. In

this article we use mN∗ = 1440 MeV and N∗ = 350 MeV (as
for the value of m� and �, see Table II).

Finally we list the formulas for the isospin matrices used in
our calculation (see, e.g., Appendix A in Ref. [5]),

I a†( 3
2 , 1

2

)
I b

(
3
2 , 1

2

) = δab − 1
3τ aτ b, (B10)

I a†( 3
2 , 1

2

)
I b

(
3
2 , 3

2

)
I c

(
3
2 , 1

2

)
= 5

6 iεabc − 1
6δabτ c + 2

3δacτ b − 1
6δbcτ a. (B11)
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