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Particle number fluctuations in relativistic Bose and Fermi gases
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Particle number fluctuations are studied in relativistic Bose and Fermi gases. The calculations are done within
both the grand canonical and canonical ensemble. The fluctuations in the canonical ensemble are found to be
different from those in the grand canonical one. Effects of quantum statistics strongly increase in the grand
canonical ensemble for large chemical potential. This is, however, not the case in the canonical ensemble, and
in the limit of large charge density a strongest difference between the grand canonical and canonical ensemble
results is observed.
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I. INTRODUCTION

The statistical models have been successfully used to
describe the data on hadron multiplicities in relativistic
nucleus-nucleus (A + A) collisions (see, e.g., Ref. [1] and
recent review [2]). This has stimulated an investigation of the
properties of these statistical models. In particular, connec-
tions between different statistical ensembles for a system of
relativistic particles have been intensively discussed. In A + A

collisions one prefers to use the grand canonical ensemble
(GCE) because it is the most convenient one from the technical
point of view. The canonical ensemble (CE) [3–8] or even the
microcanonical ensemble (MCE) [9] have been used in order to
describe the pp, pp̄ and e+e− collisions when a small number
of secondary particles are produced. At these conditions the
statistical systems are far away from the thermodynamic limit,
so that the statistical ensembles are not equivalent, and the
exact charge or both energy and charge conservation laws
have to be taken into account. The CE suppression effects for
particle multiplicities are well known in the statistical approach
to hadron production, e.g., the suppression in a production of
strange hadrons [6] and antibaryons [7] in small systems, i.e.,
when the total numbers of strange particles or antibaryons
are small (smaller than or equal to 1). The different statistical
ensembles are not equivalent for small systems. When the
system volume increases, V → ∞, the average quantities in
the GCE, CE and MCE become equal, i.e., all ensembles are
thermodynamically equivalent.

The situation is different for the statistical fluctuations. The
fluctuations in relativistic systems are studied in event by event
analysis of high energy particle and nuclear collisions (see,
e.g., Refs. [10–13] and references therein). In the relativistic
system of created particles, only the net charge Q = N+ − N−
(e.g., electric charge, baryonic number, and strangeness) can
be fixed. In the statistical equilibrium an average value of the
net charge is fixed in the GCE, or exact one in the CE, but N+
and N− numbers fluctuate in both GCE and CE.

The particle number fluctuations for the relativistic case
in the CE were calculated for the first time in Ref. [14] for
the Boltzmann ideal gas with net charge equal to zero. These
results were then extended for the CE [15–17] and MCE [18,
19] and compared with the corresponding results in the GCE

(see also Ref. [20]). The particle number fluctuations have been
found to be suppressed in the CE and MCE in a comparison
with the GCE. This suppression survives in the limit V →
∞, so that the thermodynamical equivalence of all statistical
ensembles refers to the average quantities, but does not apply
to the fluctuations.

The paper is organized as follows. In Sec. II we consider
the N+ and N− fluctuations in the GCE and study the Bose and
Fermi effects. In Sec. III the same calculations and study are
repeated within the CE. We compare the GCE and CE results
and summarize our consideration in Sec. IV.

II. PARTICLE NUMBER FLUCTUATIONS IN THE GCE

The relativistic ideal Bose or Fermi gas can be characterized
by the occupation numbers n+

p and n−
p of the one-particle states

labeled by momenta p for ‘positively charged’ particles and
‘negatively charged’ particles, respectively. The GCE average
values are [21]

〈n±
p 〉g.c.e. = 1

exp[(
√

p2 + m2 ∓ µ)/T ] − γ
, (1)

where m is the particle mass, T is the system temperature
and µ is the chemical potential connected with the conserved
charge Q:

Q ≡ 〈N+〉g.c.e. − 〈N−〉g.c.e. =
∑

p

〈n+
p 〉g.c.e. −

∑
p

〈n−
p 〉g.c.e..

(2)
The parameter γ in Eq. (1) is equal to +1 and −1 for
Bose and Fermi statistics, respectively (γ = 0 corresponds to
the Boltzmann approximation). Each level should be further
specified by the projection of a particle spin. Thus, each
p-level splits into g = 2j + 1 sublevels. It will be assumed
that the p-summation includes all these sublevels too. In the
thermodynamic limit the system volume V goes to infinity,
and the degeneracy factor g enters explicitly when one sub-
stitutes the summation over discrete levels by the integration,
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∑
p ... = gV (2π2)−1

∫ ∞
0 p2dp . . . . The particle number den-

sities in the GCE are

ρ± ≡ 〈N±〉g.c.e.

V
=

∑
p〈n±

p 〉g.c.e.

V

= g

2π2

∫ ∞

0

p2dp

exp[(
√

p2 + m2 ∓ µ)/T ] − γ

= g T 3

2π2

∫ ∞

0

x2dx

exp[
√

x2 + m∗ 2 ∓ µ∗] − γ
, (3)

where m∗ ≡ m/T, µ∗ ≡ µ∗/T . To be definite we consider
µ∗ � 0 in what follows. This corresponds to non-negative
values of the system charge density ρQ ≡ ρ+ − ρ− � 0.
Results for µ∗ � 0 can be obtained from those with µ∗ � 0
by exchanging of N+ and N−.

The GCE fluctuations of the single-mode occupation
numbers are equal to [21]

〈
�n±2

p

〉
g.c.e. ≡ 〈(n±

p − 〈n±
p 〉g.c.e.)

2〉g.c.e.

= 〈
n± 2

p

〉
g.c.e. − 〈n±

p 〉2
g.c.e.

= 〈n±
p 〉g.c.e.(1 + γ 〈n±

p 〉g.c.e.) ≡ v± 2
p . (4)

The fluctuations of the macroscopic observables can be written
in terms of the microscopic correlator 〈�nα

p�n
β

k 〉g.c.e., where
α, β are + and/or −, which has a simple form

〈
�nα

p�n
β

k

〉
g.c.e. = vα2

p δp kδαβ, (5)

due to the statistical independence of different quantum levels
and different charge states in the GCE. The variances of the
total number of positively and/or negatively charged particles
are equal to

〈�N2
±〉g.c.e. ≡ 〈N2

±〉g.c.e. − 〈N±〉2
g.c.e.

=
∑
p,k

(〈n±
p n±

k 〉g.c.e. − 〈n±
p 〉g.c.e.〈n±

k 〉g.c.e.)

=
∑
p,k

〈�n±
p �n±

k 〉g.c.e. =
∑

p

v±2
p . (6)

The scaled variance ω±
g.c.e. reads

ω±
g.c.e. ≡ 〈N2

±〉g.c.e. − 〈N±〉2
g.c.e.

〈N±〉g.c.e.

=
∑

p,k〈�n±
p �n±

k 〉g.c.e.∑
p〈n±

p 〉g.c.e.
=

∑
p v±2

p

Vρ±

= 1 + γ

∫ ∞

0

x2dx

[ exp(
√

x2 + m∗ 2 ∓ µ∗) − γ ]2

×
[∫ ∞

0

x2dx

exp(
√

x2 + m∗ 2 ∓ µ∗) − γ

]−1

, (7)

where the thermodynamic limit is assumed, and the p-
summation is substituted by the integration. The scaled
variances ω±Bose

g.c.e. and ω±Fermi
g.c.e. for different values of m∗ are

shown in Fig. 1 as functions of µ∗.
It follows from Eq. (7) for γ = 0,

ω+Boltz
g.c.e. = ω−Boltz

g.c.e. = 1, (8)

i.e. the scaled variances for Boltzmann statistics in the GCE
are independent of the chemical potential µ∗ and equal to
1 for both the positively and negatively charged particles.
Equation (7) leads to the Bose enhancement, ωαBose

g.c.e. > 1, and
the Fermi suppression ωαFermi

g.c.e. < 1, of the particle number
fluctuations.

At µ∗ = 0 the largest Bose and Fermi effects correspond to
the massless particles (see Fig. 1):

ω±Bose
g.c.e (µ∗ = 0,m∗ → 0)

= 1 +
∫ ∞

0

x2dx

[ exp(x) − 1 ]2

[∫ ∞

0

x2dx

exp(x) − 1

]−1

= ζ (2)

ζ (3)
	 1.368, (9)

ω±Fermi
g.c.e (µ∗ = m∗ = 0)

= 1 −
∫ ∞

0

x2dx

[ exp(x) + 1 ]2

[∫ ∞

0

x2dx

exp(x) + 1

]−1

= 2

3

ζ (2)

ζ (3)
	 0.912. (10)

FIG. 1. The scaled variances ω+
g.c.e. (left)

and ω−
g.c.e. (right) given by Eq. (7) for bosons

(γ = 1) and fermions (γ = −1) are shown as
functions of µ∗. The two upper solid lines
present ω±Bose

g.c.e. for m∗ = 1, 3. The three lower
solid lines present ω±Fermi

g.c.e. for m∗ = 0, 1, 3. The
vertical dotted lines µ∗ = 1, 3 demonstrate the
restriction µ∗ � m∗ in the Bose gas. The crosses
at the end of the lines for ω−Bose

g.c.e. at µ∗ = 1 and
µ∗ = 3 correspond to the points of the Bose
condensation, ω+Bose

g.c.e. diverges at these points.
The crosses at µ∗ = 0 correspond to the limit
m∗ → 0 given by Eq. (9) in the Bose gas.
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Note that the lowest occupation numbers n+
0 and n−

0
contribute to the net charge of the system, but for m = 0 they
do not influence the system energy. Therefore, the occupation
numbers n+

0 and n−
0 become arbitrary, and the ideal Bose gas

of charged particles with m = 0 has no clear meaning in the
thermodynamic limit. In what follows the ‘massless’ Bose gas
of charged particles will be understood as the limit m∗ → 0 at
fixed value of µ∗ ≡ 0.

One finds from Eq. (7) at µ∗ � m∗:

ω±
g.c.e. = 1 + γ

∞∑
n=1

γ n−1n

n+1
K2[(n+1) m∗] exp[±(n+1) µ∗]

×
[ ∞∑

n=1

γ n−1

n
K2(nm∗) exp(±nµ∗)

]−1

, (11)

where K2 is a modified Hankel function. Note that Eq. (11)
is valid for ω−Fermi

g.c.e. for all values of µ∗ > 0. At m∗ 
 1 one
finds from Eq. (11):

ω±
g.c.e 	 1 + γ

∞∑
n=1

γ n−1n

(n + 1)3/2
exp[−(n + 1)(m∗ ∓ µ∗)]

×
[ ∞∑

n=1

γ n−1

n3/2
exp[−n(m∗ ∓ µ∗)]

]−1

. (12)

The series expansions in Eq. (12) converge rapidly for µ∗ �
m∗ → ∞. In this case the term with n = 1 is sufficient to
describe small Bose or Fermi effects:

ω±
g.c.e 	 1 + γ 2−3/2 exp[−(m∗ ∓ µ∗)]. (13)

The same is valid for negatively charged particles at µ∗ → ∞:

ω−
g.c.e 	 1 + γ

K2(2m∗)

2K2(m∗)
exp[−µ∗)]. (14)

The first terms in Eqs. (13) and (14) correspond to the Boltz-
mann scaled variances (8). Therefore, for both positively and
negatively charged particles, the Bose and Fermi corrections
approach to zero as γ exp(−m∗) at µ∗ � m∗ → ∞. For
negatively charged particles, these corrections also tend to
zero as γ exp(−µ∗) at µ∗ → ∞.

The condition µ∗ � m∗ is a general requirement in the Bose
gas. At µ∗ → m∗ the scaled variance ω+Bose

g.c.e diverges (see
Fig. 1, left). This divergence comes from the contributions
of the low momentum modes. Introducing a dimensionless
parameter δ satisfying the conditions m∗ − µ∗ � δ � m∗ one
finds ∫ δ

0

x2dx

[ exp(
√

x2 + m∗ 2 − µ∗) − 1 ]2

	
∫ δ

0

x2dx

(m∗ − µ∗ + x2/2m∗)2

	 π2−1/2m∗3/2(m∗ − µ∗)−1/2. (15)

Therefore, it follows, ω+Bose
g.c.e ∝ (m∗ − µ∗)−1/2 → ∞, as

µ∗ → m∗. On the other hand, the scaled variance for negative
Bose particles decreases with µ∗ and reaches its minimum at
µ∗ = m∗. When µ∗ = m∗ → ∞ one finds from Eq. (13)

ω−Bose
g.c.e. 	 1 + 2−3/2 exp(−2m∗), (16)

so that ω−Bose
g.c.e. approaches to 1 from above as µ∗ = m∗ → ∞

(see Fig. 1, right).
The requirement µ∗ � m∗ is absent in the Fermi gas, and

for µ∗ → ∞ one finds strong Fermi suppression effects (see
Fig. 1, left) for positively charged particles:

ω+Fermi
g.c.e 	 3

µ∗ . (17)

The scaled variance for negatively charged Fermi particles
increases with µ∗, and from Eq. (14),

ω−Fermi
g.c.e 	 1 − K2(2m∗)

2K2(m∗)
exp(−µ∗), (18)

so that ω−Fermi
g.c.e approaches to 1 from below at µ∗ → ∞ (see

Fig. 1, right).

III. PARTICLE NUMBER FLUCTUATIONS IN THE CE

In the GCE all possible sets of the occupation numbers
{n+

p , n−
p } contribute to the partition function. Only the average

value of the conserved charge Q = ∑
p(n+

p − n−
p ) is fixed,

〈Q〉g.c.e. = Q, in the GCE, and 〈Q〉g.c.e. is controlled by the
chemical potential µ∗. In the CE an exact charge conservation
is imposed. This can be formulated as a restriction on permitted
sets of the occupation numbers {n+

p , n−
p }, so that only those

satisfying the relation

�Q =
∑

p

(�n+
p − �n−

p ) = 0, (19)

contribute to the CE partition function. One proves that
this restriction does not change the average quantities in
the thermodynamic limit, if the average charge in the GCE,
〈Q〉g.c.e., equals the charge Q of the CE (of course, T and V

values are assumed to be the same in the GCE and CE). In
particular,

〈N+〉c.e. = 〈N+〉g.c.e., 〈N−〉c.e. = 〈N−〉g.c.e.. (20)

This is what the thermodynamical equivalence of the CE and
GCE means as V → ∞. This statistical equivalence does not
apply, however, for the fluctuations, measured in terms of
ω+ and ω−. The formula (5) for the microscopic correlator
is modified if we impose the restriction of an exact charge
conservation in a form of Eq. (19). One finds (see the details
in Ref. [15]) the CE correlator:

〈
�nα

p�n
β

k

〉
c.e. = vα2

p δp kδαβ − vα2
p qαv

β2
k qβ∑

p,α vα2
p

. (21)

By means of Eq. (21) we obtain

ωα
c.e. ≡

〈
N2

α

〉
c.e. − 〈Nα〉2

c.e.

〈Nα〉c.e.
=

∑
p,k

〈
�nα

p�nα
k

〉
c.e.∑

p

〈
nα

p

〉
c.e.

=
∑

p vα2
p

Vρα

(
1 −

∑
p vα2

p∑
p v+2

p + ∑
p v−2

p

)
. (22)

Comparing Eqs. (5) and (21) one notices the changes of the
microscopic correlator due to an exact charge conservation.
Namely, in the CE the fluctuations of each mode are reduced,
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FIG. 2. The scaled variances ω+Bose
g.c.e. , left, and ω−Bose

g.c.e. , right, given by Eq. (22), are shown as functions of µ∗. The solid lines present ω±Bose
g.c.e.

at m∗ = 0.01, 0.1, 0.3, 0.5, 1, 2. The vertical dotted lines µ∗ = m∗ demonstrate the restriction µ∗ � m∗ in the Bose gas. The upper dashed
horizontal line presents a value of ζ (2)/ζ (3) 	 1.368 which is an upper limit for ω±Bose

c.e. reached at µ∗ = m∗ → 0 [see Eqs. (27), (30)]. The
crosses at µ∗ = m∗ correspond to the points of Bose condensation. The crosses at µ∗ = 0 correspond to ω±Bose

c.e. (µ∗ = 0, m∗ → 0 given by
Eq. (25). The dashed lines correspond to ω+Boltz

c.e. , left and ω−Boltz
c.e. , right, given by Eq. (23).

and the (anticorrelations) correlations between different modes
p = k with the (same) different charge states α, β appear.
These two changes of the microscopic correlator result in a
suppression of the CE scaled variances ωα

c.e. in comparison
with the GCE ones ωα

g.c.e. [compare Eqs. (7) and (22)], i.e., the
fluctuations of both N+ and N− are always smaller in the CE
than those in the GCE. A nice feature of Eq. (22) is the fact that
particle number fluctuations in the CE, being different from
those in the GCE, are presented in terms of the GCE average
occupation numbers 〈n±

p 〉g.c.e..
The Eq. (4) leads to vα2

p = 〈nα
p〉g.c.e. in the Boltzmann

approximation, and from Eq. (22) one finds (see dashed lines
in Figs. 2 and 3):

ω±Boltz
c.e. = 1 − exp(±µ∗)

exp(µ∗) + exp(−µ∗)
= 1

2
[1 ∓ tanh(µ∗)].

(23)
Equation (23) demonstrates the CE suppression effects for par-
ticle number fluctuations within the Bolzmann approximation,
e.g., the scaled variances ω+Boltz

c.e. and ω−Boltz
c.e. in the CE at zero

net charge density are two times smaller, ω+Boltz
c.e. = ω−Boltz

c.e. =
0.5, than those in the GCE, ω+Boltz

g.c.e. = ω−Boltz
g.c.e. = 1. When the

net charge density increases the ω+Boltz
c.e. decreases and tends to

0 at µ∗ → ∞, while the ω−Boltz
c.e. increases and tends to 1. The

physical reasons of this is quite clear: at µ∗ 
 1 the densities
of charged particles ρ+ 	 ρQ and ρ− � ρQ. Therefore, at

µ∗ 
 1 an exact charge conservation in the CE keeps N+
close to its average value Q and makes the fluctuations of N+
in the CE small. Under the same conditions, 〈N−〉c.e. is much
smaller than Q, so that the fluctuations of N− are not affected
by the CE suppression effects and they have the Poisson form,
as the GCE. The difference between ω+Boltz

c.e. and ω−Boltz
c.e. , and

their dependence on µ∗, are both the new features of the CE.
The GCE scaled variances in the Boltzmann approximation
are equal to one (8), and they do not depend on the chemical
potential.

The scaled variances ω±Bose
c.e. and ω±Fermi

g.c. , given by Eq. (22),
for different values of m∗ are shown in Figs. 2 and 3 as
functions of µ∗. At µ∗ = 0 from Eqs. (3) and (4) it follows
that ρ+ = ρ− and v+2

p = v−2
p . From Eq. (22) we find then for

the CE scaled variances,

ω±
c.e.(µ

∗ = 0) = 1
2 ω±

g.c.e.(µ
∗ = 0). (24)

According to Eq. (24) the CE scaled variances at µ∗ = 0 are
two times smaller than the corresponding scaled variances in
the GCE, e.g., for massless Bose and Fermi particles [see
Figs. 2 and 3, and compare Eq. (25) with Eqs. (9) and (10)]:

ω±Bose
c.e. (µ∗ = 0,m∗ → 0) = 1

2

ζ (2)

ζ (3)
	 0.684,

(25)

ω±Fermi
c.e. (µ∗ = m∗ = 0) = 1

3

ζ (2)

ζ (3)
	 0.456.

FIG. 3. The scaled variances ω+Fermi
c.e. (left)

and ω−Fermi
c.e. (right) are presented by the solid

lines for m∗ = 0 and m∗ = 2. The dashed lines
correspond to ω+Boltz

c.e. (left) and ω−Boltz
c.e. (right)

given by Eq. (23).
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We study now the CE scaled variances at non-zero values
of µ∗. Let us start with ω+Bose

c.e. (Fig. 2, left). At µ∗ → m∗ it has
been found that

∑
p v+2

p → ∞ [see Eq. (15)], thus it follows
from Eq. (22):

ω+Bose
c.e. (µ∗ = m∗) =

∑
p v−2

p

V ρBose+
= ω−Bose

g.c.e. (µ∗ = m∗)

× ρBose
− (µ∗ = m∗)

ρBose+ (µ∗ = m∗)
. (26)

The first factor on the right hand side of Eq. (26), ω−Bose
g.c.e. (µ∗ =

m∗), reaches its maximum, ζ (2)/ζ (3) 	 1.368, Eq. (9), at
µ∗ = m∗ → 0 (see Fig. 1, right). When µ∗ = m∗ → 0, the
second factor on the right hand side of Eq. (26), ρBose

− (µ∗ =
m∗)/ρBose

+ (µ∗ = m∗), also increases and goes to 1. Therefore,
an upper limit for ω+Bose

c.e. is reached at µ∗ = m∗ → 0 (see
Fig. 2, left):

max
[
ω+Bose

c.e. (µ∗,m∗)
] = ω−Bose

g.c.e. (µ∗ = 0,m∗ → 0) 	 1.368.

(27)

At µ∗ = m∗ → ∞ one finds ω−Bose
g.c.e. (µ∗ = m∗ → ∞) → 1

(see Fig. 1, right). Therefore, it follows:

ω+Bose
c.e. (µ∗ = m∗ → ∞) 	 ρBose

− (µ∗ = m∗ → ∞)

ρBose+ (µ∗ = m∗ → ∞)

	 1

ζ (3/2)
exp(−2µ∗)

	 0.383 exp(−2µ∗), (28)

so that at µ∗ = m∗ → ∞ the scaled variance ω+Bose
c.e. goes

to zero faster than ω+Boltz
c.e. 	 exp(−2µ∗). Figure 2 (left)

demonstrates that ω+Bose
c.e. (µ∗ = m∗ = 1) is already smaller

than ω+Boltz
c.e. (µ∗ = 1).

For ω−Bose
c.e. (µ∗ = m∗) (see Fig. 2, right) one finds from

Eq. (22):

ω−Bose
c.e. (µ∗ = m∗) = ω−Bose

g.c.e. (µ∗ = m∗), (29)

so that

max
[
ω−Bose

c.e. (µ∗,m∗)
] = ω−Bose

g.c.e. (µ∗ = 0,m∗ → 0) 	 1.368.

(30)

From Eqs. (14) and (29) it follows:

ω−Bose
c.e 	 1 + 2−3/2 exp(−2m∗), (31)

and ω−Bose
c.e. (µ∗ = m∗ → ∞) goes to 1 from above (see Fig. 1,

right).
Now let us turn to the behavior of ω+Fermi

c.e. and ω−Fermi
c.e.

(Fig. 3, left and right, respectively). The variance
∑

p v+ 2
p

for the Fermi gas increases as µ∗2, whereas
∑

p v− 2
p de-

creases exponentially, exp(−µ∗), for large chemical potentials,
µ∗ 
 1. Then it follows from Eq. (22):

ω+Fermi
c.e. 	 ω−Fermi

g.c.e. × ρFermi
−

ρFermi+
	 1 × m∗2K2(m∗) exp(−µ∗)

µ∗3/3
,

(32)

for µ → ∞. Therefore, ω+Fermi
c.e. goes to zero like

µ∗−3 exp(−µ∗) as µ∗ → ∞. However, ω+Boltz
c.e. 	 exp(−2µ∗),

and ω+Fermi
c.e. becomes larger than ω+Boltz

c.e. as µ∗ → ∞ (see
Fig. 3, left). Finally, one finds for ω−Fermi

c.e. as µ∗ → ∞:

ω−Fermi
c.e. 	 ω−Fermi

g.c.e. ×
(

1 −
∑

p v−2
p∑

p v+2
p

)

	
[

1 − K2(2m∗)

2K2(m∗)
exp(−µ∗)

]

×
[

1 −
(

m∗

µ∗

)2

K2(m∗) exp(−µ∗)

]
. (33)

Therefore, ω−Fermi
c.e. goes to 1 from below. At m∗ � µ∗ → ∞

it satisfies the inequalities (see Fig. 3, right):

ω−Fermi
c.e. < ω−Fermi

g.c.e. < ω−Boltz
c.e. . (34)

TABLE I. The scaled variances ω+ and ω− for different statistics in the GCE and CE. The values of µ∗ > m∗ are forbidden
in the Bose gas.

µ∗ = 0, m∗ → 0 µ∗ = m∗ → 0 µ∗ � m∗ → ∞ µ∗ = m∗ → ∞ m∗ � µ∗ → ∞
ω+Boltz

g.c.e 1 1 1 1 1

Grand ω−Boltz
g.c.e 1 1 1 1 1

Canonical ω+Bose
g.c.e 1.368 ∞ 1 ∞ —

Ensemble ω−Bose
g.c.e 1.368 1.368 1 1 —

ω+Fermi
g.c.e 0.912 0.912 1 0.791 0

ω−Fermi
g.c.e 0.912 0.912 1 1 1

ω+Boltz
c.e 0.5 0.5 e−2µ∗

e−2µ∗ → 0 e−2µ∗ → 0

ω−Boltz
c.e 0.5 0.5 1 − e−2µ∗

1 − e−2µ∗ → 1 1 − e−2µ∗ → 1

Canonical ω+Bose
c.e 0.684 1.368 e−2µ∗

0.38 e−2µ∗ → 0 —

Ensemble ω−Bose
c.e 0.684 1.368 1 − e−2µ∗

1 —

ω+Fermi
c.e 0.456 0.456 e−2µ∗

0 µ∗−3e−µ∗ → 0

ω−Fermi
c.e 0.456 0.456 1 1 1
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IV. SUMMARY

The scaled variances for the particle number fluctuations
have been calculated for the Bose and Fermi ideal relativistic
gases in the grand canonical and canonical ensembles. In the
GCE the strongest quantum effects take place in the limit of
large (positive) chemical potential: ω+Bose

g.c.e. → ∞ at µ∗ → m∗

and ω+Fermi
g.c.e. → 0 at µ∗ → ∞, whereas ω+Boltz

g.c.e. = ω−Boltz
g.c.e. = 1

at all µ∗ in the Boltzmann approximation (see Fig. 1). On
the other hand, the scaled variances ω+Bose

c.e. and ω+Fermi
c.e. (see

Figs. 2 and 3) at large µ∗ are very different from those in
the GCE. The Bose and Fermi effects in the CE are clearly
seen at intermediate µ∗, but for µ∗ 
 1 the effects of exact
charge conservation dominate: ω+Bose

c.e. 	 ω+Boltz
c.e. → 0 at µ∗ =

m∗ → ∞ and ω+Fermi
c.e. 	 ω+Boltz

c.e. → 0 at m � µ → ∞. The
behavior of ω± at different µ∗ and m∗ is seen from Figs. 1–3,

and summary of analytical results for some limiting values
of the scaled variances in the GCE and CE are presented in
Table I.
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