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We present an extension of the recombination formalism to analyze the effects of variation of the hadron
wavefunctions. The hadron spectra are sensitive to the shape of the wavefunctions. However, when we fit the
wavefunction parameters to the physical observables, such as the average charge radius, the final spectra are very
similar to one another. We discuss our numerical results in comparison with the published PHENIX and STAR
data for the BNL Relativistic Heavy Ion Collider. In the hadron spectra, the recombination of thermal partons
dominates at intermediate transverse momentum (PT = 2–5 GeV), and the fragmentation dominates at high
PT (>5 GeV). The yield ratios and the nuclear modification factors for various hadron species are also estimated
and compared with the experimental data. We present a new prediction for p̄/p and K−/K+ ratios, including
the jet quenching effects on the fragmentation mechanism.
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I. INTRODUCTION

Although no one doubts the existence of quarks and
gluons, they have not yet been detected individually at
zero temperature. The current vigorous efforts at the BNL
Relativistic Heavy Ion Collider (RHIC) and the future plans
of the CERN Large Hadron Collider (LHC) may reveal the
temperature dependence of the confinement mechanism and
the chrial symmetry restoration [1]. The high-energy nuclear
collisions compress and heat the heavy nuclei so much that
their individual protons and neutrons may overlap, and, in
addition, a lot of pions may arise to ultimately create the
quark-gluon plasma (QGP). The QGP may have existed ten
millionths of a second after the Big Bang and may have
created the primordial matter of the universe. The RHIC
and the future LHC may yield the QGP in the laboratory.
It has been reported that the four experiments at RHIC have
already obtained distinguished results from the lower-energy
heavy-ion collisions at CERN SPS [2–5]. The future LHC
experiments (ALICE as well as CMS and ATLAS) would
require theoretical predictions at a 30-fold energy increase
from the RHIC.

Among many others, the effects of jet quenching and
bulk hadronization may be regarded as important new results.
Specifically, elliptic flow analysis revealed that the differential
second-harmonic Fourier moment (v2) of the azimuthal dis-
tribution with respect to the reaction plane had a remarkable
saturation property in the intermediate transverse momentum
(PT ) range between 2 and 6 GeV for all hadrons, including
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multistrange baryons. This saturation effect and eventual
decrease of v2 at high PT have been qualitatively interpreted
to be the results of partonic energy loss in an opaque parton
system created by nuclear collisions [6,7]. Furthermore, the
estimated v2 parameter as a function of PT is scaled by
the number of constituent quarks of particles. Together with
enhanced proton production in the intermediate PT region, this
agreement has been taken seriously as one piece of evidence for
the quark recombination process and the presence of partonic
collectivity at the early stage of a collision [8–13].

In this work we utilize the previous recombination formal-
ism and extend it to analyze the light-front (LF) wavefunction
dependence in the theoretical predictions from this formalism
[8]. Typical forms of the LF wavefunctions, such as the
Gaussian form and the power-law form, are applied to this
extended formulation. The numerical results are contrasted to
each other and compared with the available single invariant
spectra from PHENIX and STAR for various mesons and
baryons. We also discuss the production ratios of various
hadrons, including p̄/p and K−/K+, in the fragmentation
region. While we include the jet quenching effects as others
do, we get a rather distinct results compared with the previous
ones. For the high PT regions, we get a dramatic suppression of
the antiparticles p̄ and K− compared with the corresponding
particles p and K+, respectively.

The paper is organized as follows. In Sec. II we present the
recombination formalism, which is extended from the previous
one to explicitly include the intrinsic transverse momenta of
the constituents inside the hadron. Rather than an extensive
review of the previous formalism, we focus on what has been
extended from the previous model. In Sec. III, we present
the numerical results of the PT spectra for various mesons
and baryons to contrast the results between the Gaussian
form and the power-law form. The results are compared with
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the available experimental data from PHENIX and STAR
Collaborations. We also discuss the production ratios of
various hadrons and the nuclear modification factor RCP in
this section. Conclusions and discussions follow in Sec. IV.

II. FORMULATION

A. Recombination and light-front wavefunction dependence

The current data from the RHIC experiments seem to
indicate two distinguished mechanisms of hadronization:
(1) quark recombination for a rather low and intermediate
PT region and (2) quark fragmentation for a high PT region.
In this section we present an extension of the recombination
formalism to analyze the effects from the variation of the
hadron wavefunctions.

Introducing the density matrix ρ̂ for the system of partons,
the number of quark-antiquark states that one may interprete
as mesons is given by

NM =
∑
ab

∫
d3P

(2π )3
〈M; P |ρ̂ab|M; P 〉, (1)

where |M; P 〉 is a meson state with momentum P and the
sum is over all combinations of quantum numbers such as
flavor, helicity, and color of the valence quarks that contribute
to the given meson M . Inserting complete sets of coordinates
and using the Wigner function formalism, one can derive the
formula for the invariant spectrum of the meson M as follows
[8]:

E
d3NM

dP 3
= CM

∫
�

d3RP · u(R)

(2π )3

∫
d3q

(2π )3

×wa

(
R;

P

2
− q

)
�W

M (q)wb

(
R;

P

2
+ q

)

= CM

∫
�

d3RP · u(R)

(2π )3

∫
dxP +d2�k⊥

(2π )3

×wa(R; xP +, �k⊥)�M (x, �k⊥)

×wb(R; (1 − x)P +,−�k⊥), (2)

where �W
M (q) = ∫

d3r�W
M (r, q) in the Wigner function for-

malism and �M (x, �k⊥) = |ψM (x, �k⊥)|2 using the LF wave-
function of the meson ψM (x, �k⊥). Here, x and �k⊥ are the
momentum fraction and the respective intrinsic transverse
momentum of each quark. Similarly, the invariant spectrum
of the baryon B can be obtained as follows [8]:

E
d3NB

dP 3
= CB

∫
�

d3RP · u(R)

(2π )3

∫
dx1P

+d2�k1⊥
(2π )3

×
∫

dx2P
+d2�k2⊥

(2π )3

∫
dx3P

+d2�k3⊥
(2π )3

×wa(R; x1P
+, �k1⊥)wb(R; x2P

+, �k2⊥)

×wc(R; x3P
+, �k3⊥)�B(x1, x2, x3, �k1⊥, �k2⊥, �k3⊥),

(3)

where the constraints (or δ-functions) of x1 + x2 + x3 = 1
and �k1⊥ + �k2⊥ + �k3⊥ = 0 are implied with appropriate phase
factors.

The previous work by Fries and collaborators used a
factorized ansatz for the LF wavefunction, for example [8],

ψM (x, �k⊥) = φM (x)�(�k⊥), (4)

for mesons with a longitudinal distribution amplitude φM (x)
and a transverse part �(�k⊥). However, we note that such a
factorization ansatz cannot be justified in free space, since the
LF wavefunction depends on the LF invariant mass of the par-
ticle; e.g., for the meson (m2

a + �k2
⊥)/x + (m2

b + �k2
⊥)/(1 − x)

(here the meson is composed of quark a and b), which cannot
be factorized as Eq. (4). In general, the assumption of a
wavefunction factorization such as Eq. (4) is not acceptable
in free space because LF wavefunctions should be solutions
of LF bound-state equations and the LF energy-momentum
dispersion relation is rational, i.e. k− = (k⊥2 + m2)/k+ for a
particle with mass m. Both the LF kinetic energy (i.e., the LF
invariant mass of the bound-state) and the LF kernel (or the
inverse of the LF energy difference between the initial and
intermediate states) involved in the LF bound-state equations
are not factorizable owing to the rational energy-momentum
dispersion relations. Thus the solutions of the LF bound-state
equations cannot be factorizable, and we do not integrate over
�k⊥ in Eqs. (2) and (3) but leave �k⊥ explicitly in the formulation.
On the other hand, since it is not yet known whether the
LF bound-state solution in free space is also applicable to
the dynamical recombination process in quark matter without
any modification, we note that the factorization ansatz used
in Ref. [8] may be equally valuable as one of the model
calculations in this work.

The usual parton spectrum at a given temperature is given
by [8]

wa(R; p) = γae
−p·v(R)/T e−η2/2�2

f (ρ, φ), (5)

where ρ and φ are the radial and the azimuthal angle
coordinates, respectively. In addition, v(R) and η represent
the velocity four-vector and the rapidity of the quark a,
respectively. Here, γa = exp(µa/T ) is the fugacity factor for
each quark species a for which we adopt the results from the
statistical analysis for the hadron production at RHIC [14]: the
chemical potential µa’s are 9, 6.7, and −3.9 MeV for a = u

(or d), s, and c, respectively. Note that Ref. [14] gives the
resulting chemical potentials for isospin, strangeness, and
charm as well as the baryon chemical potential estimated
by the statistical model at RHIC. Since statistical analysis
of hadron production provides only chemical potentials of
hadrons (not quarks), we obtained the quark fugacities by
using the following formula for the fugacity of hadron i [15]:1

ϒi = γI i
3

∏
a

γ
Ni

a
a , (6)

where Ni
a is the number of quark species a in hadron i. In

Eq. (6) the fugacity γI i
3

is close to 1, as the isospin chemical
potential µIi

3
and the assumed freeze-out temperature T are

−0.96 and 175 MeV, respectively [14]. We assume that the
temperature T for hadronization occurs at 175 MeV. The lattice

1The quark fugacity γa in this paper means λa in Eq. (3) of Ref. [15]
with the saturation factor 1.
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QCD predicts that the phase transition occurs at T = 175 MeV
at vanishing baryon chemical potential [16]. It should be
reasonable that the temperature of the partonic phase is
assumed to be the same as that of the phase transition. The
space-time structure of the parton source in Eq. (5) is given
by a transverse distribution f (ρ, φ) and a wide Gaussian
rapidity distribution with width �. Also, one may assume
f (ρ, φ) ≈ �(ρ0 − ρ), especially for the analysis of the central
collisions. With these assumptions, we find

d3NM

dP 2
T dy

∣∣∣∣
y=0

= CMMT

V

(2π )3
2γaγbI0

[
PT sinh ηT

T

]

×
∫ 1

0
dx

∫ ∞

0
d2�k⊥|ψM(x, �k⊥)|2kM (x, �k⊥,PT ),

(7)

where V = τAT (τ is the hadronization time and AT is the
transverse size) is the volume of the parton system and

kM (x, �k⊥, PT ) = K1

(
cosh ηT

T

{√
m2

a + (xPT + �k⊥)2

+
√

m2
b + [(1 − x)PT − �k⊥]2

})
. (8)

We note that the particular combination of PT and �k⊥ for
each constituent quark in Eq. (8) is consistent with the boost
invariance of kM in light-front dynamics. Extension to the
baryon case is straightforward:

d3NB

dP 2
T dy

∣∣∣∣
y=0

= CBMT

V

(2π )3
2γaγbγcI0

[
PT sinh ηT

T

]

×
∫ 1

0
dx1dx2

∫ ∞

0
d2�k1⊥d2�k2⊥|ψB(x1, x2,

× �k1⊥, �k2⊥)|2kB(x1, x2, �k1⊥, �k2⊥, PT ) (9)

and

kB(x1, x2, �k1⊥, �k2⊥, PT )

= K1

(
cosh ηT

T

{√
m2

a + (x1PT + �k1⊥)2

+
√

m2
b + (x2PT + �k2⊥)2

+
√

m2
c + [(1 − x1 − x2)PT − (�k1⊥ + �k2⊥)]2

})
.

(10)

In the following analysis, we take V as a free parameter to
fit all invariant spectra of hadrons simultaneously for a given
collision centrality.

With this extension, we can now explicitly include the effect
from the intrinsic transverse momentum of each quark and
vary the form of the LF wavefunction, such as the Gaussian
form and the power-law form [17]. In this analysis we use the
following typical LF wavefunctions for mesons and contrast
the results between the two:

ψGaussian(x, �k⊥) = exp

[
−

(
m2

a + �k2
⊥

x
+ m2

b + �k2
⊥

1 − x

)/
β2

]
,

(11)

and

ψPower-law(x, �k⊥) = 1

/ (
m2

a + �k2
⊥

x
+ m2

b + �k2
⊥

1 − x
+ α2

)n

,

(12)
where β, α, and n are the parameters that can be fixed from the
physical observables such as the size and the mass spectrum of
the meson, etc. The extension of Eqs. (11) and (12) to baryons
is rather straightforward:

ψGaussian(x1, x2, �k1⊥, �k2⊥)

= exp

[
−

(
m2

a+�k2
1⊥

x1
+m2

b+�k2
2⊥

x2
+ m2

c + (�k1⊥ + �k2⊥)2

1 − x1 − x2

)/
β2

]

(13)

and

ψPower-law(x1, x2, �k1⊥, �k2⊥)

= 1

/[
m2

a + �k2
1⊥

x1
+ m2

b + �k2
2⊥

x2
+ m2

c + (�k1⊥ + �k2⊥)2

1 − x1 − x2
+ α2

]n

.

(14)

In this calculation we used 260 MeV for the masses of u

and d quarks and 460 MeV for the mass of the s quark. In
a relativized quark model with chromodynamics, spectra of
both mesons and baryons have been well analyzed. As shown
in typical references ( [18] for mesons and [19] for baryons),
the potentials among constituents such as confinement,
hyperfineness, spin-orbit, etc., work together to reproduce
hadron spectra comparable with the experimental values.
For instance, proton mass was predicted as 960 MeV, and
the mass difference between nucleon and � was obtained as
around 300 MeV, while the light quark mass was taken as
220 MeV. The same light quark mass was used to predict the
meson spectra, which were in good overall agreement with the
data. These support our light-front quark model calculations
(see, e.g., Ref. [20]). Although we took the light quark mass
260 MeV as used in Ref. [8] for the present analysis, the
essential predictions from a relativized quark model (or
light-front quark model) remain intact.

Just to illustrate how typical LF wavefunctions look, we plot
ψGaussian(x, �k⊥) for different β2 values in Fig. 1. As expected,
the LF wavefunctions are symmetric around x = 0.5, if the
masses of the constituent quark and antiquark are the same for
pions. As β2 increases, ψGaussian(x, �k⊥) becomes broader in x

as well as in �k⊥. When the mass of the constituent quark and
antiquark are not the same, like K and D,ψGaussian(x, �k⊥)’s
are clearly skewed in x.

In order to constrain β, α, and n in Eqs. (11)–(14), the
average values of �k⊥ are fixed by the measured average
charge radius square 〈r2〉 of each hadron. If the experimental
data for 〈r2〉 are not available, we adopt those calculated by
a relativistic quark model [21,22]. As an example, 〈r2〉 =
0.44 fm2 for pions, and the corresponding β2 is 0.825 GeV2

for ψGaussian. The average values of the charge radius square
and the corresponding values of β2 are summarized in
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FIG. 1. (Color online) Shapes of the Gaussian wavefunctions as functions of x and k⊥ for different β2 (normalization is not performed in
this figure). The top, middle, and bottom rows represent the wavefunctions for π,K , and D, respectively.

Table I. In addition, the deduced α2 and n of ψPower-law are
0.5 (1.53) GeV2 and 2 (6), respectively, for pions (protons).
The left two panels of Fig. 2 show the comparison of ψGaussian

and ψPower-law of pions by using the adjusted wavefunction
parameters. They demonstrate that the LF wavefunctions are
very similar in shape when the parameters are determined by
some physical observables such as the charge radii of hadrons.
However, if we use some arbitrary values for those parameters,
the shape of LF wavefunctions can be quite different, which is
demonstrated in the lower right-hand panel of Fig. 2.

TABLE I. Deduced β2 for the Gaussian LF wave-
functions used in this paper and the corresponding
average charge radius square for various hadrons.

Particle β2 (GeV2) 〈r2〉 (fm2)

π 0.825 0.44
K 1.06 0.34
φ 1.02 0.34
p 0.495 0.76
� 0.45 0.76
� 0.47 0.76
� 0.48 0.76

The importance of the proper choice of the LF wavefunction
parameters in the hadron spectra are explained in Fig. 3 for π ’s
and protons. The invariant yields of the recombined hadrons
are quite different for different sets of parameters. However,
the hadron yields from the recombination process are quite
similar for ψGaussian and ψPower-law, once the wavefunction
parameters are fixed by some physical observables (see solid
versus dashed curves in Fig. 3.). In the following analysis, we
use only the Gaussian wavefunction with proper β2 for each
hadron. For comparison, the wavefunctions used in Ref. [8]
are also included in Fig. 3. The wavefunctions used in the
present analysis (solid curves) are lower than the factorized
wavefunctions used in Ref. [8], shown by dotted curves
especially for the relatively low PT region. Even on the
logarithmic scale, the differences are as visible as the ones
with arbitrary wavefunction parameters (dashed-dotted lines).

Since the essence of this work is to study the effect
of the proper treatment of the LF wavefunctions for the
recombination yields, we also compare the invariant spectra
estimated by using full LF wavefunctions with those esti-
mated by factorized wavefunctions. For the approximation
that uses factorized wavefunctions for mesons, we tested
ψGaussian(x, k⊥) of Eq. (11) with 〈�k2

⊥〉 = 0.088 GeV2, multi-
plied by �(�k⊥) = exp (−�k2

⊥/β2) with β2 = 0.176 GeV2, which
gave us the right 〈�k2

⊥〉 value. The resulting invariant spectrum
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FIG. 2. (Color online) Comparison of the pion
wavefunctions between the Gaussian form and the
power-law form. The Gaussian wavefunction with
β2 = 0.825 GeV2 (top) and the second-order power-
law wavefunction with α2 = 0.5 GeV2 (bottom left)
are adjusted to the average charge radius of pions.
But the first-order power-law wavefunction with
α2 = 0.825 GeV2 (bottom right) is not adjusted.

for the recombined π+’s is very similar to the PL1 option in
Fig. 3. Since it duplicates the result of the PL1 option, we do
not display it explicitly in Fig. 3. However, this result indicates
that the above factorized wavefunction may be as useful as
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10
-3

10
-2

10
-1

1
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FIG. 3. Comparison of the invariant spectra of π+ (top) and
p (bottom) for the recombination process for various assumptions on
the wavefunction parameters. Left-hand panels show the spectra on a
linear scale to emphasize the difference in relatively low PT regions,
while the right-hand panels show them on log scale for comparison
of the overall shapes. G represents the Gaussian wavefunction used
in this paper. PL1 represents the power-law wavefunction whose
parameters are adjusted by the known average charge radius, whereas
PL2 represents the power-law wavefunction with arbitrary values
for the parameters. The sparsely-dotted lines are calculated by
a factorized Gaussian form of the LF wavefunctions with β2 =
0.495 GeV2 (see text for details). For comparison, the wavefunctions
used in Ref. [8] are also plotted as the dotted curves.

the full LF wavefunctions developed in this paper for the
phenomenological analysis of mesons, when the parameters
are properly chosen.

Similarly, for baryons, we tested ψGaussian(x1, x2, k1⊥, k2⊥)
of Eq. (13) with 〈�k2

i⊥〉 = 0.0512 GeV2, multiplied by �(�k⊥) =
exp [−(�k2

1⊥ + �k2
2⊥)/2β2] with β2 = 0.495 GeV2. However, we

could not find the proper β2 value for the factorized wavefunc-
tion to get the correct 〈k2

⊥〉 = 0.0512 GeV2, since the results
were not at all stable (too large standard deviations). Thus, we
instead varied the β2 value over a wide range starting from
0.03 GeV2 all the way to even above 1 GeV2 and compared
the resulting proton spectra. Results for β2 below 0.03 GeV2

could not be obtained owing to a numerical instability. The
results for β2 above 1 GeV2 were about the same as the result
of β2 = 1 GeV2 and were very stable as expected from the
form of the above factorized wavefunction. Also, what we
obtained for β2 values from 0.03 GeV2 to 1 GeV2 was that
the proton spectrum results were fairly insensitive to the β2

value. The resulting invariant spectrum of the recombined pro-
tons are shown by the sparsely dotted curve (typically for β2 =
0.495 GeV2, but the result does not change much for other β2

values) in the bottom panels of Fig. 3. The recombined proton
yield of the factorized wavefunction is significantly lower than
that of the nonfactorizable wavefunction. This comparison
indicates that it may be more significant in the baryon case
than in the meson case what form of the wavefunction is taken
for prediction of the recombination process. Thus the proper
treatment of the wavefunction seems particularly important for
baryon production in the recombination process.

We note that there are also other approaches for the
recombination process: Refs. [10] and [23] considered soft-
hard recombination with a covariant coalescence model and
fragmentation as a part of recombination, respectively. In
addition, a recent work by Majumder, Wang, and Wang [24]
discussed a derivation of the recombination model from a field
theory description of jet fragmentation. They noted that an ad
hoc formulation of the recombination model is valid only under
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some strict conditions on the hadron wavefunction. Therefore,
we note that the present development is not the first to consider
the dependence of hadron wavefunctions in the recombination
process.

B. Fragmentation and jet quenching

Inclusive hadron production by fragmentation at large
momentum transfer can be described well by perturbative
quantum chromodynamics (pQCD). In the framework of
pQCD, the invariant yield of hadron h with momentum P

is given by [8]

E
d3N

frag
h

dP 3
=

∑
a

∫ 1

0

dz

z2
Da→h(z)Ea

d3N
pert
a

dp3
a

, (15)

where the sum runs over all constituent quark species a in h.
For the spectrum of parton a with momentum pa = P/z at
midrapidity, we use the parametrization by pQCD:

Ea

d3N
pert
a

dp3
a

= d2N
pert
a

2πpaT dpaT dy

∣∣∣∣
y=0

= K

π

C

(1 + paT /B)κ
,

(16)

where the parameters C,B, and κ are taken from leading-
order pQCD calculations [25]. K = 1.5 is taken in order to
consider higher-order corrections approximately [8]. Note that
the number of partons in different collision centralities are
obtained by scaling the number of binary nucleon-nucleon
collisions (Ncoll) or, equivalently, by the nuclear thickness
function (TAA). The probability that parton a fragments into
hadron h is taken into account by the fragmentation function

Da→h(z) = Nzγ (1 − z)δ, (17)

where the numerical values of N, γ , and δ are taken from
the parametrization by Kniehl, Kramer, and Pötter (Table 2 of
Ref. [26] and the website http://www.desy.de/˜poetter/kkp.f )
for fragmentation of pions, kaons, protons, and antiprotons. We
call this parametrization KKP parametrization. � fragmenta-
tion function is taken from the work by de Florian, Stratmann,
and Vogelsang (Table I of Ref. [27]).

Finally, the energy loss of energetic partons (so called jet
quenching), especially in central collisions, is considered with
the following parametrization [28,29]:

�pT (b, pT ) = ε(b)
√

pT

〈L〉(b)

RA

, (18)

where RA is the radius of nucleus A, 〈L〉(b) is the geometrical
factor of the overlap zone of two nuclei, and ε(b) is the energy
loss parameter of the hot medium with impact parameter b.
The detailed functional forms of 〈L〉(b) and ε(b) are the same
as Ref. [8]:

ε(b) = ε0
1 − exp[−(2RA − b)/RA]

1 − exp(−2)
(19)

and

〈L〉(b) =
√

R2
A − (b/2)2 + (RA − b/2)

2
, (20)

but, practically speaking, it is reasonable to assume that
〈L〉(b) 
 RA and ε(b) 
 ε0 = 0.82 GeV1/2 for the most
central collisions as b → 0.

III. RESULTS

A. Invariant spectra

Figure 4 shows the numerical results for the invariant
spectra of various mesons at midrapidity for central Au +
Au collisions at

√
sNN = 200 GeV. In Fig. 4 we compare our

calculations for the meson spectra with the published PHENIX
and STAR data [30–34] up to PT = 10 GeV in order to show
the overall shapes, especially the transition regions near 5 GeV.
The neutral pion spectrum was measured by PHENIX up to
10 GeV in PT but lacks data in a low PT region. In contrast,
the charged pions were measured only at low PT up to 3 GeV
with high precision. However, the high PT spectra of charged
pions are expected to be very similar to those of neutral pions.
For charged kaons, PHENIX measured up to 2 GeV, and STAR
measured up to about 0.7 GeV in PT . In general, the data by
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FIG. 4. Invariant spectra of mesons at midrapidity for central
Au + Au collisions at

√
sNN = 200 GeV. The dashed and dotted

curves represent model calculations from recombination and frag-
mentation, respectively. The solid curves are the sum of the two
contributions. The open circles are the data published by the PHENIX
Collaboration [30–32], and the solid triangles are those by the STAR
Collaboration [33,34].
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PHENIX and STAR agree quite well in the overlapped phase
space except for φ: the STAR data is about a factor of three
larger than the PHENIX data.

In Fig. 4, the dashed and dotted curves represent the model
calculations from recombination and fragmentation, respec-
tively, and solid lines are the sum of the two contributions.
In the π0 spectra, the two distinguished PT regions of hadron
production are manifest. Although the transient PT depends
on the particle species, the recombination process is dominant
between ∼2 and 5 GeV, and the fragmentation is dominant
above 5 GeV. Our calculation is not expected to reproduce
the hadron spectra below about 2 GeV in PT . In such a very
low PT region the calculation underestimates the experimental
data significantly, implying that other processes, like the
transverse flow, the secondary decay of hadron resonances, and
the binding energy effect, become important. Our calculation
reproduces the measured meson PT spectra larger than 2 GeV
reasonable well, including the strange mesons. Note that we
do not plot the fragmentation contribution for φ because of the
lack of the fragmentation function.

Figure 5 shows the numerical results for the invariant spec-
tra of baryons up to PT = 10 GeV at midrapidity for central
Au + Au collisions at

√
sNN = 200 GeV. Figure 5 also

compares the calculations with the published experimental
data with the open circles for PHENIX [31,35] and the solid
triangles for STAR [33,36,37]. The leftmost column of Fig. 5
is for protons and antiprotons; PHENIX and STAR measured

up to about 5 and 1.2 GeV, respectively. Note that the PT

spectra for protons and antiprotons published by STAR [33]
are about 40% higher than those by PHENIX [31]. This
difference comes from the fact that the contributions from the
� and �0 decays are removed only for PHENIX. For a fair
comparison between the two data sets, the p and p̄ spectra
by the STAR Collaboration are scaled by 0.6 in Fig. 5. After
scaling down, the STAR spectra agree quite well with the
PHENIX spectra in the overlapped phase space. The present
model reproduces the measured proton and antiproton spectra
reasonably well. The model also predicts that the transient PT

for baryons from recombination to fragmentation is somewhat
higher than that for mesons.

In Fig. 5 the experimental invariant spectra of � +
�0, �−,�−, and their antiparticles are for

√
sNN = 130 GeV.

But all model calculations are for
√

sNN = 200 GeV, because
all input parameters of the model calculations are available
only for

√
sNN = 200 GeV. Furthermore, owing to the lack of

the fragmentation functions, we do not plot the fragmentation
contribution for � and �. Because of the difference in beam
energy, the model overestimates the yields of � + �0, �−,�−
and their antiparticles, and the discrepancy is larger for a larger
number of strange quarks in a given baryon.

B. Yield ratios

One of the most interesting data from RHIC is the yield
ratio of protons (or antiprotons) to pions at the intermediate
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FIG. 5. Invariant spectra of baryons at midrapidity for central Au + Au collisions at
√

sNN = 200 GeV. The dashed and dotted curves
represent the model calculations from recombination and fragmentation, respectively. The solid curves are the sum of the two contributions.
The open circles are the data published by the PHENIX Collaboration [31,35], whereas the solid triangles are those by the STAR Collaboration
[33,36,37]. For a fair comparison between two sets of data, the published p and p̄ spectra by the STAR Collaboration [33] are scaled by 0.6,
which removes the contribution by the weak decays of �, �0, and their antiparticles. Note that the experimental invariant spectra of hyperons
are for

√
sNN = 130 GeV, whereas all model calculations are for

√
sNN = 200 GeV.
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transverse momentum region (2 < PT < 5 GeV) in central
heavy-ion collisions. The p/π and p̄/π ratios rise steeply
with PT up to about 2.5 GeV but level off at about 1 and 0.7,
respectively, in 2.5 < PT < 5 GeV for the most central 10%
Au + Au collisions [31,38]. At PT > 2 GeV, p/π and p̄/π for
peripheral collisions are similar to those for elementary p + p

and e+e− collisions, and the ratios increase from peripheral to
central collisions. Since the hydrodynamic model, which had
been rather successful in describing the low PT hadron spectra,
could not explain the centrality dependence of limiting values,
a recombination mechanism of hadronization at intermediate
PT was proposed as a possible resolution [8,10,23,39,40]. The
recombination process naturally explains that the p/π and
p̄/π ratios level off in 2 < PT < 5 GeV and fall sharply near
PT 
 5 GeV, where fragmentation overcomes recombination.
Similar trends can also be found in the present calculation.
The top row of Fig. 6 shows the results from our calculations
for the p/π0, p̄/π0, and p̄/p ratios in comparison with the
published PHENIX data [31]. As PT increases, the p/π0

and p̄/π0 ratios rise, reach maximum values around 3 GeV,
decrease sharply, and finally become constant at about 0.1 for
PT > 6 GeV. In addition, the p̄/p ratio is almost constant
at about 0.9 for PT < 5 GeV. However, it also decreases
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FIG. 6. Calculated hadron yield ratios (solid curves) as a function
of PT in comparison with the PHENIX data [31]. For comparison,
we also show the model calculations by Fries et al., in p̄/p, K−/π−,
and K−/K+, as dashed lines [8].

with PT , and become almost constant at about 0.1 for PT >

7 GeV, which is very different from the previous calculation
by Fries et al. (the dashed line in Fig. 6) [8]. Although
there is no dispute on KKP parametrizations [26] for gluon
fragmentation, quark fragmentation is a problem because the
KKP fragmentation functions are not fully flavor separated,
and one has to make additional assumptions to separate
contributions from different flavors. Incidentally, the recent
STAR data on identified hadrons [41] reveal a poor job of the
KKP fragmentation functions for p and p̄ yields, possibly due
to the lack of flavor separation. It seems that the sea quark
contributions in K± and p̄/p are particularly problematic.
For instance, as stated in Ref. [26], the d quark in K± does
not behave as sealike, contrary to expectations. Thus even
a slight difference in handling sea quark contributions could
make a large difference in the predictions of ratios for K−/K+
and p̄/p. Our results are based on maintaining the expected
smallness of sea quark contributions consistently, not only in
the pion case, but also in other hadron cases. Our low ratio
for PT > 7 GeV in p̄/p of Fig. 6 is consequently due to the
dominance of valence contributions. It is a fact that incident
heavy ions possess valence quarks, but not antiquarks. In other
words, the charge conjugation symmetry is already broken in
the RHIC environment because the initial nuclei carry only
nucleons (not antinucleons). Since the baryon number (or,
equivalently, the quark number) must be conserved throughout
the reactions, more protons than antiprotons are expected in
the fragmentation region.

For more comparisons on the hadron yield ratios, the bottom
row of Fig. 6 shows K+/π+,K−/π−, and K−/K+. Although
the measured PT range of K± is limited, the present estimates
are in reasonable agreements with the data. The K+/π+ and
K−/π− ratios increase with PT and reach their maximum
around PT = 3 GeV. If PT further increases, K+/π+ and
K−/π− decrease and level off at some constants. The PT

dependence of the K−/K+ ratio is very similar to that of p̄/p.
Especially, we note that the present results on K−/π− and
K−/K+ at high PT region, where fragmentation is dominant,
are quite different from the previous model calculations by
Fries et al. [8]. As discussed above, even a slight difference in
handling sea quark contributions could make a large difference
in the predictions of ratios for K−/K+ as well as K−/π−.
The forthcoming RHIC data at high PT , e.g., the PHENIX
data with newly installed aerogel detector, may help to further
clarify the flavor separation issue in the KKP fragmentation
functions [26].

C. Nuclear modification factors

Another important feature of the RHIC data can be
identified in the nuclear modification factor RCP, which is
defined by Ncoll scaled central to peripheral yield ratios:

RCP = Yieldcentral
/〈

N central
coll

〉
Yieldperipheral

/〈
N

peripheral
coll

〉 . (21)

The RHIC experiments observed that the RCP parameters
of various mesons in PT > 2 GeV in central collisions
were suppressed with respect to the Ncoll scaled p + p and
peripheral collision data. Moreover, the suppression in the
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FIG. 7. Nuclear modification factors RCP as a function of PT for
π, p, and � + �̄. The solid curves are from the present calculation.

intermediate transverse momentum region (2 < PT < 4 GeV)
was only for mesons, not for baryons. The experimental RCP

parameter of protons in intermediate transverse momentum
region is unity, which is completely consistent with Ncoll

scaling. The RCP of � and �̄ are also close to unity in an
intermediate PT region, but somewhat smaller than protons.

One possible explanation for the suppression of hadron
yields at high PT and the distinguished behavior of mesons
and baryons in the intermediate PT region is the combined
effect of recombination and fragmentation. Figure 7 shows the
estimated RCP parameters of π, p, and � + �̄ as a function
of PT . For pions, we plot charged and neutral pions together,
as almost no difference is expected from the present model.
In the present model calculation, we scaled the hadron yields
due to fragmentation by a number of binary collisions. For the
recombination part, the ratio of V

∏
aγa in Eq. (7) for peripheral

collisions to that in central collisions was assumed to be 40%
of the participant (Npart) ratio:

(V
∏

aγa)peripheral

(V
∏

a γa)central
= c1

N
peripheral
part

N central
part

, (22)

where c1 = 0.4 is fitted by the RCP parameters of π, p, and
� + �̄, simultaneously, by fixing the temperature at 175 MeV,
as it is almost independent of the collision centrality [42]. Since
the quark fugacities are also almost constant except for the
very peripheral collisions [42], the factor c1 mostly reflects the
effect of volume. As a result, the fact that c < 1 is understand-
able, as the flow velocity is larger for more central collisions.
The agreement between the present calculations and the exper-
imental data are reasonable for all considered hadron species.

IV. CONCLUSIONS

We have presented an extended formalism of the recombi-
nation model to analyze the effects from the variation of the
hadron’s light-front wavefunctions. Two different functional
forms of the light-front wavefunction, which are the Gaussian
form and the power-law form, are tested in detail. The hadron
spectra are indeed sensitive to the shape of the wavefunctions.
However, when we fit the wavefunction parameters to the
physical observables, such as the average charge radius, the
final spectra are very similar to one another. We discuss our
numerical results in comparison with the published RHIC
data, especially from the PHENIX and STAR Collaborations.
In the hadron spectra the recombination of thermal partons
dominates at the intermediate transverse momentum region
between 2 and 5 GeV, and fragmentation dominates at high PT ,
larger than 5 GeV. The yield ratios and the nuclear modification
factors for various hadron species are also estimated. In
general, the present model, which combines the recombination
and fragmentation processes, is quite consistent with the
experimental data. We have also discussed new predictions for
p̄/p and K−/K+ ratios, including the jet quenching effects
on the fragmentation mechanism.
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