
PHYSICAL REVIEW C 73, 054609 (2006)

Integer ratios in Ex/Sn observed in the resonances of light nuclei
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The ratio of excitation energies Ex and neutron separation energy Sn for neutron resonances of 16O + n are
observed to be ratios of simple integers. Similar analyses are made for the resonances of light target nuclei, 3He,
6,7Li, 8,9Be, 10,11B, 12,13C, 14,15N, 16,18O showing that Ex/Sn = 4/3 or 5/3 are values that appear in many nuclei.
A statistical test shows that these integer ratios do not exist by accident but that they have a physical origin. A
classical model of neutron resonance reaction is developed relating these integer ratios, based on the breathing
of the compound nucleus that is coherent with the incident neutron wave. Origin of integer ratios among Ex , Sn

of different nuclei are discussed based on a constant G value and integer splitting for many nuclei.

DOI: 10.1103/PhysRevC.73.054609 PACS number(s): 21.10.−k, 24.10.−i, 25.40.Ny

I. INTRODUCTION

The complicated and strong interactions among nucleons
in a nucleus make the description of excitation levels of the
nucleus a controversial problem. In the lower excitation region,
Ex, Jπ are measured with sufficient accuracy, and they can be
predicted by the shell model assuming interaction potentials. In
the region above the particle separation energy, where the level
density is quite high, Ex, �, Jπ are measured by resonance
reactions using particle beams. In particular in neutron
reactions, these resonances correspond to quasistable states
of the compound nucleus (CN) above the neutron separation
energy Ex ∼ 8 MeV, where many degrees of freedom will
be excited and mixed to form very complicated structures.
Therefore, neutron resonances are surmised to form a quantum
chaos. In fact, statistical properties of the observed neutron
resonance data are in good agreement with the predictions of
random matrix theory (RMT): Wigner (GOE) distribution for
nearest-neighbor-level spacings, Porter-Thomas distribution
for strengths, and �3 statistics for long-range correlations.

However, several properties are observed that contradict
the predictions of RMT. One of them is the crystalline-like
structure of resonance positions. Using a Fourier-like analysis
and Dij (spacings between two arbitrary levels) distributions,
several special level spacings can be found (hereafter called
dominant spacings) that appear more frequently than expected
from GOE in the energy region considered. The ratio of
several of the dominant spacings of many nuclei are integer
ratios, which suggests the existence of some constant value
widespread among the nuclei. These position/spacing correla-
tions are widely found in neutron resonances of many nuclei
over a wide mass region, with large deviations from GOE
distributions of the levels [1–7]. These periodic positioning
of the neutron resonance levels will be deeply related to
the resonance reaction mechanism, and we have developed
a classical model of CN [8,9].

Moreover, integer ratios between Ex and Sn are found
for many of 16O + n resonances up to Ex � 10 MeV, and a
statistical test shows that this is not a coincidence [10]. Similar
integer ratios are observed for the resonance energy levels of
3He + n, 6,7Li + n, 8,9Be + n, 10,11B + n, 12,13C + n, 14,15N +
n, and 18O + n. Interestingly, specific values of Ex/Sn = 4/3

or 5/3 appear in many of these nuclei. A statistical test shows
that this is not a coincidence but that they have a physical
origin.

To propose an interpretation of these integer rations,
a classical model of resonance reaction is discussed that
considers a time periodic breathing of the compound nucleus
that is coherent with the incident neutron wave. Observed
integer ratios in Ex, Sn among different nuclei are considered
to be because of a constant origin coupled with integer splitting
in many nuclei.

II. INTEGER RATIOS IN Ex/Sn FOR 16O + n RESONANCES

In the course of our level position/spacing investigation,
we have found simple integer ratios between Ex and Sn and
En (neutron energy in center-of-mass system) for many of
16O + n resonances, where Sn = 4143.3 keV. For exam-
ples, for the first resonance at Ex = 4551.9 keV, Ex /Sn =
(11/10) × 0.9987, for the second resonances at 5084.2 keV,
Ex /Sn = (16/13) × 0.9970, for the third resonance at
5375.1 keV, Ex /Sn = (13/10) × 0.9979, and so on, as shown
in Table I. The original parameters of 37 resonances with
Ex � 10 MeV are from Sayer et al. [11]. When Ex /Sn is close
to an integer ratio n/m, the deviation � from 1 is defined as
� = [(Ex/Sn)/(n/m)] − 1. Logically, by using arbitrary large
values of m and n, � can be made to take an arbitrary small
value. However, it must be stressed that even for relatively
small values of m (for example m � 13), the values of � are
appreciably small for these resonances; the values of � gather
around 0 within a width of 0.52%, as shown in Table I and
Fig. 1.

The question of the origin of these integer ratios arises as
their occurrence could be purely coincidental or be because
of some regular feature. To answer this question, we have
calculated the probability of appearance of integer ratios
x = n/m (m � 13) for these resonances assuming a random
distribution of excitation energies Ex = Sn + En in the region.

To minimize end effects, the region near Sn and 2Sn

are excluded. The probability calculation is made for reso-
nances in the range of ∼5.0 � Ex � 7.5 MeV (Ex/Sn1.20 ∼
1.81), in which 14 resonances are observed. We regard
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TABLE I. Integer ratios Ex /Sn for resonances of 16O + n up
to Ex � 8 MeV. Sn = 4143.3 keV. Deviation � is defined as � =
{(Ex/Sn)/(n/m)} − 1, expressed in percentages. The resonances
marked A fulfill the criteria: 5.0 � Ex � 7.5 MeV, (Ex /Sn = n/m,
m� 13) and � in a width 0.52%.

j Jπ Ex En E∗
n Ex /Sn �

(keV) (keV) (keV) (%)

1 3/2− 4551.9a 434.3 408.5 11/10 −0.13
2 3/2+ 5084.2 1000.2 940.8 16/13 −0.30 A
3 3/2− 5375.1 1309.4 1231.7 13/10 −0.21 A
4 7/2− 5696.7 1651.4 1553.4 11/8 −0.01 A
5 5/2− 5732.3 1689.1 1588.8 18/13 −0.08 A
6 3/2+ 5868.7 1834.1 1725.2 17/12 −0.02 A
7 1/2− 5932.0 1901.4 1788.5 10/7 0.22 A
8 1/2+ 6380.2 2377.9 2236.7 20/13 0.09 A
9 5/2+ 6860.7b 2888.7 2717.2 5/3 −0.65

10 7/2− 6971.9 3006.9 2828.4 32/19 −0.09
11 5/2− 7164.6 3211.8 3021.1 19/11 0.11 A
12 3/2+ 7239.1 3291.0 3095.6 7/4 −0.16 A
13 5/2+ 7378.2 3438.8 3234.7 16/9 0.17 A
14 5/2− 7380.8c 3441.5 3237.3
15 3/2− 7446.9 3511.9 3303.5 9/5 −0.15 A
16 7/2− 7686.9a 3767.0 3543.4 13/7 −0.10
17 1/2− 7896.3a 3989.6 3752.8 40/21 0.05
18 1/2+ 7963.3a 4060.8 3819.8 25/13 −0.06

aExcluded to minimize end effects in probability calculations.
bExcluded because of a large deviation of Ex/Sn from 1.0.
cExcluded because of a too small difference of Ex with the previous
one.

two resonances with very small energy difference (at Ex =
7378.2 and 7380.8 keV) as one resonance for the prob-
ability calculation. Integer ratios with a denominator less
than 13(Ex /Sn = n/m, m � 13) are found in 11 resonances
of 13, within a width 0.52%, as shown in Table I and
Fig. 1. In the region there are 36 rational points with
an average width of 32.5 keV. For a random sampling in
this region, the probability p to be on a rational point
is estimated as p = 36 × 32.5/(7500 − 5000) = 0.468. The
expected number of occurrences is 13 × 0.468 = 6.1. The
probability of 11 occurrences in 13 trials is estimated by

FIG. 1. Deviation from integer ratios � = {(Ex/Sn)/(n/m)}-1,
expressed in percentages for the resonances in Table I. (Abscissa) �.
(Ordinate) Order of resonance j in Table I, where j = 14 is skipped.
The squares correspond to the resonances labeled A in Table I. The
dash lines show the boundary of the width 0.52%.

the binomial distribution B(11; 13, p) = 13C11p
11(1 − p)2 =

0.51 × 10−2, and
∑13

k=11 B(k; 13, p) = 0.6 × 10−2.
Though the sample number is small, the hypothesis of a

random distribution of level dispositions is questionable with
a statistical significant level of 1%. It is inferred that the
resonance level position is not at random but that it occurs
at preferred points where Ex /Sn or Ex /En are integer ratios. A
possible mechanism for this process is discussed in Sec. IV.

III. INTEGER RATIOS IN Ex /Sn FOR THE
RESONANCES OF LIGHT NUCLEI

Similarly to what has been done for 16O + n, integer ratios
are examined for the resonance levels of light nuclei where
the level density is not so high. These levels include levels
measured not only by neutron reactions but also by other
particle reactions or by the decay of γ rays. The target nuclei
are 3He, 6,7Li, 8,9Be, 11,12B, 12,13C, 14,15N, 16,18O and excitation
energies are taken from [12,13]. Several of the calculated ratios
of Ex /Sn represented by n/m are simple integer ratios, where m

and n are small integers. Large m and n will be less important.
For more clarity, we plotted in Fig. 2 a histogram on the (m,n)
plane representing the sum of the nuclei for which a given ratio
occurs in the energy region Sn � Ex � 2Sn. It is worth noting
that n/m = 4/3, 5/3, 8/7, 11/8, 10/9, etc., appear in many
nuclei. The simple cases of n/m = 4/3 and 5/3, which are
the most frequently appearing ones are given in Table II, with
compound nuclei, Jπ,Ex, Sn, n/m,�,N, 1-B(0, N, p), and
their category. Deviations |�| are almost within 0.55% except
for 17O which belong to category B.

Again, the question arises of the origin of the existence
of these peaks at 4/3 or 5/3 and whether it is accidential.
To answer this question, probability calculations are made
assuming a simple model, in which N resonance levels are
randomly distributed in the energy region from Sn to 2Sn.
For one resonance level, the probability p to occupy the
channels at (4/3)Sn or (5/3)Sn within ±0.55% accuracy,
is p = [(4/3) + (5/3)] × 0.011 = 0.033. For N resonance
levels, the probability to occupy k levels at these channels
is calculated by the Binomial distribution: B(k; N,p) =
NCkp

k(1 − p)N−k, (k = 0, 1, 2 . . . N). For our discussion of
the probability,

∑N
k B(k,N, p) is always used, which is

1-B(0, N, p) for k = 1. For 8Li, 10Be, and 16N, no levels
are observed for which Ex/Sn = 4/3 or 5/3, whereas for 11B

FIG. 2. Two-dimensional histogram of Ex/Sn ratios represented
by integer ratios (n/m), within errors |�| � 0.0055 for nuclei of
category A and C in Table II.
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TABLE II. Light nuclei examined. For resonances at Ex/Sn = 4/3 or 5/3, Ex , EX/Sn, �, the number of levels N

between Sn ∼ 2Sn, the probability of occurrence 1-B(0, N, p), and the category are shown. Category A: level observed
at 4/3 or 5/3; category B: excluded because of large N; category C: level not observed at 4/3 or 5/3.

j Compound Jπ Ex Sn Ex /Sn � N Probability Category
Nuclei (keV) (keV) 4/3 5/3 (%) 1-B(0, N, p)

1 4He 27500 20577 � 0.23 7 0.215 A
2 7Li 7/2− 9670 7250 � 0.03 5 0.154 A
3 8Li 2032 4 0.126 C
4 9Be 1/2− 2780 1665 � 0.15 4 0.126 A
5 10Be 6812 6 0.182 C
6 11B 15290 11454 � 0.12 19 (0.471) B

19130 11454 � 0.21 19 (0.471) B
7 12B 4− 4518 3370 � 0.53 9 0.261 A

3+ 5612 3370 � −0.08 9 0.261 A
8 13C 3/2+ 8200 4946 � −0.53 7 0.209 A
9 14C 2− 13700 8176 � 0.53 24 (0.553) B

10 15N 14400 10833 � −0.31 75 (0.919) B
11 16N 2489 7 0.209 C
12 17O 5/2+ 6860 4143 � −0.65 21 (0.505) B
13 19O 3/2− 5300 3955 � 0.49 12 0.331 A

and 12B, levels are observed for both values, Ex/Sn = 4/3
and 5/3.

The probabilities of occurrence of more than one level in
these two channels 1-B(0, N, p) are shown in Table II. For
nuclides for which N is more than about 20, the probability
of occupation of these channels by a level is very high (N ×
0.03 ∼ 1), therefore no judgment can be made on the problem
of their accidental or predictable origin. So we exclude four
nuclides with large N (category B; 10B, 13C, 14N, and 16O) in
further discussions. Among the remaining ones (category A
and C), 11B levels are observed at both points Ex/Sn = 4/3
and 5/3 on the histogram. To make an equal treatment of 11B in
the probability calculation, we treat 11B as two virtual nuclei,
one with a level such that Ex/Sn = 4/3, and the other one for
5/3 with the same probability 1-B(0, N, p) = 0.261. Thus the
total number of nuclide increases to 10 and the probabilities
ranges from a minimum of 0.126 to a maximum of 0.331 with
an arithmetic average of 0.207.

For the sake of simplicity, we assume that the probability
is equal to the average value 0.207 for all 10 nuclei. If the
occurrence is accidental, it will be expected in 10 × 0.207 ∼ 2
nuclides. In facts, it occurs in 7 of 10 nuclides. The probability
of occurrence of such a fact is calculated by the Binomial
distribution to be 1.1 × 10−3. This value is sufficiently small
to rule out the assumption of random occurrence of these
levels. Though the number of samples is small for statistics,
we can still deduce that the resonance levles distibute not at
random but at preferred positions corresponding to integer
ratios Ex/Sn = 4/3 or 5/3 because of some physical reason.

However, these resonances seem to have no fixed Jπ , as
shown in Table II, therefore common excitation mode such as
collective type will not be expected for these resonances. It is
infered that Ex are generally determined by nuclear potential
interactions preferentially locate at nearby points where Ex/Sn

are simple integer ratios.

A possible explanations of these integer ratios, breathing
of the CN coherent with the incident wave is described in the
following section.

IV. BREATHING OF THE COMPOUND NUCLEUS

Integer ratios in Ex/Sn or Ex/En described above will be
related to a simple mechanism of the resonance reactions, the
breathing of the compound nucleus (CN) that is time coherent
with the incident neutron wave [10]. We assume that time
periodic behaviors of CN can be decomposed into several
normal modes with harmonic frequencies.

An S-matrix S(E) is defined for the neutron-nucleus
reaction from which the cross section σs(E) = (π/k2)(2l +
1)|1 − S(E)|2, etc., is determined. A relation between S(E)
and the response function is discussed after Sitenko [14].

For an s-wave resonance, the incident wave ψ−(r, t) and
outgoing wave ψ+(r, t) around the interaction region of radius
R are,

ψ−(r, t) =
∫ ∞

0
dE′a(E′)(1/r) exp[−ik′r − (i/h̄)E′t], (1)

ψ+(r, t) =
∫ ∞

0
dE′a(E′)S(E′)(1/r) exp[ik′r − (i/h̄)E′t].

(2)
The response function F (τ ) is defined by the causality
principle, as,

ψ+(r, t) =
∫ ∞

0
dτF (τ )ψ−(r, t − τ ). (3)

Multiplying Eqs. (1)–(3) by exp(−iEt/h̄) and integrating over
t from −∞ to ∞, S(E) can be expressed as a Fourier transform
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of the response function F (τ ),

S(E)e2ikR =
∫ ∞

0
dτF (τ )ei Eτ

h̄ , (4)

where τ is the time for the response to come back.
Equation (4) is a basic relation on which the following

discussions stand. In the continuum region, S(E) has no
peak, and F (τ ) is expected to be a nonperiodic or stochastic
function of infinitely long time period. In contrast for an
isolated resonance at E0, S(E) has a peak at E0 (recoil
corrected). That is, the scattered wave ψ+(r, t) is significant
if F (τ ) and the incident wave ψ−(r, t) are time coherent
with each other, during the lifetime ∼h/�, where � is the
total width of the resonance. Off resonance, only potential
scattering remains. At the resonance, F (τ ) must be a periodic
function with a period τrec = 2πh̄/E0, or more generally
τrec = (l/m)(2πh̄/E0), where l and m: are small integers.

At the resonance, the response function F (τ ) can be
expressed by a Fourier series with higher harmonics of periods
τj = τrec/kj and frequencies ωj = kj (m/l)E0/h̄, where kj are
integers (j = 1, 2, . . . M). M is the number of harmonics
which are considered to be equivalent to the degrees of
freedom excited at the resonance. Frequency ratios as well
as time periods of these higher harmonics are commensurable
(forming integer ratios) with each other. A unit time τ0 exists
as the greatest common divisor (GCD) of τj (j : 1, 2, . . . M),
and τj is written as njτ0, where nj is an integer. The
recurrence time τrec is the least common multiple (LCM)
for the ensemble (nj ; j = 1, 2, . . . ,M) multiplied by τ0. The
frequency component ωj is propotional to the inverse integers
ωj = (2π/τ0)/nj .

The total excitation energy Ex = Sn + E0 divided into
these harmonics is,

Ex = h̄(ω1 + ω2 + · · · + ωM )

= (k1 + k2 + · · · + kM )(m/l)E0, (5a)

which is also written as

=2πh̄

τ0

M∑
j=1

1

nj

= G

M∑
j=1

1

nj

(nj : integer), (5b)

where G = 2πh̄/τ0. [For multiple excitation, the numerators
1 in Eq. (5b) will be replaced by small integers aj .]

Then, the ratio Ex /E0 is an integer ratio,

Ex

E0
= (m/l)(k1 + k2 + · · · + kM )

= m

l
LCM(n1, n2, . . . , nM )

M∑
j=1

1

nj

. (6)

For a set of different prime numbers n1, n2, . . . , nM,

LCM(n1, n2, . . . , nM ) = ∏M
j=1 nj . The right-hand side of

Eq. (6) is (m/l)(n1 + n2) for M = 2 and (m/l)(n1n2 + n2n3 +
n3n1) for M = 3, and so on.

Therefore, integer ratios exist among Ex,E0, and Sn(=
Ex − E0). This will be the reason for the observation of integer
ratios in Ex/Sn for resonances of many light nuclei in a several-
hundred keV or MeV region, as described in the previous
sections. It is considered that these integer ratios will exist

for resonances down to the eV region of medium and heavy
nuclei, where the ratios Ex/E0 increase to ∼104∼7 because
of large M and large LCM(n1, n2, . . . , nM ). However, in the
eV region, confirming Eq. (6) by use of observed data will be
difficult because of the large values of Ex/E0.

These normal modes will be fast deformations or particles in
orbit with definite frequencies. The average energies of these
normal modes are Ex/M ∼ 1 MeV for medium and heavy
nuclei (M = 6 ∼ 10) [8]. Nevertheless, the response function
F (τ ) behaves like a pulse array with a pulse separation τrec, like
intermittent pulses, and like breathing of the CN. During the
pulse, nuclear potential deformation becomes larger so that the
neutron wave penetrates easily through the nuclear surface, and
the interference takes place between the passing component
and the trapped component of the incident wave. This behavior
is similar to a time window that opens periodically with τrec.
For incident neutron of off-resonance energy, the compound
nucleus does not respond and stays quiet and only the potential
scattering cross section is observed. By varying the incident
neutron energy, sets of normal modes will be excited as
resonance reactions if the sets obey Eq. (6).

For proton-induced reactions, similar normal modes will be
excited and the integer ratios among Ex/Sp are observed.

The reaction mechanism of breathing model of CN is
essentially different from that of the prevailing doorway-state
model, where the initially excited one-particle/one-hole state
(1p-1h) progresses to (2p-2h), . . . , to (np-nh) final compound
states, leading to internal mixing as a one-way street. In the
scenario, the recurrence of the CN is not included, which is
essentially important in resonance reactions.

V. ORIGIN OF INTEGER RATIOS AMONG
DIFFERENT NUCLEI

In addition to the integer ratios described above, it is
remarked that unexpected simple integer ratios are found
among Sn in Table II; Sn(4He)/Sn(11B) = 9/5, Sn(10Be)/
Sn(14C) = 5/6, Sn(16N)/Sn(17O) = 3/5, Sn(9Be)/Sn(17O) =
2/5, etc., with sufficient accuracy. Though statistical test is
not made, this facts will not be a matter of chance but because
of some physical reason.

We have encountered many cases of integer ratios among
Ex , En, Sn, D0, including different nuclei as described above
and in Refs. [1–7]. Therefore we are inclined to think that
there will be some constant value at the origin and some
mechanism of integer splitting or branching with hierarchy
structures that is exerted depending on the situation of each
nucleus. If we accept these facts, the “breathing model” tells
us that G in Eq. (5b) is a common value for many nuclei.
Through the analyses of experimental data, we obtained a
preliminary value G = 34.5 MeV [15] with deviations of ∼1%
depending on the excitation levels. Many of the observed
excitation energies Ex and Sn are found to form simple
integer ratios multiplied by G. For example, Sn and Ex in
Table II are simply written as Sn(4He) = (3/5)G, Sn(11B) =
(1/3)G, Sn(17O) = (3/25)G, etc., and Ex(4He : 27500) =
(4/5)G, Ex(11B: 15290) = (4/9)G, Ex(17O: 6860) = (1/5)G,
etc. This will be the true reason of integer ratios 4/3 or 5/3
in Ex/Sn described in this article. The framework here seems
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to be useful to classify the Ex and Sn, though the theoretical
foundation is not concrete yet.

We briefly comment on the physical meaning of G =
34.5 MeV and τ0. The value G = 34.5 MeV derived as a
parent energy of many excitation energies is almost equal to
the observed Fermi energy (the maximum energy of a nucleon
trapped in nuclear potential) for light nuclei.

As for τ0 = 2πh̄/G = 1.20 × 10−22s = 36 fm/c, we think
that it is the minimum unit time required to transfer the
response in the normal modes excited in CN. It is noted
that τ0 is almost equivalent to the measured evaporation
time 30 ∼ 50(fm/c), with which nucleons come out from hot
compound nuclei in heavy-ion collisions at high energy.

The recurrence times of M normal modes excited in parallel
in CN are n1τ0, n2τ0, . . . , nMτ0, and the global recurrence
time is LCM(n1, n2, . . . , nM ) × τ0, as described in Sec. IV.
If τ0 keeps a constant value for many resonances of different
nuclei, integer ratios will exist among these Ex . However, τ0

will deviate slightly depending on the situations of the states,
which causes the deviation observed in G.

Analyses of observed data and several considerations using
the breathing model and G are reported in Refs. [9,10,16,17].

VI. SUMMARY AND DISCUSSIONS

Integer ratios in Ex/Sn and En/Sn are found in many
resonances of 16O + n. Assuming these levels are distributed
at random, the probability of occurrence at integer ratios
is calculated to be 1 × 10−2. For light compound nuclei,
4He, 7,8Li, 9,10Be, 11,12B, 13,14C, 15,16N, 17,19O, the observed
resonance levels of many nuclei are situated at positions
corresponding to integer ratios in Ex/Sn and in particular
at Ex/Sn = 4/3 or 5/3. The probability of occurrence at
these points is calculated to be ∼10−3, assuming a random
distribution of levels for each nucleus. Despite the small
number statistics, it is inferred that Ex , which are generally

determined by nuclear potential interactions preferentially
locate at nearby points where Ex/Sn are simple integer ratios.

To understand these integer ratios, we have developed a
classical model of resonance reactions called “breathing of
the CN coherent with the incident wave,” where time-periodic
behaviors are explicitly considered. The integer ratios in Ex/Sn

and Ex/En for a nucleus come out of the model, where normal
modes with higher harmonic frequencies are assumed.

To understand widely observed integer ratios among Ex

and Sn of different nuclei, it is inferred that G in the breathing
model must be a constant value for many nuclei. A preliminary
value G = 34.5 MeV is obtained through the analyses of
dominant spacings of different nuclei. Sn and Ex in Table II
are found to form simple integer ratios multiplied by G, and
the meaning of the 4/3 or 5/3 ratios in Ex/Sn becomes evident.

The physical meanings of G = 34.5 MeV and τ0 = 1.20 ×
10−22 s are discussed in relation with the Fermi energy and
the time unit required to transfer the response in the nucleus.
Properties of the normal modes excited on each resonance
(quasistable states) and the selection rules for transitions,
integer splitting mechanisms with hierarchy structures will
be a problem to consider in the future.

To understand the precise mechanism of fine structures
resonances, including Jπ , strengths, and level clusters in a
wide energy region, a more sophisticated approach will be
needed, including non-linear Schrödinger equation in nuclear
potential. There will be an interesting field of nuclear physics in
the 21st century where dynamic behaviors of the many degrees
of freedom are essentially important. Neutron resonances may
be a clue to this problem. On the experimental side, however,
further high-resolution measurements on Ex are needed.

ACKNOWLEDGMENTS

We thank K. Ideno and S. Sukhoruchkin for discussions
and encouragement.

[1] S. Sukhoruchkin, Proc. Int. Conf. on Nuclear Data for Reactors,
Paris, 1966 (IAEA Vienna, 1967), Vol. 1, p. 159, Proc. Int. Conf.
on Statistical Properties of Nuclei (Plenum, New York, 1972),
p. 215.

[2] K. Ideno and M. Ohkubo, J. Phys. Soc. Jap. 30, 620 (1971).
[3] C. Coceva, F. C. Corvi, P. Giacobbe, and M. Stefanon, Proc. Int.

Conf. on Statistical Properties of Nuclei (Plenum, New York,
1972), p. 447.

[4] K. Ideno, J. Phys. Soc. Jap. 37, 581 (1974).
[5] F. N. Belyaev and S. P. Borovlev, Yad. Fiz. 27, 289 (1978);

Transl. Sov. J. Nucl. Phys. 27(2), 157 (1978).
[6] G. H. Rohr, Low Energy Nuclear Dynamics, Oganessian et al.,

ed. (World Scientific, Singapore, 1995), p. 130.
[7] S. Sukhoruchkin, Proc. Int. Seminar on Interaction of Neutron

with Nuclei(ISINN-8) Dubna 2000, JINR-E3-2000-192; ISINN-
7, Dubna 1999, JINR-E3-98-212; ISINN-4, Dubna 1996, JINR-
E3-96-336.

[8] M. Ohkubo, Phys. Rev. C 53, 1325 (1996).
[9] M. Ohkubo, Proc. Int. Conf. on Nuclear Data for Science

and Technology, 2001, Tsukuba, Japan, J. Nucl. Sci. Technol.
Supplement 2, p. 508 (2002).

[10] M.Ohkubo, Proc. 2003 Symp. on Nucl. Data, JAERI, Tokai,
INDC(JPN)-192/U, JAERI-Conf. 2004-005, p. 190.

[11] R. O. Sayer, L. C. Leal, L. M. Larson, R. R. Spencer, and
R. Q. Wright, Proc. Int. Conf. on Nuclear Data for Science
and Technology, 2001, Tsukuba, Japan, J. Nucl. Sci. Technol.
Supplement 2, p. 88 (2002).

[12] Landolt-Börnstein New Series Vol. 16/B, “Neutron Reso-
nance Parameters,” (Springer-Verlag, Berlin Heiderberg 1998);
Landolt-Börnstein New Series Vol. 16/C, “Neutron Resonance
Parameters,” (Springer-Verlag, Berlin, Heiderberg 2004).

[13] R. B. Firestone, ed., Table of Isotopes, 8th ed. (Wiley,
New York, 1997), Vol. 1.

[14] A. G. Sitenko, Lecture in Scattering Theory (Pergamon,
New York, 1971).

[15] M. Ohkubo, Proc. 1999 Symp. on Nuclear Data,
JAERI, Tokai, INDC(JPN)-185/U, JAERI-Conf. 2000-005,
p. 325.

[16] M. Ohkubo, Proc. 2000 Symp. on Nuclear Data, JAERI, Tokai,
INDC(JPN)-188/U, JAERI-Conf. 2001-006, p. 300.

[17] M. Ohkubo, Proc. 2002 Symp. on Nuclear Data, JAERI, Tokai,
INDC(JPN)-191/U, JAERI-Conf. 2003-006, p. 259.

054609-5


