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Resonant tunneling in a schematic model
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Tunneling of a harmonically bound two-body system through an external Gaussian barrier is studied in a
schematic model that allows for a better understanding of intricate quantum phenomena. The role of finite size
and internal structure is investigated in a consistent treatment. The excitation of internal degrees of freedom gives
rise to a peaked structure in the penetration factor. The model results indicate that for soft systems the adiabatic
limit is not necessarily reached, although often assumed in the fusion of nuclei and in electron screening effects
at astrophysical energies.
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I. INTRODUCTION

The phenomenon of quantum tunneling is relevant in
several areas of physics, from chemical reactions and elec-
tronic circuits to nuclear fission and fusion processes below
the Coulomb barrier. In many cases, one has to deal with
the tunneling of composite objects. In general, one tries to
identify macroscopic degrees of freedom (denoted by R) and
intrinsic ones (denoted by ξ ), decomposing the Hamiltonian
accordingly,

H = Hmac(R) + Hint(ξ ) + V (R, ξ ). (1)

The macroscopic part, Hmac(R), is the Hamiltonian for the
(few) collective variables and contains not only the collective
kinetic energy but also the macroscopic potential that has
to be transversed by quantum tunneling. Hint(ξ ) contains the
(many) intrinsic degrees of freedom of the many-body system,
while V (R, ξ ) describes an interaction between intrinsic and
macroscopic variables. For example, if one wants to describe
electron screening effects at astrophysical energies [1], R could
be the distance between the nuclei of two fusing atoms and ξ

could denote the electron degrees of freedom. Or in nuclear
physics, R may denote the shape degrees of freedom for a
heavy nucleus that undergoes spontaneous fission and ξ the
individual nucleon degrees of freedom (see, for example [2]).
The question of how the tunneling reaction is influenced
by finite size and structure of the composite object is an
intriguing one. An important aspect is to determine which
degree of freedom must be taken into account in a theoretical
description and which can be neglected. The description of
the tunneling of a composite object with many degrees of
freedom is a very complex many-body problem. Therefore,
very often radical approximations are made. As an example,
nuclear cross sections at very low energy, which are important
in astrophysics and for which no experimental data exist,
are often determined by extrapolations based on the one-
dimensional result for pointlike particle tunneling. On the other
hand, in heavy-ion fusion reactions, it is well known that the
coupling of the relative motion of the colliding nuclei with
the nuclear intrinsic motion strongly enhances the fusion cross
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section in the subbarrier energy region. This was proven in a
number of precise experiments, where the fusion cross section
for intermediate mass systems (see, e.g. [3]) was found to be
higher than a simple one-dimensional prediction for tunneling
through a potential barrier formed by the attractive nuclear
interaction and the repulsive Coulomb force. The coupling
between macroscopic and microscopic coordinates has been
studied in multidimensional approaches (with many internal
degrees of freedom), with different coupling schemes and with
different approximations (see Ref. [4] and references therein).

In this paper, we investigate the relation between the
translational motion and the internal degrees of freedom of
a composite object in a schematic but fully consistent model.
In spite of the simplicity of the model, it has all the ingredients
needed to understand, for example, the subbarrier fusion of
soft nuclei, which can easily vibrate. In fact, the low energy
fusion cross section is usually dominated by s-wave fusion
so that one deals only with one collective variable, the radial
coordinate R, and a few low-lying excited states [4], as in the
schematic model we describe in the following.

II. THE MODEL

The Hamiltonian of two interacting particles with identical
mass m under the influence of an external potential barrier is

H (x1, x2) = − h̄2

2m

[
d2

dx2
1

+ d2

dx2
2

]
+ Vint(x1 − x2)

+V (x1) + V (x2), (2)

where x1,2 denote the coordinates of particles 1 and 2, respec-
tively, while Vint and V are the intrinsic potential and external
barrier, felt by both particles. Performing a transformation to
the center of mass (c.m.) and relative coordinate denoted by R
and ξ , respectively, the Hamiltonian becomes

H (R, ξ ) = − h̄2

2M

d2

dR2
+ Hint(ξ )

+V

(
R + ξ

2

)
+ V

(
R − ξ

2

)
. (3)

Here Hint(ξ ) = − h̄2

2µ
d2

dξ 2 + Vint(ξ ) is the Hamiltonian of the
intrinsic system, while M = 2m and µ = m/2 represent the
center of mass and the reduced mass, respectively. As one can
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see, the external potential, depending on its functional form,
may generate coupling terms of different orders between the
macroscopic and the internal coordinates.

The standard theoretical approach to studying the effect
of internal excitations induced by the coupling potential is to
solve the coupled-channel equations, which in our case read

− h̄2

2M

d2

dR2
φji(R) +

N∑
n=0

[Vjn(R) + (εn − E)δjn]φni(R)=0,

(4)

where E is the total energy of the system and εn is the internal
excitation energy. These equations are obtained by introducing
the eigenstates of the internal systems, i.e.,(

− h̄2

2µ

d2

dξ 2
+ Vint(ξ )

)
χn(ξ ) = εnχn(ξ ), (5)

and expanding the total wave function as

ϕ(R, ξ ) =
N∑

n=0

φni(R)χn(ξ ), (6)

N being the number of internal excitations considered. The
expansion coefficients φni(R) depend on the c.m. coordinate.
Here the subindex i denotes the initial channel, i.e., the starting
energy level of the internal system. In Eq. (4), the potential
matrix elements

Vjn(R) =
∫ ∞

−∞
dξχ∗

j (ξ )

[
V

(
R + ξ

2

)
+ V

(
R − ξ

2

)]
χn(ξ )

(7)

can be interpreted as the effective potentials felt by the c.m.
due to the presence of internal degrees of freedom.

Equation (4) consists of a set of N coupled second-order
differential equations, and in case the particle is incident on
the barrier from the left-hand side, the boundary conditions we
require for its solution are

lim
R→−∞

φni(R) = δnie
iknR + Anie

−iknR,

(8)
lim

R→∞
φni(R) = Bnie

iknR.

Here kn =
√

2M(E − εn)/h̄2 is the wave number of the n-th
channel. The inclusive penetration factor, or total transmission
coefficient, is then given by

T =
N∑

n=0

Tni, (9)

where the transmission probability for each channel is defined
as

Tni = kn

ki

|Bni |2 . (10)

In the schematic model that we would like to solve, we
assume a harmonic internal potential Vint(ξ ) = 1

2µ�2ξ 2 −
1
2h̄� and a Gaussian external barrier V (x) = V0e

−ν2x2
. In

this case, the internal excitation energy becomes εn = nh̄�

and the effective potential matrix elements have the analytical

form [5,6]

Vjn(R) = 4V0
β

(2j+nn!j !)1/2

e
− 4β2ν2R2

4β2+ν2

(4β2 + ν2)1/2

×
min(n,j )∑

k=0

2kk!

(
j

k

)(
n

k

) (
ν2

4β2 + ν2

) j+n

2 −k

×Hj+n−2k

(
− 2νβR

(4β2 + ν2)1/2

)
, (11)

if n + j is even; and Vjn(R) = 0 otherwise, where β =
(µ�/h̄)1/2 is the harmonic oscillator parameter. We would like
to emphasize that in this case, the potential matrix elements
can be calculated exactly and treated consistently within the
model: they are given by the product of a Gaussian function and
a linear combination of Hermite polynomials. Therefore, they
may show some structure depending on the chosen parameters.
This is not equivalent to making a separable ansatz for the
coupling potential and then assuming constant form factors
or a Gaussian parametrization as proposed in Ref. [7]. One
can note that the potential matrix elements of (11) connecting
channel j with channel n depend on the internal system via the
β parameter. The first matrix element, V00, which accounts
for the elastic transition from the ground state (j = 0) to
itself (n = 0), is a simple Gaussian function whose width
depends on the original width of the external barrier (∼1/ν)
and on the harmonic oscillator parameter β. In case of a very
stiff internal harmonic oscillator, i.e., for � → ∞, one sees
that V00(R) → 2V (R). This is the limit case in which the
composite object behaves like a point particle, feeling two
times the external potential. Thus, for finite � the diagonal
matrix elements Vnn account for the finite-size effect, while
the coupling terms (n �= j ) are responsible for transition to the
excited states. Performing a Taylor expansion of the coupling
potential for ξ � 1/ν up to the second order one gets

V

(
R + ξ

2

)
+ V

(
R − ξ

2

)
= 2V (R) + V ′′(R)

ξ 2

4
+ · · · .

(12)

In case the two-body system is composed of identical particles,
both interacting with a symmetrical external barrier, the
coupling potential does not include any linear coupling term
as V ′(R)ξ . Actually, it consists of an expansion over all even
coupling terms. This means that the barrier effect on the
intrinsic system is reduced, up to the second order of the
expansion, to an additional harmonic potential that shrinks
or stretches it, depending on whether the second derivative
of the external potential is positive or negative, respectively.
By comparing the intrinsic harmonic potential Vint with the
induced harmonic potential V ′′(R) ξ 2

4 , for example, at R = 0
where V ′′(R) presents a minimum with maximal amplitude,
one can say that if h̄� > h̄ν

√
V0/µ (or h̄� < h̄ν

√
V0/µ)

the intrinsic system is stiff (or soft) with respect to induced
excitations. If the object is very stiff, one expects the internal
excitation to play a negligible role; whereas in case of a very
soft system, many internal levels have to be taken into account.

In the following, we solve the coupled channel problem
using the potential matrix elements of Eq. (11). In order to gain
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FIG. 1. Effective potential matrix elements for a two-level system
in comparison with the external barrier (parameters are h̄� = 1 MeV,
m = 938 MeV, V0 = 10 MeV, and ν = 0.1 fm−1).

insight into the effect of the coupling, we restrict ourselves to
the case of a two-level system. The internal degrees of freedom
are taken to be initially in the ground state with excitation
energy ε0. Thus, in the presented model the only possible
transition will be to the second excited state (n = 2), since the
coupling term V01(R) vanishes because of the mirror symmetry
of the Gaussian barrier. For our two-level system, we can then
define the potential matrix as

W (R) =
(

V00(R) V02(R)

V20(R) V22(R) + ε2

)
, (13)

where ε2 = 2h̄� is the energy difference between the two
levels, being ε0 = 0. Since we are interested in studying the
effect of induced internal excitations, we will start to consider
a soft object, for which the internal structure plays a relevant
role. In our first analysis, we use the following parameters:
harmonic oscillator frequency h̄� = 1 MeV, mass m =
938 MeV, barrier amplitude V0 = 10 MeV, barrier inverse
width ν = 0.1 fm−1, which lead to h̄ν

√
V0/µ = 2.88 MeV.

In Fig. 1(a), we first show the consistent potential matrix
elements of Eq. (11) for the chosen parameters, in comparison
with the external barrier. One can note that due to the finite size
effect, the potentials V00 and V22 show a broadened structure
with respect to the external potential, while the coupling term
V02 changes sign two times. In Fig. 1(b), we present the
the so-called eigenbarriers (or eigenpotentials), obtained by
diagonalizing the potential matrix of Eq. (13) at each position
of the macroscopic coordinate R (see, e.g. [8]).

We have then performed the coupled channel calculation,
integrating Eq. (4) from R = −40 fm to R = 40 fm and
imposing the incoming wave boundary condition of Eq. (8).
It is known that with this method, often used in heavy-ion
collision calculations [9], it is sometimes difficult to obtain
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FIG. 2. Total transmission coefficient and separate T20 and T00

contributions as functions of the total energy of the system for h̄� =
1 MeV.

a stable solution with a controlled numerical accuracy. In
order to check the numerical results, we also solve the
problem with the more stable method of the variable reflection
amplitude [5], with which the set of two coupled second-order
linear differential equations is transformed into a set of four
coupled nonlinear first-order differential equations. Other
similar methods have been proposed to stabilize the numerical
solutions of the coupled channel problem (see, e.g. [10]).
We obtained the same result with the above mentioned two
methods with a relative percentage error of about 1%–3%
in the presented energy region, indicating that the numerical
accuracy is under control in the considered example.

In Fig. 2, we show the result of the total transmission
coefficient T and of separate contributions T20 and T00. As one
can see, the penetration factor presents a peaked structure at a
total energy value of about Epeak = 14 MeV. The pronounced
peak is mainly due to excitation to the energy level ε2, as can
be seen from the fact that T20 also presents a peak, while the
elastic channel T00 is rather flat in this energy region. This
agrees with the intuitive picture that the system avoids the
higher barrier V00 by going to the excited state which then
tunnels easily through the lower barrier V22 + ε2 (see Fig. 1).
However, this picture does not hold for higher energies where
the situation is inverted because of the effect of the coupling;
and finally, for energies somewhat higher than the external
barrier (20 MeV), the elastic channel T00 dominates the total
transmission. Thus, a proper treatment of the coupling V02 is
important.

We would like to point out that the consistent treatment
of the internal degrees of freedom in Eq. (7) produces
different widths for the diagonal potential matrix elements and
oscillations in the coupling term. This leads to the emergence
of a resonant structure in the penetration factor. A peak in
the transmission coefficient is not found if one parametrizes
each potential matrix element with a simple Gaussian function
with the same width as done in [7,8,11], where a shoulderlike
structure is found.

We can then investigate the effect of the different stiffnesses
of the composite object by keeping the same parameters for
the external barrier and changing the internal frequency of
the harmonic oscillator. In Fig. 3, we show the transmission
coefficients for different values of h̄� as a function of the
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FIG. 3. Transmission coefficients for different values of the
harmonic oscillator frequency as a function of total energy.

total energy. One can see that the peaked structure moves
toward higher energies with growing intrinsic frequency. When
h̄� is larger than h̄ν

√
V0/µ, the structure in T becomes less

pronounced and more similar to a shoulder, as found in [8].
The reason is that as � increases, the widths of the diagonal
matrix elements V00 and V22 become more similar and the
coupling V02 gets smaller, leading to a potential matrix similar
to the parametrization of Ref. [8] for high excitation energies.
For h̄� = 2 MeV and higher, the transmission coefficient at
low energy is dominated by the elastic channel T00, since the
consistent treatment of the potential matrix elements gives a
V00 barrier lower than that of V22 + ε2, in contradistinction to
the case of h̄� = 1 MeV depicted in Fig. 1.

We also investigated the model with two excited intrinsic
states. In general, the three-level system picture within this
consistent model leads to the emergence of two peaked
structures: the position of the first peak is shifted toward lower
energies and that of the second toward higher energies with
respect to the location of the single peak found in the two level
system. Such a behavior was also found for the shoulderlike
structure of the three-level system in [11] with respect the
two-level system in [8]. In the case of three levels, the structure
of the consistent matrix elements becomes more complicated;
therefore, we prefer to stick to the simpler two-level approach
to further understand the effect of the coupling.

In order to estimate the dynamic effect due to excitation of
internal degrees of freedom, one should compare the coupled
channel calculation with the uncoupled problem, where only
the potential V00 is considered. As already mentioned, this
matrix element does not allow for internal transitions, but it still
accounts for finite size effects. This is different from tunneling
through the bare barrier 2V , since this would be equivalent to
reducing the problem to the tunneling of a pointlike particle. In
Fig. 4, we show the above mentioned transmission coefficients
in the case of a soft object, i.e., for h̄� = 1 MeV. In the peak
region, the effect of the excitation of the internal degrees
of freedom leads to an enhancement of the transmission
coefficient T of about five orders of magnitude. On the other
hand, at higher energies the tunneling probability is lower
than in the case of no coupling. The enhancement of T in the
coupled channel calculation with respect to the no coupling
case strongly depends on the harmonic oscillator frequency:
it decreases with growing �, i.e., with increasing stiffness of
the composite object. In Fig. 4, we also compare our result
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FIG. 4. Effects of the internal degrees of freedom for h̄� =
1 MeV: comparison of the coupled channel result with the no
coupling calculation. Transmission coefficients for tunneling through
the eigenbarriers are also shown.

with the transmission coefficients found for tunneling through
the eigenbarriers of the two-level system. In the following we
recall the meaning of the eigenbarriers.

Considering the part of the Hamiltonian of Eq. (3) that
depends on the intrinsic coordinate, i.e.,

H̃ (R, ξ ) = Hint(ξ ) + V

(
R + ξ

2

)
+ V

(
R − ξ

2

)
, (14)

one can define the adiabatic states by minimizing it with
respect to the internal degrees of freedom at each position
R [4]. This translates then into an eigenvalue problem, which
in our case reads

W (R)

(
φ0(R)
φ2(R)

)
= λ

(
φ0(R)
φ2(R)

)
, (15)

with W (R) as defined in Eq. (13). The solution of the
eigenvalue problem is found by diagonalizing the potential
matrix, i.e., by considering the eigenbarriers. In the literature,
tunneling through the lowest eigenbarrier is often called
adiabatic transition.

As one can notice from Fig. 4, the adiabatic picture is very
different from the result of the coupled channel calculation,
though a small structure is found in adiabatic tunneling in the
same position as the pronounced peak of the coupled calcula-
tion. Furthermore, we observe that the adiabatic transmission
coefficient is always larger than the coupled result. For higher
energy, the coupled channel calculation agrees with the result
obtained for tunneling through the second eigenbarrier.

The concept of eigenbarriers is useful in case one wants to
describe the fusion cross section as given by an average over the
contribution from each eigenbarrier with appropriate weight
factors. A method to extract the barrier distribution from the
measured cross section was proposed in Ref. [12]. From a
purely theoretical point of view, the barrier distribution picture
is correct only when the transformation that diagonalizes
the matrix W (R) does not depend on the coordinate R. An
approximation which is often made consists in considering
the eigenbarriers and then evaluating the weight factor at a
fixed position of R, assuming them to be constant. In Ref. [8],
it was shown that in the case where one parametrizes the
potential matrix elements by Gaussians of the same width, the
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FIG. 5. Weight factors for two eigenbarriers in the case of h̄� =
1 MeV.

weight factors are almost constant as a function of energy.
It was also proven that they are very different from those
approximately estimated at the location of the maximum of the
bare barrier [13]. For a two-level system, the weight factors
are given by [8]

w−(E) = [T (E) − T−(E)]/[(T+(E) − T−(E)],
(16)

w+(E) = [T+(E) − T (E)]/[(T+(E) − T−(E)],

where T−,+(E) denote the transmission coefficients for the
first and second eigenbarrier, respectively, and T (E) is the
total transmission as calculated in the coupled channel case. In
Fig. 5, we show these optimum weight factors in our consistent
model for the case of h̄� = 1 MeV. One can note that they are
not constant in the energy region where the peaked structure
in T is presented, showing that the approximation of constant
weight factors does not hold. This is related to the fact that the
transition is not adiabatic, as already discussed. We observe
that with increasing stiffness of the composite object, the
weight factor shows a less pronounced variation as a function
of the energy.

In order to gain more insight into the meaning of the
adiabatic picture, we recall that in the case of a two-level
system, the orthogonal rotation that is needed to diagonalize
the symmetric matrix W (R) can be parametrized by one single
mixing angle θ (R) as

Rθ(R) =
(

cos θ (R) sin θ (R)

− sin θ (R) cos θ (R)

)
. (17)

At this point, if one would like to transform the coupled channel
equation of (4), one should accordingly also transform the
kinetic energy, which does not commute with the rotation
operator, which depends on the coordinate R. In fact, denoting
the diagonal kinetic energy matrix as K, the transformed matrix
looks like

RT
θ(R)KRθ(R)

= h̄2

2M

(
− d2

dR2 + (θ ′(R))2 −θ ′′(R) − 2θ ′(R) d
dR

θ ′′(R) + 2θ ′(R) d
dR

− d2

dR2 + (θ ′(R))2

)
. (18)

Thus, one can see that the adiabatic picture, which consists in
considering only the first eigenbarrier solving an uncoupled
problem, is valid when the first and second derivative of the
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FIG. 6. Mixing angle and its first derivative as a function of c.m.
coordinate for different values of h̄�.

mixing angle are negligible, i.e., when the transformed kinetic
energy tends to the original diagonal one. In order to see
whether this is the case in the considered example, we show in
Fig. 6 the mixing angle (a) and its derivative (b) for different
values of the internal frequency � as a function of the c.m.
coordinate. First, one notes that in all cases θ crosses zero two
times; these are the two points in which the coupling matrix
element V02(R) = 0 and thus W (R) is already diagonal. This
is not the case if one parametrizes all matrix elements with
Gaussian functions of the same width as was done in [7,8],
where the mixing angle is always positive and can be a maximal
45◦ in the case of strong coupling. If one then focuses on
the softer case of h̄� = 1 MeV, which corresponds to the
example shown in Figs. 2 and 4, one observes that the angle
suddenly changes sign, going from about 12◦ to about −64◦.
The derivative of the mixing angle is thus very large in the
vicinity of the two zeros of θ . For this reason, its contribution
in the transformed kinetic energy is not negligible. In fact, the
extra diagonal term h̄2

2M
(θ ′

max)2, which is about 3.25 MeV at
R = ±6.6 fm, has to be added to the adiabatic potential, which
is maximally 13.67 MeV. Moreover, the off-diagonal matrix
elements contain the second derivative of θ (R) which gives
maximum values of h̄2

2M
θ ′′

max ≈ 4.34 MeV, there by invalidating
the adiabatic assumption.

The rapid change of the mixing angle is related to a so-called
Landau-Zener pseudocrossing of the two levels [14]. Denoting
the rotated state with(

φ̃0(R)

φ̃2(R)

)
= Rθ(R)

(
φ0

φ2

)
(19)

and considering the optimal case in which the mixing angle
varies suddenly as θ (R1) → θ (R2) = θ (R1) ± π/2going from
coordinate R1 to R2, one can note that the two rotated states
invert each other in the sense φ̃0(R1) → φ̃2(R2) and φ̃2(R1) →
φ̃0(R2). In other words, the first energy level suddenly becomes
the second and vice versa. In case of a soft object, the
variation of the mixing angle does not give rise to the maximal
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FIG. 7. Comparison of the coupled channel result with the no
coupling calculation and with the adiabatic transition for h̄� =
3 MeV.

pseudocrossing; but still, for example, at R1 ≈ −14 fm, we
have θ = 12◦ and φ̃0(R1) = (0.98φ0 + 0.21φ2), and at R2 = 0,
we have θ = −64◦ with φ̃2(R2) = (0.90φ0 + 0.44φ2), so that
φ̃2(R1) and φ̃2(R2) are very similar. Therefore, there is partial
pseudocrossing which is related to a nonadiabatic transition,
as discussed above. In fact, looking at Fig. 6 one can see
that if the composite object becomes stiffer, then the mixing
angle is smaller and does not vary so rapidly as a function of
the c.m. coordinate; i.e., there is no Landau-Zener crossing
any more. For this reason, one expects the adiabatic limit
to be recovered for a stiff object. To illustrate that, we
show in Fig. 7 the transmission coefficient obtained from
the coupled channel calculation, the no coupling case, and
the adiabatic one for h̄� = 3 MeV. One can note that for
energies lower than the external barrier, the adiabatic limit
is now recovered (dotted curve lies on top of the solid line).
This time, h̄2

2M
(θ ′

max)2 ≈ 0.018 MeV and h̄2

2M
θ ′′

max ≈ 0.19 MeV,
and thus the changes in the kinetic energy matrix (18) are
negligible. The coupling to the excited state still leads to
a higher penetration factor with respect to the uncoupled
case. For even stiffer systems, for example, h̄� = 5 MeV,
we observe that the coupled calculation finally coincides also
with the uncoupled and the adiabatic one. We do not obtain

an energy shift of the coupled result with respect to the
uncoupled case as in [8], since in our consistent treatment,
the excitation energy and the potential matrix element are not
independent from each other: with growing �, the excitation
energy increases, but the coupling potential V02(R) goes to
zero. When the object is too stiff to be excited, no structure
is found in the transmission coefficient: the internal system
starts from the ground state and emerges still in the ground
state at the end of the barrier. In this limiting case, a coupled
channel calculation is not necessary, since the internal degrees
of freedom do not play any role.

III. SUMMARY AND CONCLUSIONS

To summarize, we present a schematic model to describe the
tunnel effect of a two-body system in a two-level approxima-
tion. Assuming a harmonic oscillator as the internal interaction
and a Gaussian external barrier, one can give a consistent
description of the potential felt by the macroscopic coordinate
due to the presence of internal degrees of freedom. No a priori
parametrization of the potential matrix elements is assumed.
Therefore, in the coupled channel picture, the dynamics of
the internal degrees of freedom and their interaction with
the external barrier are treated consistently. Not only does
a stiffer system have a larger intrinsic excitation energy but
also the potential matrix elements change accordingly. The
coupled channel calculation shows a peaked structure in
the transmission coefficient that accounts for the excitation of
the intrinsic system. We show that for a soft object the mixing
angle is large and rapidly changes sign, so the adiabatic limit
is not approached at low energies. The resonant transition to
the excited state is explained by a Landau-Zener level crossing
in a nonadiabatic picture. As expected, the adiabatic limit is
recovered in the case of a stiff object, where the energy is not
sufficient to excite the internal structure. The model results
suggest that one should investigate more carefully the fusion
of soft nuclei or electron screening at astrophysical energies,
where the adiabatic approximation often is used.
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