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We construct a new phenomenological nucleus-nucleus optical potential based on the interesting potential
developed by Ginocchio that has the versatility to control the surface and volume regions of the potential. Using
this potential with suitable energy dependence of some of the parameters, we are able to fit remarkably well
experimental results of the differential scattering cross section for the 16O+28Si system in the center-of-mass
energy Ec.m. range from 18.67 to 90.681 MeV and the excitation function in the Ec.m. range from 13.0 to
52.0 MeV. We also fit equally well the exhaustive experimental differential scattering data available for the
12C+24Mg system in the Ec.m. range from 10.67 to 16.0 MeV. The new optical potential used has significantly
fewer parameters. The results are interpreted in terms of wave mechanical aspects leading to superposition of
partial waves undergoing different phase shifts generated by an optical potential characterized by volume and
surface parts.
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I. INTRODUCTION

The phenomenological optical model with an attractive
complex nuclear potential is widely applied for the analysis
of the measured elastic scattering cross section, fusion cross
section, and inelastic scattering cross section in heavy-ion
collisions (HIC). In this article, we deal with the 16O+28Si
and 12C+24Mg collisions over a wide energy range. These
are interesting HIC systems because experimental results of
angular variation of the differential cross section dσ/dσR of
the 16O+28Si and 12C+24Mg systems are marked by high
oscillation at energies around and much above the Coulomb
barrier. Mermaz et al. [1] have measured and studied the
16O+28Si system and are unable to produce oscillations at
low energies by their optical potential. Kobos and Satchler
[2] have calculated the measured data of Mermaz for the
16O+28Si system with the folding potential supplemented in
the surface with a double peaked attractive correction. The
data at the higher energy (Ec.m. � 20.83 MeV) were well
fitted but at low energy (Ec.m. � 20.12 MeV) the calculations
did not produce the observed oscillations. Similarly, energy-
and parity-dependent optical potentials [3] were successful in
explaining the back angle oscillations at higher energies in
the 16O+28Si system but could not reproduce the observed
oscillations at energies near the Coulomb barrier. Shastry
and Parija [4] have studied the 16O+28Si system at incident
laboratory energy ELab = 55.0 MeV with particular reference
to orbiting phenomena generated by the comparatively flat
barrier. Recently I. Boztosun [5] has explained elastic scatter-
ing differential cross section for all energies by taking a very
deep Woods-Saxon-type form factor for real and imaginary
parts of nuclear potential. To fit the data, they have added an
extra term to the potential given by the first derivative of the
Woods-Saxon form factor. Further, they have considered an
imaginary part that consists of a deep volume part near the

origin and deep surface part near the surface. Thus, the whole
conventional phenomenological nuclear optical potential is
modified rampantly to fit the data at lower energies.

Sciani et al. [6] have measured elastic scattering differential
cross sections of the 12C+24Mg system at 15 energies near
the Coulomb barrier between Ec.m. = 10.67 and 16.00 MeV.
Angular distributions of this system present strong oscillations
at almost all energies, with the exception of the lowest energies,
and they could not be fitted simultaneously by previously
used optical potential families [7–13] with simple energy
dependence and normal absorption. Therefore, Sciani et al.
[6] have analyzed the data with Q-value-dependent potential
parameters in an ad hoc fashion. Boztosun et al. [14] have also
explained the results of dσ/dσR of the 12C+24Mg system
using standard coupled-channel calculations with addition
of an extra coupling potential that is the first derivative of
Woods-Saxon shape.

In this article, we analyze elastic scattering of the 16O+28Si
and 12C+24Mg systems with the specific objective of analyzing
the data over a wide energy range, from Ec.m. = 18.67
to 90.681 MeV in the case of the 16O+28Si system and
Ec.m. = 10.67 to 16.00 MeV in the case of the 12C+24Mg
system. In these energy ranges, the behavior of dσ/dσR

shows wide angular variation, indicating different type of
processes dominating at different energies. To analyze this
in a comprehensive manner, we use a nuclear optical potential
constructed using the versatile Ginocchio potential [15,16]. It
may be noted that recently we have used such a potential for the
detailed successful study of elastic scattering, resonances, and
fusion of the 12C+12C system [16]. And this has prompted us to
use this potential in the optical model analysis described in this
article. In particular, we have found that by our construction it
is possible to address volume and surface parts of the potential
distinctly, which has been found to be necessary by Boztosun
to produce required amplitude and phase of oscillations in the
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FIG. 1. (a) Plot of Vn(r) expressed by Eq. (2) at Ec.m. = 19.03 MeV. Values of the parameters for Vn(r) are: R0 = 8.5 fm, B0 = 26 MeV,
B1 = 0.6, B2 = 0.53, and VB = 2.35 MeV. (b) Plot of Wn(r) expressed by Eq. (3) at Ec.m. = 19.03 MeV. Values of the parameters for Wn(r)
are R0W = 9.25 fm, W0 = 1.1, W1 = 0.5, W2 = 0.18, and VBW = 0.058 MeV. (c) Plot of real part of Veff (r) expressed by Eq. (1) at Ec.m. =
19.03 MeV for � = 0. (d) Plot of real part of Veff (r) expressed by Eq. (1) at Ec.m. = 19.03 MeV for � = 0, 10, 20, 30, and 40.

differential scattering cross section for both the HIC systems
studied in this article.

In Sec. II, we present the formulation of the optical
potential based on our earlier work [16]. Section III is devoted
to the application of our new optical potential to analyze

the angular variation of differential scattering cross sections
and the corresponding excitation function for the 16O+28Si
system. In Sec. IV, we describe the results of calculations
for the 12C+24Mg system. Section V contains discussions and
conclusions.
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FIG. 2. (a) Plot of Vn(r) expressed by Eq. (2). The dashed line indicates the potential Vn(r) with parameters B1 = 2.05 and B2 = 0.05 for
energy Ec.m. = 26.20 MeV and the solid line indicates the same with parameters B1 = 0.6 and B2 = 0.53 for Ec.m. = 19.03 MeV. (b) Plot of
Wn(r) expressed by Eq. (3). The dashed line indicates the potential Wn(r) with parameter VBW = 0.38 MeV for Ec.m. = 26.20 MeV and the
solid line indicates the same with parameter VBW = 0.058 MeV for Ec.m. = 19.03 MeV.
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FIG. 3. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Ref. [2].

II. FORMULATION

In the optical model calculations, the effective nucleus-
nucleus potential governing the nucleus-nucleus collision is

Veff(r) = VN (r) + VC(r) + �(� + 1)h̄2

2µr2
, (1)

where µ is the reduced mass and VN (r) = Vn(r) + iWn(r) is
the nuclear optical potential. In our calculations, the real part
of the nuclear optical potential has the form [16]

Vn(r) =
{−VB

B1

[
B0 + (B1 − B0)

(
1 − y2

1

)]
, if 0 < r < R0

−VB

B2

[
B2

(
1 − y2

2

)]
, if r � R0,

(2)

where yn = tanh ρn, ρn = (r − R0)bn with the slope param-
eter bn = √

2mVB/h̄2Bn, n = 1, 2.R0 is a radial distance in
the surface region close to the radial position of the effective
s-wave barrier potential generated by Eq. (1). B0 controls
the depth of the potential at the origin r = 0.VB , indicating
the depth of the potential at r = R0 in MeV, controls the slope
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FIG. 4. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Ref. [2].

parameter bn. Further, bn is controlled by the parameter Bn on
either side of R0. It is seen that small value of Bn, making bn

large, allows the potential to change sharply.
Unlike monotonically decreasing behavior of the nuclear

potential in the case of standard Woods-Saxon form, in
our construction, the nuclear potential Vn(r) shows a slight
nontrivial behavior near r = R0. At this point, the two parts
of the potentials corresponding to interior (volume) region
and outer (surface) region with different rate of decrease of
amplitudes are connected. To ensure analytic continuation
without any irregularities at r = R0, we make sure that in
addition to the potentials being same at r = R0, the respective
derivatives respect to r give same value (zero in this case) at
this point of joining. The necessity of such a consideration for
the nuclear potential stems from the fact that in the surface
region around r = R0, the two bombarding nuclei touch each
other and one visualizes the occurrence of processes, namely
resonance phenomena belonging to the formation of composite
binuclear system, effects of frictional forces, and transfer of
one or cluster of nucleons from the target to the projectile
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FIG. 5. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Ref. [2].

and/or vice versa in this configuration. The microscopic
double folding procedure that predicts the shape of the nuclear
potential in the Woods-Saxon form usually does not include
the features stated above. Hence, one has to look for some
other form of nuclear potential that incorporates the effects
stated above either by basic formulation or by phenomenology.
For example, within the framework of phenomenological
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FIG. 6. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Ref. [2].
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FIG. 7. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Refs. [9–22].

consideration, to account for the transfer of nucleons, the
exchange potentials for the nuclear part are written sometimes
under the form Vn = V1 + (−1)�V2, where V1 is a standard
Woods-Saxon potential and V2 has the form V2 = −Neβr/r .
This modification ultimately leads to a change in the shape of
the nuclear potential given by standard Woods-Saxon potential
only. In our present work, we incorporate this expected change
in the shape of the nuclear potential by the expression given
by Eq. (2), which can be seen in the plot of Vn(r) as a function
of r in Fig. 1(a). We, then, seek the validity of this new form of
nuclear potential by obtaining perfect fittings of the measured
data of differential scattering cross sections over a wide range
of energy in the cases of two well-known systems, namely
16O+28Si and 12C+24Mg.

From the quantum mechanical point of view, we may
mention that the potential considered here does not generate
any irregularities namely discontinuity or different values of
slopes at r = R0 in the variation of amplitude of wave function
as a function of radial distance at a given energy. This nature
of smooth continuation of wave function justifies the physical
nature of the nuclear potential adopted in this analysis of HIC.

The imaginary part of the potential has the same form as
that of Vn(r) but with different strength. This is expressed as

Wn(r)

=
{−VBW

W1

[
W0 + (W1 − W0)

(
1 − y2

1w

)]
, if 0 < r < R0W

−VBW

W2

[
W2

(
1 − y2

2w

)]
, if r � R0W .

(3)
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FIG. 8. Angular variation of elastic scattering cross sections
of 16O+28Si. Calculated results are shown by solid curves. The
experimental data points are obtained from Refs. [9–22].

This is plotted in Fig. 1(b). The Coulomb potential between
colliding nuclei is taken to be

VC(r) =
{

ZP ZT e2

2RC
3

(
3RC

2 − r2
)
, if r < RC

ZP ZT e2

r
, if r > RC,

(4)
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FIG. 9. Comparison of the calculated 180◦ elastic scattering
excitation function with measured experimental data. The theoretical
calculation is averaged over last 5◦. Calculated results are shown by
solid curves. The experimental data points are obtained from Ref. [2].
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FIG. 10. Angular variation of elastic scattering cross section
of 12C+24Mg. The calculated results are shown by solid curve.
The experimental values are shown by solid dots obtained from
Ref. [6].

where RC = rC(AP
1/3 + AT

1/3).AP and AT are the mass
number of projectile and target, respectively. ZP and ZT are
the corresponding proton numbers. We have set the Coulomb
radius parameter rC = 1.2 fm in our calculation. The real part
of Veff(r) given by Eq. (1) is shown in Fig. 1(c) for � = 0 and
in Fig. 1(d) for different �s. Using this potential, we solve the
Schroedinger equation to obtain the scattering amplitudes f (θ )
and nuclear amplitude fn(θ ). The total scattering amplitude
f (θ ) can be expressed as

f (θ ) = fC(θ ) + fn(θ ) (5)

= fC(θ ) + 1

2ik

∑
�

(2� + 1)e2iσ�P�(cos θ )(e2iδ̄� − 1),

(6)

where fC(θ ) is the Coulomb amplitude, σ� is the Coulomb
phase shift, and δ̄� is the nuclear phase shift. The differential
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FIG. 11. Angular variation of elastic scattering cross section of
12C+24Mg. The calculated results are shown by solid curve. The
experimental values are shown by solid dots obtained from Ref. [6].

scattering cross section is given by

dσ

dσR

=
∣∣∣ f (θ )

fC(θ )

∣∣∣2

. (7)

III. CALCULATIONS FOR 16O+28SI

For the 16O+28Si system, a large amount of experimental
results of differential scattering cross-section dσ/dσR (ratio
to Rutherford cross section) as a function of center-of-mass
angle θ over a wide range are available for several incident
energies Ec.m.. These are for energies Ec.m. = 18.67, 19.03,
19.50, 20.12, 20.83, 21.10, 21.56, 22.29, 22.70, 24.30, 26.20,
31.82, and 35.0 MeV in the angular range θ = 0◦ to 180◦
and for Ec.m. = 33.727, 36.909, 42.0, 45.818, 51.545, and
90.681 MeV in the angular range θ = 0◦ to 100◦. Extensive
optical model analysis of the 16O+28Si system has been
done by Boztosun [5]. His optical potential has the following
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FIG. 12. Angular variation of elastic scattering cross section of
12C+24Mg. The calculated results are shown by solid curve. The
experimental values are shown by solid dots obtained from Ref. [6].

features: (i) Real part having radial behavior given by sum
of Woods-Saxon and Woods-Saxon derivative term with a
very large depth of about 700 MeV at r = 0. (ii) A somewhat
uncommon form factor for the imaginary potential which is
taken to be sum of Woods-Saxon and Woods-Saxon derivative
terms. (iii) The introduction of the Woods-Saxon derivative
term in the optical potential as mentioned above introduces a
slight nontrivial behavior at r = R0 which is found to be crucial
for fitting the experimental data. In all, his optical potential has
16 parameters, including the Coulomb radius parameter rC ,
and they also introduce some energy dependence in some of the
parameters. Thus, the whole conventional phenomenological
nuclear optical potential is modified drastically to fit the
low-energy data with reasonable success.

While undertaking systematic study of dσ/dσR for the
16O+28Si system, we first examine whether the LC potential
[17], which reproduces remarkably well the large back angle
oscillations at Ec.m. = 35.0 MeV or Elab = 55.0 MeV [18],
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FIG. 13. Angular variation of elastic scattering cross section of
12C+24Mg. The calculated results are shown by solid curve. The
experimental values are shown by solid dots obtained from Ref. [6].

can be extended to wider energy range. This LC potential with
seven parameters is given by

VN (r) = (286.5 + i19.7)

(
1.0 + 0.99 exp

r − R

3.7

+ exp
r − R

0.49

)−1

MeV, (8)

where R = 1.122(A1/3
P + A

1/3
T ). Using this potential, we carry

out calculations of dσ/dσR at a number of laboratory
energies, namely ELab = 50.0, 53.0, 55.0, 66.0, 72.0, 81.0, and
142.5 MeV or Ec.m. = 31.82, 33.727, 35.0, 42.0, 45.818,
51.545, and 90.681 MeV in the angular range 0◦ to 180◦, and
conclude that this potential is quite satisfactory in fitting the
available data that are confined to the angular region θ = 0◦ to
100◦ in the ELab range 50.0 to 142.5 MeV [19] or Ec.m. = 31.81
to 90.681 MeV. However, when we extend the calculations to
lower energies, for Ec.m. = 18.67 to 26.2 MeV experimental
data of dσ/dσR could not be fitted satisfactorily. In light of
this and noting the importance of slight nontrivial behavior of
optical potential in the Boztosun calculations, we decide to
construct a new single optical potential for the entire energy
range Ec.m. = 18.67 to 90.681 MeV using Ginocchio potential
term as already described in Sec. II. To fit the dσ/dσR data
of the 16O+28Si system in the energy range from Ec.m. =
18.67 MeV to 26.20 MeV, we use Eq. (2) in the optical
potential code we developed. Looking to the various effects

TABLE I. The parameters of VN (r) required to fit the lower-
energy data of 16O+28Si are as follows: R0 = 8.5 fm, VB =
2.35 MeV, B0 = 26.0, R0W = 9.25 fm, W0 = 1.1, W1 = 0.5, and
W2 = 0.18. We have used VB = 1.8 MeV at energy Ec.m. =
26.20 MeV for better fitting of the data. The parameters B1, B2,
and VBW of VN (r) are varied with the incident energies. These are
given in this table.

Ec.m. B1 B2 VBW Ec.m. B1 B2 VBW

(MeV) (MeV) (MeV) (MeV)

18.67 0.5 0.55 0.058 21.56 1.38 0.16 0.18
19.03 0.6 0.53 0.058 22.29 1.5 0.16 0.18
19.50 0.67 0.5 0.058 22.70 1.7 0.16 0.18
20.12 0.82 0.4 0.135 24.30 2.0 0.16 0.18
20.83 1.00 0.35 0.135 26.20 2.05 0.05 0.38
21.10 1.1 0.3 0.135

of the parameters on the potential, we vary the values of the
parameters one after another during the fitting process. These
values are found to be R0 = 8.5 fm, VB = 2.45 MeV, B0 =
26 MeV, R0W = 9.25 fm, W0 = 1.1,W1 = 0.5, and W2 =
0.18. In the remaining three parameters B1, B2, and VBW , we
introduce some energy dependence as shown in Table I. When
energy increases from 18.67 to 26.20 MeV, the value of B1

increases from 0.5 to 2.05 and B2 decreases from 0.55 to 0.05.
As per the property of the parameters B1 and B2 mentioned in
the formulation, the increase of B1 makes the potential V1(r)
to fall slowly in the interior side (r < R0) and the decrease of
B2 takes the potential V2(r) to zero value sharply in the outer
side (r > R0). This can be clearly visualized in Fig. 2(a) where
we plot the real potential at two energies: (i) the solid curve
for energy Ec.m. = 19.03 MeV with B1 = 0.6 and B2 = 0.53
and (ii) the dashed curve with B1 = 2.05 and B2 = 0.05 for
energy Ec.m. = 26.20 MeV.

Further, in Fig. 2(b), we plot the imaginary potential
Wn(r) with VBW = 0.058 for energy Ec.m. = 19.03 MeV by
a solid curve and compare the same with results shown by
dashed line corresponding to VBW = 0.38 for energy Ec.m. =
26.20 MeV. As expected, in addition to increasing the depth
of the potential at r = R0W , the increase in the value of VBW

increases the value of the slope parameter bn on either side of
r = R0W to make the potential vary sharply but uniformly. The
change in the potentials at one energy to other seen in Fig. 2(b)
is the total change for the whole energy range from 19.03 to
26.20 MeV.

Thus, in all we have 10 parameters for analysis of the data
in this range as compared to 15 parameters used in Ref. [5].
In Figs. 3–5 we show the results of dσ/dσR obtained by
our calculations (full curves) along with the corresponding
experimental data (solid dots). We find that our results fit
the data in the entire angular range well and this can be
considered remarkable because of the use of small number
of parameters and wide energy range. Next, we extend the
optical model calculations for this system for higher energies
from 31.82 to 90.681 MeV where in most cases large angle
data is not reported in literature except for 31.82 and 35.0 MeV.
We find that in this energy range we can fit the experimental
data using the parameters shown in Table II. It may be noted
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TABLE II. The parameters of VN (r) required to fit the higher-
energy data of 16O+28Si are as follows: R0 = 8.5 fm, VB =
1.8 MeV, B0 = 26.0, B1 = 2.5, B2 = 0.05, R0W = 9.25 fm, and
W1 = 0.5 The parameters VBW , W0, and W2 of VN (r) are varied
with the incident energies. These are given in this table.

Ec.m. VBW W0 W2 Ec.m. VBW W0 W2

(MeV) (MeV) (MeV) (MeV)

31.82 0.9 1.5 0.18 42.0 1.8 2.4 0.5
33.727 0.9 2.0 0.25 45.818 2.1 3.0 0.75
35.00 1.4 2.0 0.27 51.545 2.2 3.4 0.95
36.909 1.4 2.0 0.27 90.681 2.2 5.0 1.3

that in this energy range we do not have to use the small
energy dependence for parameters B1 and B2. However, the
parameters VBW ,W0, and W2 of VN (r) are varied with the
incident energies as shown in Table II to fit the data. We
successfully explain the large angle oscillations in dσ/dσR

at energies Ec.m. = 31.82 and 35.0 MeV that are shown in
Fig. 6. The results of our calculations for all other higher
energies are shown in Figs. 7 and 8. Comparison of our results
with experimental data indicates a quite good fit of the cross
sections.

A very crucial test of the optical model analysis in HIC
is the fitting of excitation function as a function of energy.
In Fig. 9, we show the variation of excitation function as a
function of energy obtained using our optical potential. It is
remarkable that the large number of oscillations found in the
excitation function data (solid dots) is fitted satisfactorily by
our calculated results shown by a full curve.

Thus, based on the successful analysis of the results of
dσ/dσR at low energies in the angular range 0◦ to 180◦,
at higher energies in the angular range 0◦ to 100◦ and the
excitation function in the center-of-mass energy range 13.0 to
52.0 MeV and comparison with earlier work of Boztosun, we
conclude that introduction of slight nontrivial behavior in the
surface region of real part of the optical potential is the most
critical input and our potential incorporates this input using
significantly lesser number of parameters.

IV. CALCULATIONS FOR 12C+24MG

The 12C+24Mg system is another interesting case of HIC
that has been studied recently by Sciani et al. [6] and Boztosun
et al. [14] in the energy range Ec.m. = 10.67 to 16.0 MeV
in the whole angular range θ = 0◦ to 180◦. Sciani has used
a seven-parameter optical potential with Woods-Saxon form
factor but failed to satisfactorily reproduce the oscillating
angular distributions and for that reason the whole amount of
data were analyzed simultaneously with the energy-dependent
optical potential that gave somewhat more satisfactory fit in
general. Even then, for the energy Ec.m. = 14.0 MeV, the fit in
experimental data was not very satisfactory. In the calculations
reported in Ref. [14], the optical potential used is similar to
the one constructed for the 16O+28Si system [5] with a large
number of parameters as discussed in the last section. Their
results are satisfactory in the energy range Ec.m. = 10.67 to

TABLE III. The fixed parameters of nuclear potential required
for best fit of elastic scattering cross sections of 12C+24Mg are
as follows: VB = 2.6 MeV, B0 = 17.6, B1 = 0.45, W0 = 2.0, W1 =
0.2, and W2 = 0.001. The values of energy-dependent parameters
for different Ec.m. are given in this table.

Ec.m. R0 B2 VBW Ec.m. R0 B2 VBW

(MeV) (fm) (MeV) (MeV) (fm) (MeV)

10.67 8.32 0.24 0.005 14.00 7.90 0.40 0.045
11.33 8.29 0.27 0.0095 14.33 7.85 0.45 0.055
12.00 8.16 0.30 0.019 14.67 7.80 0.47 0.085
12.33 8.00 0.30 0.032 15.00 7.75 0.45 0.085
12.67 8.18 0.28 0.025 15.33 7.72 0.50 0.09
13.00 8.10 0.37 0.045 15.67 7.70 0.55 0.17
13.33 8.00 0.40 0.045 16.00 7.66 0.61 0.22
13.67 7.955 0.40 0.045

16.0 MeV. In the light of the above and in view of the good
results by us for the 16O+28Si system using our new optical
potential, we extend our analysis to the 12C+24Mg system.
In Table III, we list the potential parameters used in these
calculations. As can be seen from the above Table III, the
optical potential used by us has total of nine parameters,
namely VB,B0, B1, B2,W0,W1,W2, VBW , and R0 = R0W . Of
these, VB,B0, B1,W0,W1, and W2 are kept independent of
energy, but R0, VBW , and B2 are slightly varied with energy to
obtain best fit to the experimental data.

In Figs. 10–13, we compare our calculated results shown
by solid lines with the corresponding experimental results [6]
shown by dots at several energies. It is clear from the results
and their comparisons with results obtained by Sciani et al. [6]
and Boztosun et al. [14] that the present Ginocchio-type optical
potential is able to fit the data remarkably well.

V. DISCUSSION AND CONCLUSIONS

Now we discuss the critical features of the Ginocchio-type
new optical potential, which is quite successful in fitting
experimental data for the 16O+28Si and 12C+24Mg systems
studied in this article. In fitting such data, it is necessary
for the optical potential to generate partial-wave amplitudes
with the correct magnitude and phase so that the oscillations
observed in the data are accounted for. This optical model
analysis for elastic scattering is fully a quantal formalism
based on the one-body Schroedinger equation for the relative
motion of the two colliding nuclei. The many-body aspects of
the interaction are globally represented by average complex
potential depending mainly on the relative coordinate. In our
representation of the nuclear force, it is visualized that the
nature of the nucleus-nucleus force in the interior (volume)
region differs from that in the outer (surface) region though
it is attractive in both the situations. Keeping this in view,
we construct the nuclear potential by using Ginocchio-type
expression that results in a nontrivial behavior in the surface
region of the potential. This behavior affects the incoming
wave packet containing large number of partial waves, each
of which is experiencing phase shift δ(�). Superposition
of these waves results in large-scale interference not fully
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destructive but to provide an oscillatory result to account
for the corresponding experimental angular distribution of
the differential scattering cross section as well as excitation
function.

It may be mentioned here that, in heavy-ion collisions,
within the framework of semiclassical approximation, it is
visualized that when the absorption is moderate in the interior
region of the potential, the partial-wave amplitude can be
written as a sum of an amplitude ηB describing a wave reflected
at the barrier and an amplitude ηI corresponding to waves that
penetrate into the interior region of the interaction potential
[20,21]. With reference to grazing partial wave � = �g for
a given incident energy, the amplitude ηB called the outer
region amplitude is dominant at small angles, in other words,
at large � > �g and the inner amplitude ηI is dominant at
small � < �g . The oscillation observed in the experimental
scattering cross-section data can be understood as the result
of interference between ηB and ηI . However, the estimate
of these components requires further approximation such as
strong absorption in the interior side for the calculation of ηB .
The need for such a decomposition of scattering amplitude is
avoided in our quantal calculation as outlined above.

In conclusion, we state that the new optical potential
constructed using Ginocchio potential form has versatile

features that gives a liberty to appropriately control surface
and volume part of the interaction and nontrivial behavior in
this surface region when necessary. This together with suitable
energy dependence of some of the parameters is able to fit the
dσ/dσR data for the 16O+28Si system in the center-of-mass
energy range 18.67 to 90.681 MeV and in the case of
12C+24Mg from a center-of-mass energy range of 10.67 to
16.0 MeV. This is achieved using substantially fewer param-
eters as compared to that used in other calculations reported
in the literature. The critical role of the nontrivial behavior in
the potential in the surface region is found to be important in
generating the appropriate phase shift for each partial wave
such that the superposition of large number of partial waves
results in large-scale interference that consequently produces
correct oscillation in differential scattering cross section and
excitation function.
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