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Absence of the threshold anomaly in the elastic scattering of the weakly bound projectile 7Li on 27Al
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To study the conditions leading to the appearance of the threshold anomaly in systems involving weakly bound
projectiles we measured elastic scattering cross sections for the 7Li + 27Al system at ten different bombarding
energies. The results were exhaustively analyzed using different optical model potentials. The similar behavior
observed in all these analyses allows us to conclude that no threshold anomaly is found for the present system.
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I. INTRODUCTION

One of the most important features of the elastic scattering
between heavy ions at energies close to the Coulomb barrier
is the peculiar behavior of the optical potential, known as the
threshold anomaly (TA) [1]. In brief, at higher energies the
real and imaginary parts of the optical potential are energy
independent; however, as the energy is lowered toward the
Coulomb barrier, the imaginary part of the optical potential
sharply decreases while, correspondingly, the real part presents
a localized peak. This TA may be ascribed mainly to the
coupling of the elastic scattering to other reaction channels
that produces an attractive polarization potential �V , leading
to the real potential Veff = V0 + �V , where V0 is the real
potential at higher energies. The behavior of the imaginary
potential is associated with the closing of nonelastic peripheral
channels at energies near and below the barrier. The behavior
of the real potential is a manifestation of the physical concept
of causality, which states that no reaction occurs before the
matter wave reaches the scattering center. The mathematical
relation involving causality and the TA is the dispersion
relation [2], which connects the energy variation of the real
potential to that of the imaginary potential through a principal
value integral, as shown later in this paper, as Eq. (1). In
addition, the strong channel effects connected with the TA
also dictate the magnitude of enhancement of the sub-barrier
fusion cross section, owing to the lowering of the Coulomb
barrier that occurs when the attractive real part of the potential
increases.

Although this effect is well established for the scattering
of tightly bound nuclei, there are presently some speculative
arguments and contradictory conclusions about the influence
that the breakup of weakly bound nuclei might have on the
TA [3–14]. For systems in which at least one of the participants
is a weakly bound nucleus, it has been recently shown that
the breakup cross section does not diminish so fast in the
vicinity of the Coulomb barrier but, rather, that it can have
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values much larger than the fusion cross sections [15–21].
Therefore, for these nuclei, the rapid decrease of the fusion
cross section does not imply the closing of all the reaction
channels at sub-barrier energies. As a consequence of this
large peripheral-reaction cross section at these energies, the
imaginary part of the optical potential does not necessarily
decrease and the TA may disappear. Moreover, it has been
suggested [4,5] that the effect of coupling of the breakup
channel to the continuum may produce a repulsive polarization
potential that affects the overall dynamic polarization potential
in such a way that the usual TA may vanish. This fact has been
taken as a possible explanation of the absence of the usual TA
for systems involving the weakly bound nuclei 6Li or 7Li such
as 6,7Li + 28Si [9,10]. However, the available data for these
projectiles are insufficient to predict under which conditions
(e.g., a dependence on the target mass) the TA may be expected.
For instance, the 7Li + 208Pb system shows a TA [4] whereas
the 7Li + 138Ba system [5], recently re-analyzed using the São
Paulo potential [22], does not. In the case of 6Li the TA does
not appear with either 208Pb or 138Ba targets.

For another weakly bound projectile, 9Be, on the light target
27Al, no evidence of a TA has been found [12]. Additionally,
for the 9Be + 64Zn system, the observation of the TA depends
on whether or not one considers a surface imaginary potential
in addition to a volumetric imaginary potential [6]. In the study
of the scattering of 9Be on heavy targets, the usual threshold
anomaly was found to be present for 208Pb [11], whereas for
the 209Bi target [14] a very unusual behavior of the imaginary
potential was observed, with an increase of its value as the
energy decreases.

Part of the uncertainty in establishing whether the TA
does in fact exist for a given system stems from the various
approaches used to describe the elastic scattering data. Among
the different descriptions one finds the use of double-folding
potentials [4,9–11], Woods-Saxon potentials [5,6,8,12], and
the parameter-free, nonlocal, double-folding São Paulo poten-
tial [12,13].

The purpose of the present work is to contribute to
elucidating the conditions leading to the appearance of the
TA in systems involving weakly bound projectiles. To this aim
we have measured the elastic scattering in the 7Li + 27Al
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FIG. 1. Energy spectrum of the reaction prod-
ucts for 7Li + 27Al, measured at ELab = 18 MeV
and θc.m. = 42.3◦ around the elastic peak. Different
exit channels are indicated in the figure.

system and we have analyzed the data using different
approaches to check the consistency of the results. In
the following section, the measurements are described; in
Sec. III the data are analyzed with phenomenological and
folding model potentials to verify whether the outcomes from
all of them are similar. For this purpose different codes were
also used (PTOLEMY [23] and ECIS [24]). Finally, in Sec. IV
the results are discussed and our conclusions are given.

II. EXPERIMENTAL SETUP

Lithium-7 beams at bombarding energies of 6, 7, 8, 9, 10,
11, 12, 14, 16, and 18 MeV were delivered by the 20 UD
tandem accelerator of the TANDAR Laboratory in Buenos
Aires. Typical beam currents were below 50 nA. The nominal
Coulomb barrier for the present reaction is around 8 MeV in
the laboratory system. The Q value for the α-particle breakup
of the projectile is −2.47 MeV.

A set of eight silicon surface-barrier detectors placed in
a 30-in.-diameter scattering chamber was used to measure

the elastic scattering cross sections at different angles. These
angular distributions were taken in steps of 2◦–5◦ depending
on the energy and angular range. The angular resolution of
each detector was less than 0.5◦ and their energy resolution
ranged from 0.5 to 1%. The target was a 70 µg/cm2 thick 27Al
foil. Although no direct charge identification was performed
in this experiment, transfer and inelastic scattering channels
can be easily separated from the elastic peak since they
contribute to different position in the energy spectra, as is
illustrated in Fig. 1. This figure, taken at ELab = 18 MeV
and θc.m. = 42.3◦, shows the position of the peaks correspond-
ing to target contaminations (elastic scattering on 12C and 16O),
as well as the one-neutron transfer and the inelastic scattering
27Al(7Li, 7Li∗(1/2−, 0.477 MeV)).

Absolute values of the cross section were deduced by using
an electron suppressed Faraday cup and a monitor detector at
15◦. The estimated overall uncertainty of the results ranges
from 5 to 15%. A summary of all the experimental results is
displayed in Fig. 2, which shows the angular distributions
of the elastic scattering cross sections normalized to the
Rutherford cross section.

FIG. 2. Elastic scattering cross
sections normalized to the Ruther-
ford cross sections for the 7Li +
27Al system and optical model cal-
culations. Full lines correspond to
an energy-dependent fit whereas
the dashed lines correspond to
an energy-independent one. (For
ELab = 6, 8, and 9 MeV the two
fits are almost indistinguishable.)
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TABLE I. Parameters of the E I potential. The projectile energy and the potential depth are in MeV, the
reduced radii and diffusenesses are in fm, and the volume integrals per nucleon pair are in MeV fm3.

Ec.m. V r0 a WS rsi0 asi W ri0 ai [G(E)]V [G(E)]WT χ 2/point

4.8 9.86 1.12 0.904 2.21 1.35 0.646 1.31 1.09 0.372 1.81 2.39 2.82
5.6 1.36
6.4 1.21
7.1 4.94
7.9 1.70
8.7 5.85
9.5 1.74

11.1 5.05
12.7 2.47
14.3 8.88

III. RESULTS AND OPTICAL MODEL ANALYSES

To analyze the elastic scattering cross sections we used
(a) phenomenological potentials, (b) folding model potentials,
in particular the so-called São Paulo potential, and (c) hybrid
potentials, consisting of the São Paulo potential for the real
part and a phenomenological potential for the imaginary
part. For the phenomenological potentials we considered
Woods-Saxon shapes in three different scenarios: (a.1) E I,
an energy-independent potential, (a.2) EDFG, an energy-
dependent potential with fixed geometric parameters (reduced
radius and diffuseness), and (a.3) EDVG, an energy-dependent
potential with variable geometric parameters.

In all cases, the essential features of the phenomenological
potential were a real part with a shallow Woods-Saxon shape,
with depth V, reduced radius r0, and diffuseness a and an
imaginary part composed of two terms, a volume term (also
with a Woods-Saxon shape), with parameters W, ri0, and
ai , and a surface term, described by WS, rsi0, and asi . The
volume term takes into account the fusion channel, whereas
the surface term, which is proportional to the derivative of a
Woods-Saxon shape, accounts for the flux of the quasi-elastic
channels [25,26].

An energy-independent (E I) Woods-Saxon potential that
reproduces the data quite well has been obtained from a global

simultaneous fit to the data at all energies. The corresponding
parameters and the resulting χ2/point of the fits are presented in
Table I. The experimental angular distributions and the results
of the fit using this energy-independent potential are shown in
Fig. 2 (dashed lines).

To explore for a possible energy dependence, a new
parameter search was performed in which the depths of
the real and imaginary surface parts of the potential were
allowed to change independently at each energy. First, we
studied the case where the reduced radii and diffusenesses
were kept constant [energy-dependent fixed geometry (EDFG)
potential]. The results of the corresponding energy-dependent
fits are illustrated by the full line in Fig. 2. The depth of the real
term varies between 6.5 and 12.6 MeV, and for the imaginary
surface term between 1.6 and 8.9 MeV. The values of the
depths, reduced radii, and diffusenesses of this potential are
also shown in Table II. As can be seen, they represent only a
slight improvement to the adjustment of the data compared to
the energy-independent results.

The last phenomenological case was constructed taking the
EDFG potential as a reference and allowing the geometric
parameters to slightly change around those values. In this way,
an energy-dependent variable geometry (EDVG) potential was
obtained. As seen in Table III, this procedure yielded a slight
decrease in the χ2/point values.

TABLE II. Parameters of the EDFG potential. The projectile energy and the potential depth are in
MeV, the reduced radii and diffusenesses are in fm, and the volume integrals per nucleon pair are in
MeV fm3.

Ec.m. V r0 a WS rsi0 asi W ri0 ai [G(E)]V [G(E)]WT χ 2/point

4.8 6.5 1.12 0.904 8.9 1.35 0.646 1.31 1.09 0.372 1.2 9.6 1.23
5.6 6.7 1.9 1.2 2.1 0.72
6.4 9.3 2.5 1.7 2.7 1.11
7.1 8.7 1.6 1.6 1.7 4.48
7.9 8.1 1.6 1.5 1.8 0.82
8.7 10.4 2.2 1.9 2.4 2.67
9.5 8.4 2.3 1.5 2.5 1.38

11.1 10.2 2.5 1.9 2.7 3.69
12.7 12.6 2.9 2.3 3.2 1.77
14.3 10.0 2.1 1.8 2.3 8.53
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TABLE III. Parameters of the EDVG potential. The projectile energy and the potential depth are in MeV, the reduced radii and diffusenesses
are in fm, and the volume integrals per nucleon pair are in MeV fm3.

Ec.m. V r0 a WS rsi0 asi W ri0 ai [G(E)]V [G(E)]WT χ 2/point

4.8 16.0 1.20 0.710 17.9 1.45 0.519 0.0038 1.09 0.372 2.4 25.7 1.17
5.6 6.9 1.15 0.778 1.2 1.40 0.703 0.0023 1.0 2.0 0.71
6.4 10.8 1.15 0.835 2.3 1.40 0.593 0.18 1.9 2.9 1.02
7.1 5.1 1.15 1.044 1.6 1.40 0.533 0.0024 1.6 1.7 3.99
7.9 7.4 1.12 1.023 3.0 1.40 0.405 1.31 2.0 1.8 0.41
8.7 10.5 1.12 0.917 2.3 1.35 0.625 1.31 2.1 2.4 2.58
9.5 13.7 1.12 0.913 4.7 1.35 0.450 1.31 2.7 2.3 0.93

11.1 9.3 1.12 0.908 2.9 1.30 0.721 1.31 1.8 3.0 1.97
12.7 13.6 1.12 0.733 2.5 1.30 0.800 1.31 1.5 3.2 1.22
14.3 10.5 1.09 0.899 2.0 1.35 0.699 1.655 1.7 2.7 7.68

To compare different potentials, it is useful to calculate
the sensitivity radius RS [25,26], which corresponds to the
radius at which potentials with comparable good fits take
approximately the same value. For the real part, this sensitivity
radius was determined at each energy by selecting a set of
slightly modified diffuseness parameters a (taken in steps
of 0.05 fm around the best value) and adjusting the radius
parameter and the potential depth to fit the data. In this way,
different families of optical model potentials with roughly the
same χ2/point value were obtained. The same procedure was
done to obtain the sensitivity radii for the imaginary part.
Figure 3 shows the crossing points of the real and imaginary

FIG. 3. Sensitivity radius based on the crossing of the real (upper)
and imaginary (lower) parts of the EDFG potential at ELab = 10 MeV.
The real and imaginary diffusenesses, a and asi , were varied in steps
of 0.05 fm between 0.804 and 1.004 fm, and between 0.546 and
0.746 fm, respectively.

potentials for different families of parameters for the EDFG
case corresponding to the fits of the Ec.m. = 7.9 MeV data.

In what follows, we analyze whether the obtained energy-
dependent potentials satisfy the dispersion relation, which
connects the real and imaginary parts through the expression
(except for a constant offset)

V (r, E) = P
1

π

∫
W (r, E′)
E′ − E

dE′, (1)

where P denotes the principal value. For this purpose it
is customary to evaluate Eq. (1) at the sensitivity radius.
However, as illustrated in Fig. 4, the sensitivity radii at different
energies are not strictly constant but they fluctuate around a
given value. This problem might be overcome by applying the
alternative method to evaluate the dispersion relation used by
Brandan et al. [27]. It can be shown [28,29] that the dispersion
relation still holds for the volume integrals per nucleon pair
weighted by a Gaussian function g(r) centered at an average
value RS and with a width σ . The two volume integrals are
[G(E)]V and [G(E)]WT , with WT (r) = W (r) + WS(r). The

(a)

(b)

FIG. 4. Radii of sensitivity, RS , as a function of the c.m. energy for
(a) the EDFG case and (b) the EDVG case. Full circles correspond to
the radii of sensitivity for the real part of the optical potential whereas
open circles correspond to the imaginary part.
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FIG. 5. Volume integrals [G(E)] around the sensitivity radius
calculated for the real (full circles) and imaginary (open circles) parts
of the different potentials analyzed in this work.

volume integral for the real potential is defined by

[G(E)]V = 1

Ap × At

∫
V (r, E)g(r)4πr2dr, (2)

where Ap = 7 and At = 27 are the projectile and target
mass numbers respectively. There is a similar equation for
[G(E)]WT . Therefore, a dispersion relation in the form of

[G(E)]V = P
1

π

∫
[G(E′)]WT

E′ − E
dE′, (3)

which is analogous to Eq. (1), must hold.
To calculate the parameters of the Gaussian distribution,

g(r), we have assumed a normal distribution for the sensitivity
radius (see Ref. [27]). We calculated the average radius and
the standard deviation by taking N = 18 points. The radii
corresponding to the lowest energy (Ec.m. = 4.8 MeV) were
not taken into account since they deviate considerably from
the average value. The average radius and standard deviations
obtained for the EDFG and for the EDVG potentials are RS =
8.50 ± 0.13 fm, σ = 0.54±0.10

0.09 fm, and RS = 8.46 ± 0.13 fm,
σ = 0.55±0.10

0.09 fm, respectively. The uncertainties in these
quantities have been estimated by means of a Student’s t and
a χ2 distributions of N − 1 degrees of freedom, respectively.
The intervals correspond to a confidence level of 70%.

The uncertainties in the real and imaginary potential depths
were obtained by varying the parameters up to the point in
which the total χ2 value of the fit increases in one unit, which

FIG. 6. Normalization factors NR and Ni of the São Paulo
potential that best reproduce the data.

also corresponds to a confidence level of 68.3%. The results
of these integrals are shown in Fig. 5. The error bars stem
from the root sum square of the contributing uncertainties in
the potential depths, in the average radius, and in the standard
deviation.

The volume integrals of the real and imaginary parts of the
energy-dependent potentials do not show the usual threshold
anomaly. In other words, the imaginary potential is almost
constant as a function of the energy except for the lowest
measured energy (Ec.m. = 4.8 MeV), which lies well above
the rest. This point has a large error bar because the elastic
scattering cross section at this energy corresponds to almost

FIG. 7. Volume integrals [G(E)] as in Fig. 5, for the real
(full symbols) and imaginary (open symbols) parts of the different
potentials. Error bars are omitted for clarity and the values for the E I
potential are included for comparison.
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TABLE IV. Normalization factors for the SP potential. The
projectile energy is in MeV and the volume integrals per nucleon
pair are in MeV fm3.

Ec.m. NR Ni [G(E)]V [G(E)]WT χ 2/point

4.8 1.25 3.90 3.7 9.0 1.29
5.6 0.69 0.87 2.1 2.0 0.72
6.4 0.93 1.15 2.7 2.7 1.12
7.1 0.90 0.44 2.7 1.0 4.30
7.9 0.81 0.46 2.4 1.1 0.81
8.7 0.98 0.91 2.9 2.1 3.65
9.5 0.87 0.83 2.6 1.9 1.29

11.1 1.02 1.05 3.0 2.4 2.60
12.7 0.85 1.53 2.5 3.5 1.96
14.3 1.07 1.11 3.2 2.6 23.9

pure Rutherford scattering. The same constant behavior is true
for the real part of the potential, except for the lowest measured
energy as in the imaginary case.

Both Woods-Saxon potentials have very shallow depths,
typically around a few MeV. We have also tried deeper
potentials obtained from first-principle calculations such as the
São Paulo potential, which is a global parameter-free optical
potential [30–34] able to describe a large variety of systems in
a very wide energy range. In the construction of this potential,
the real and imaginary parts of the optical potential (which
were assumed to have the same radial shape) were derived
in the framework of an extensive systematization of nuclear
densities and the energy dependence of the bare potential was
accounted for by a model based on the nonlocal nature of
the interaction. The bare interaction VN takes into account the
Pauli nonlocality involving the exchange of nucleons between
projectile and target, and it is connected with the folding
potential VF through

VN (R,E) ≈ VF (R) exp(−4v2/c2), (4)

where c is the speed of light in vacuum and v is the local
relative velocity between the two nuclei,

v2(R,E) = (2/µ)[E − VC(R) − VN (R,E)], (5)

with µ the reduced mass and VC the Coulomb interaction.

The folding potential, obtained by using the matter distribu-
tions of the nuclei, which take into account the finite size of the
nucleon, with a zero-range approach for the nucleon-nucleon
interaction ν(r), is

VF (R) =
∫

ρ1(r1)ρ2(r2)ν(R − r1 − r2)dr1dr2. (6)

For VC a double sharp-cutoff Coulomb potential was
used. To obtain a global parameter-free description of the
nuclear interaction, a systematization of nuclear densities
was developed. This system was based on an extensive
study involving charge distributions extracted from electron
scattering data and theoretical densities calculated through
the Dirac-Hartree-Bogoliubov model and adopts the two-
parameter Fermi (2pF) distribution to describe the nuclear
densities. Within the derived systematization, the radii of
the 2pF distributions of a nucleus with A nucleons are well
described by

R0 = (1.31A1/3 − 0.84) fm, (7)

and the matter densities have an average diffuseness of a =
0.56 fm. The imaginary part of the interaction is assumed to
have the same shape of the real part [Eq. (4)], with one single
adjustable parameter Ni related to its strength, such as

W (R,E) = NiVN (R,E). (8)

For more than 30 systems, all the elastic scattering angular
distributions, over wide energy ranges, were simultaneously
well fitted with only one free parameter, the average value of
Ni , which was derived to be Ni = 0.78.

When this potential is calculated for the 7Li + 27Al system
it has a large depth in both the real and the imaginary parts
(around 293 MeV). The resulting fits of the normalization
factors for the real and imaginary parts (NR and Ni , respec-
tively) are shown in Fig. 6 and in Table IV. It can be seen that
their energy dependence follows the same constant trend as
the previous calculations displayed in Fig. 5. These data could
be directly compared with the other potentials by calculating
the volume integrals for these deep potentials. The results are
shown in Fig. 5.

Finally, we also tried an approach that combines both
potentials, the São Paulo and the Woods-Saxon potentials.

TABLE V. Parameters of the HYBR potential. The projectile energy and the potential depths WS and W are in MeV,
the reduced radii and diffusenesses are in fm, and the volume integrals per nucleon pair are in MeV fm3.

Ec.m. NR WS rsi0 asi W ri0 ai [G(E)]V [G(E)]WT χ 2/point

4.8 2.19 8.14 1.30 0.699 50 0.998 0.688 4.6 9.3 1.19
5.6 0.94 0.32 2.0 1.9 0.72
6.4 1.21 0.96 2.5 2.5 1.13
7.1 1.13 0.00 2.4 1.6 4.46
7.9 1.08 0.00 2.3 1.6 1.02
8.7 1.33 0.49 2.8 2.0 3.68
9.5 1.22 0.29 2.5 1.8 1.32

11.1 1.37 0.89 2.9 2.4 2.45
12.7 0.98 2.24 2.0 3.7 1.85
14.3 1.43 1.07 3.0 2.6 22.9
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TABLE VI. Global χ 2/point and summary of the parameters for the different optical potentials used in the data analyses. The values for the
anomalous point at the lowest energy have been excluded. The potentials depth are in MeV and the reduced radii and diffusenesses are in fm.

Potential V r0 a WS rsi0 asi W ri0 ai Global χ 2/point

E I 9.86 1.12 0.904 2.21 1.35 0.646 1.31 1.09 0.372 3.89
EDFG 6.7–12.6 1.12 0.904 1.6–2.9 1.35 0.646 1.31 1.09 0.372 2.34
EDVG 5.1–13.7 1.09–1.15 0.73–1.04 1.2–4.7 1.30–1.40 0.45–0.80 0.02–1.65 1.09 0.372 1.96
SP — — — — — — — — — 3.26
HYBR — — — 0.00–2.24 1.3 0.699 50 0.998 0.688 3.23

This hybrid potential was formed by taking a deep real part
(from the São Paulo potential) and a rather shallow imaginary
potential. The latter was adjusted to obtain the best optical
model parameters, which are shown in Table V (labeled as the
HYBR case). The results from this analysis, which are also
presented in Fig. 5, show a rather smooth energy dependence
of the real and imaginary parts of the optical potential, except
for the lowest measured distribution at the sub-barrier energy
of Ec.m. = 4.8 MeV.

The results of the volume integrals shown in Fig. 5
for all the potentials used in this work are consistent and
indicate that no threshold anomaly is present for this system.
Table VI summarizes the results for all the potentials and
includes the global χ2/point for the fit at all energies
corresponding to each potential. The values of the imaginary
potential at Ec.m. = 4.8 MeV are consistently larger than
the values at higher energies for all the examined poten-
tials. Although this systematic behavior cannot be explained
at present, it does not affect the main conclusions that
follow.

To further stress the absence of the threshold anomaly in
this system, the volume integrals for the five potentials studied
are presented superimposed in Fig. 7. It is seen in this figure
that not only is the shape of the energy dependence the same
for all potentials—being, constant as a function of energy—but
even the absolute values of the volume integrals are about the
same for all potentials. This fact is of course what one expects,

but to actually find such an agreement among the results of
very different potentials is nonetheless remarkable.

IV. CONCLUSIONS

The absence of a threshold anomaly in the elastic scattering
of some reaction systems that involve weakly bound nuclei
is usually interpreted as evidence of the role played by
the breakup channel at sub-barrier energies. However, the
conditions under which the TA does indeed appear are not
clear and may depend in particular on the type of approach
used in the analysis. To contribute to clarifying these matters
we measured elastic scattering cross sections for the 7Li + 27Al
system at energies around the Coulomb barrier and analyzed
the data using different approaches. The present analysis
suggests that no threshold anomaly is found for this system.
This result seems to be quite independent of the different
families of potential used. From the experimental point of
view, new experiments to measure the 6Li + 27Al system as
well as a direct measurement of the breakup cross section are
in progress.
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