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Mass of the lowest T = 2 state in 32S: A test of the isobaric multiplet mass equation
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We produced the lowest T = 2 state in 32S with the 31P(p, γ ) reaction and measured the energies of the
deexcitation γ rays, obtaining an excitation energy of 12047.96 ± 0.28 keV that disagrees with a previous value
of 12045.0 ± 0.4 keV. Our result, together with a recent measurement of the 32Ar mass, makes the A = 32
multiplet the most precisely measured T = 2 quintet and provides easily the most stringent test of the isobaric
multiplet mass equation. A significant violation of the isobaric multiplet mass equation is observed that could be
explained by mixing with a nearby T = 0 level.
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I. INTRODUCTION

If the nucleon-nucleon interaction were charge indepen-
dent, the 2T + 1 members of an isospin multiplet would
have identical masses. However, this degeneracy is broken
by charge-dependent interactions between the nucleons which
have the general form

Hc =
∑
i<j

(ατz(i) + β)(ατz(j ) + β)f (rij ), (1)

where τ is the nucleon isospin operator and α and β are
constants that depend on the nature of the charge-dependent
interaction. This Hamiltonian is a sum of isoscalar, isovector,
and isotensor operators. Therefore, at tree-level, the masses of
the 2T + 1 members of the isobaric multiplet should obey the
isobaric multiplet mass equation (IMME) [1,2]

M(Tz) = a + bTz + cT 2
z , (2)

where Tz = (Z − N )/2, the z component of total isospin T ,
ranges from −T to +T . Summaries of existing data on isobaric
multiplets can be found in Refs. [3,4]. The only significant
deviations are found in light nuclei with unbound states. The
A = 9, T = 3/2 quartet requires an additional cubic term
and has been explained as a combination of higher order
charge-dependent interactions and expansion of the nuclear
wave function due to Coulomb effects [5]. The A = 8, T = 2
quintet requires either an additional dT 3

z term or a eT 4
z term or

both for a satisfactory fit. Although no fundamental principle
forbids violation of Eq. (2), theoretical calculations [6] indicate
that the IMME should hold down to ≈1 keV for multiplets that
do not have isospin-allowed strong decays. This has made it
a useful tool for estimating masses of proton-rich members of
multiplets where direct measurements are difficult.

The lowest A = 32, T = 2 multiplet has the most precisely
measured masses of any isospin quintet [3]. However the mass
of the Tz = 0 member of the multiplet stands on a weak footing.
A 31P(p, α) resonance study [7] gave an excitation energy
of 12049 ± 2 keV. An earlier 31P(p, γ ) study [8] obtained
a significantly different result, i.e., an excitation energy of
12045.0 ± 0.4 keV, but no details were provided about the
difficult task of determining the excitation energy to such a

high precision. This motivated us to remeasure the excitation
energy of the lowest T = 2 state of 32S using the 31P(p, γ )
reaction.

II. EXPERIMENTAL PROCEDURE

A. Apparatus

Our 31P(p, γ ) measurement was performed with the Uni-
versity of Washington FN tandem accelerator, operating in
a mode with the ion source at the terminal. We produced
the 31P target by implanting 55 µAh of 90 keV 31P ions
from a sputter ion source into a 0.5 mm thick tantalum
backing. The 31P beam was rastered using computer-controlled
magnetic steerers to produce a uniform target with a cross
section of approximately 1.1 cm2 and a measured energy
loss of 4 keV for 3 MeV protons. A 6 µA, 3.285 MeV
proton beam bombarded the water-cooled 31P target to produce
the lowest T = 2 state in 32S. This level, as shown in
Fig. 1, mainly γ decays to a Jπ = 1+, T = 1 state at
≈8 MeV, which in turn decays to the ground state with a
high branching ratio [9]. Gamma rays were registered with a
50% HPGe (GMX) detector whose signals were processed by
temperature-controlled electronics to minimize gain drifts. We
made two independent measurements at two different times.
In the first, we took data with two HPGe detectors located
≈60 cm from the center of the chamber, at ±90◦ to the beam
where the Doppler shift is minimal. The energy calibration was
based on a 56Co source and 35Cl(n, γ ) capture radiation. In the
second measurement, the detector was aligned at 0◦ as shown
in Fig. 2 and positioned 10.3 cm from the target. Although
Doppler shifts are maximum at θγ = 0◦, it gave the least
sensitivity to detector mis-alignment. The energy calibration
for this measurement was based on 56Co and 27Al(p, γ )
radiation. Figure 3 shows a gamma spectrum from the 0◦
experiment.

B. Energy calibration

A 56Co source, present at all times during data acquisition,
provided γ -ray calibrations with energies up to 3.5 MeV.
Calibration points with higher energies were obtained from
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FIG. 1. Gamma decays of the lowest T = 2 state in 32S.

capture reactions. Gamma rays with well-known energies up
to 10762 keV [10] were generated by bombarding a 20 µg/cm2

thick 27Al target with a 15 µA, 992 keV proton beam. Gamma
rays with well-determined energies up to 8.5 MeV were
produced with the 35Cl(n, γ ) reaction [11]. For this calibration,
the 31P target was removed and a thick (≈500 µg/cm2) Li2O
target evaporated on a Ta backing was placed at the edge of the
target chamber and bombarded by a 600 nA, 1.912 MeV proton
beam, producing 7Li(p, n) neutrons in a forward-angle cone,
with a nearly Maxwellian velocity distribution for neutron
energies between 0 and 110 keV [12]. The neutrons were
moderated by a 4 cm thick paraffin slab before capturing onto
a 8×103 cm3 volume of NaCl. The HPGe detector was moved
to an angle of 90◦ approximately 60 cm from the center of
the chamber at shown in Fig. 4. Neutrons moving toward the
Ge detector were attenuated by 8 cm of paraffin followed by
15 cm of borax to protect the detector from neutron damage.
Figure 5 shows typical calibration spectra.

III. DATA ANALYSIS

Incomplete charge collection within Ge detectors produces
exponentially decaying tails below gamma-ray peaks [13,14]
while multiple-Compton scattering gives plateaus below the
peak centroid. We extracted peak centroids by fitting our γ

peaks with a Gaussian folded with a delta function and two

HPGe detector

31

3.285 MeV Protons

Water Cooled P Target

FIG. 2. (Color online) Top view of the experimental setup used
for the 31P(p, γ ) data.
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FIG. 3. 31P(p, γ ) spectrum from the 0◦ experiment. The 32S lines
and some 56Co calibration peaks are labeled. The 9.8 MeV γ ray is
mainly from direct capture.

low-energy exponential tails. Each tail had the form

T (x) = 1

2l
exp

[
(x − µ)

l
+ 1

2

(σ

l

)2
]

× erfc

[
1√
2

(
(x − µ)

σ
+ σ

l

)]
, (3)

where erfc is the complementary error function, lis the decay-
length of the tail, σ is the Gaussian spread and µ is the peak
centroid. The γ -peak line-shapes were assumed to have the
form

R = T1f1 + T2f2 + 1√
2πσ 2

exp
−(x − µ)2

2σ 2
, (4)

where f1 and f2 were the relative areas of the exponentials
with respect to the pure Gaussian.

We first determined the line-shape of a high-statistics
3253 keV peak from 56Co by keeping the decay length of

HPGe detector
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FIG. 4. (Color online) Top view of the experimental setup for the
35Cl(n, γ ) calibration used in the θγ = ±90◦ measurement.
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FIG. 5. (Color online) Calibration lines with detector postioned
at 90◦ to the beam.

the second tail l2, representing the multiple-Compton plateau
below the centroid, at a large and fixed value (≈460 keV)
and varied the remaining parameters and the background
to minimize χ2. We then fitted the other gamma peaks by
requiring l1 and f1 to scale linearly with energy while varying
the other parameters to minimize χ2. Peaks on Compton edges
of other γ rays were avoided so that we could fit using a flat
backgound. Figure 6 shows the gamma rays of interest and
their fits.

We minimized sensitivity to ADC nonlinearities and line-
shape variations by the following procedure. The centroids, xi ,
of a few calibration gamma-ray peaks around each 31P(p, γ )
line of interest were fitted to a linear function, Eγi =
a + bxi . The uncertainties in peak centroids were obtained by
combining in quadrature the errors due to counting statistics
and to uncertainties in the calibration energies. This gave us
the a and b coefficients which related the 31P(p, γ ) energies
to the closest calibration line,

Eγi(
32S) = Eγi(cal) + b × [xi(

32S) − xi(cal)]. (5)

IV. SYSTEMATIC EFFECTS

A. Gain drifts

Although we used a temperature-controlled electronics
rack, Fig. 7 shows that small gain drifts did occur.

We corrected for these drifts using a time stamp that was
recorded for each event. Corrections, based on a few high-
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FIG. 6. (Color online) Fits to the most intense deexcitation
gamma-rays from the T = 2 state.
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FIG. 7. (Color online) Centroid of the 2598 keV 56Co γ peak as
a function of time.

statistics peaks, were applied piecewise to data taken over time
intervals ranging between 15 and 180 mins. These calibrations
were used to match the centroids of the shifted events to a fixed
reference.

B. ADC nonlinearities

Detector signals were digitized by an Ortec 413 ADC. We
observed significant nonlinearity in the energy range 0 �
Eγ �1.5 MeV (see Fig. 8) and did not use any lines in that range
for gain-matching or energy determination. Additional data,
taken with the doubled gains in the spectroscopy amplifiers,
proved that the nonlinearity was a property of the ADC and
not of the preceding electronics; these data also provided an
additional check on the energy of the 3.9 MeV 31P(p, γ )
gamma ray.

C. Doppler shifts

Although the Doppler shifts are minimal at θγ = ±90◦,
the sensitivity to angular uncertainty is maximal. It is unlikely
that our detectors and target could be misaligned by as much
as 0.5 cm, and a very conservative estimate of the upper
limit of the detector and target misalignment was ≈1.0 cm.
Monte Carlo calculations simulated Doppler-shifts of γ -ray
energies, taking into consideration detector mis-alignment and
recoil slowing. Doppler shifts of 31P(p, γ ) and 27Al(p, γ )
gammas were simulated using the half-life of the decaying

0 2000 4000 6000 8000
Energy (keV)

0

0.001

0.002

0.003

(E
fi

t -
 E

i)/
E

i

FIG. 8. (Color online) Nonlinearity of the ADC. The points
show centroids of 35Cl(n, γ ) and 56Co calibration lines. Pronounced
differences are seen between the observed positions and a linear fit
to the region between 2015 and 8578 keV.
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TABLE I. Predicted Doppler-shifts.

Source Eγ Detector Detector Doppler shift
(keV) distance angle (keV)

(cm) (deg)

31P(p, γ ) 3922 10.3 ± 1.0 0◦ ± 5.55◦ 10.06 ± 0.07a

59.0 ± 1.0 90◦ ± 0.97◦ 0.00 ± 0.17
31P(p, γ ) 8124 10.3 ± 1.0 0◦ ± 5.55◦ 20.83 ± 0.13a

59.0 ± 1.0 90◦ ± 0.97◦ 0.00 ± 0.36
27Al(p, γ ) 7922 10.3 ± 1.0 0◦ ± 5.55◦ 12.30 ± 0.08a

35Cl(n, γ ) 8578 59.0 ± 1.0 90◦ ± 0.97◦ −0.23 ± 0.20

aA simple estimate assuming zero lifetime for the parent state
and zero detector solid angle yields shifts of 10.3, 21.3 and
12.6 keV, respectively, for the 3922, 8124, and 7922 keV γ rays.

state to randomly generate decay times from an exponentially
decaying distribution. The energy loss by the compound
nucleus during that lifetime was calculated using the stopping
power at that particular energy (which was determined by
using SRIM [15]). For the 27Al(p, γ ) energy calibration we
used only the primary gammas emitted by the parent Ex =
12541.31 keV state. Doppler broadenings of the secondary
gammas from 31P(p, γ ) were simulated by accounting for the
angular-correlation between the two emitted gammas as well
as the transverse component of momentum imparted by the
emission of the first gamma ray.

For the 35Cl(n, γ ) reaction, the neutron angular-distribution
results for 7Li(p, n) from Ref. [12] were fed into a program that
simulated neutron scattering on paraffin and neutron capture
on 35Cl. This simulation provided us with the eventual recoil
velocities of the 36Cl nuclei prior to γ emission. The recoil
velocities and directions, and the known γ energies from
Ref. [11], were entered into the radiation-transport program
PENELOPE [16] to simulate the interaction of the γ radiation
with the detector and calculate the net Doppler shift. The
results are shown in Table I. Although the corrections for
the 0◦ data are large, their model-dependence is very small
because the shifts were virtually unattenuated; in all the cases
the ions changed their velocities by <10−7 c during the parent
state’s lifetime.

D. Field-increment effect

Acceleration of primary and secondary charge carriers
within the intrinsic volume of the detector, and variations
in the charge collection efficiency over the detector volume,
can shift the observed peaks in a manner that depends on
source position, detector geometry, bias voltage and γ -ray
energy [17]. It was important to test the magnitude of this effect
in our measurement because the γ rays from the 31P(p, γ ) and
27Al(p, γ ) reactions were at ≈0◦ to the detector, whereas the
35Cl(n, γ ) γ -rays were incident on the detector from the side
(see Fig. 4).

We tested the magnitude of this effect by fixing a 56Co
source at 0◦ to the detector 5 cm from the detector end-cap. We
then took 35Cl(n, γ ) data with the Ge detector at 65◦, 90◦, and
125◦ to the beam at the center of the chamber. This ensured that
the 36Cl γ rays were incident on the detector at three different
angles, while gammas from the 56Co source were always from
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FIG. 9. (Color online) Shifts in apparent γ -ray energies with
changes in the incident γ -ray angle. The y-axis shows the difference
in the inferred Doppler-shift-corrected γ energies from 35Cl(n, γ ) at
two extreme angles (incident along the axis of the co-axial detector
and approximately normal to the detector axis). A 56Co source fixed
to the detector provided a angle-independent reference.

a fixed postion. The energies of the 35Cl(n, γ ) lines were
corrected for Doppler shifts as described above. Figure 9 shows
the difference between the Doppler-shift-corrected data at 125◦
and 65◦. A small systematic effect may be present, but it was
not large compared to our other uncertainties. The shifts are
relatively insignificant for high energies.

E. Nonresonant background

If there were a nonresonant component to the 3922 and
8124 keV γ -rays it would shift their centroids in manner
depending on the beam energy and the structure of our target.
We found no evidence for such nonresonant components.
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FIG. 10. (Color online) Energies of the 3.9 and 8.1 MeV γ peaks
versus proton energy in the lab frame. For comparison we show the γ1

data which shows a non-resonant behavior as expected. The energies
of the 3.9 and 8.1 MeV γ peaks were obtained from line-shape fits,
while the γ1 energies are simple centroids. Data points at lower proton
energies are missing for the 3.9 and 8.1 MeV gammas because there
are no observable peaks.
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TABLE II. Level energies and Doppler-corrected γ -ray energies
from 32S.

J π , T Ex (keV) Eγ (keV)e

Previous work This work

2+, 0 2230.57(15)a . . . . . .
1+, 1 7002.5(10)b 7001.44(36) 4770.49(33)
1+, 1 8125.40(20)a 8125.32(24)d 5894.32(28)

8124.12(24)
1+, 1 9207.5(7)b 9207.55(71) 9206.13(71)
0+, 2 12045.0(4)c 12047.96(28) 2840.32(14)

3922.37(15)
5046.09(39)

aFrom Ref. [18].
bFrom Ref. [27].
cFrom Ref. [8].
dWeighted mean of the excitation energy obtained using the 5894-
2230 keV cascade and the 8124 keV γ ray.
eObtained from a weighted mean of the 0◦ and the 90◦ data. The
uncertainties are from the 0◦ data.

Figure 10 shows the centroids of 3922 and 8125 keV γ rays
versus proton energy from the 0◦ detector. For comparison we
show the centroid for the γ1 yield, which does not come from
a narrow resonance.

V. RESULTS AND DISCUSSION

A. Excitation energy of the T = 2 state

The precision of the ±90◦ data was limited both by possible
mis-alignments of the Ge detectors and by the incident-angle
dependence of the pulse height in the 36Cl calibration.

Table II compares our results to previous studies. We agree
well with previous determinations of the excitation energies
of the three T = 1 levels fed in by the T = 2 state, but
not with the previously cited value [8] for the excitation
energy of the T = 2 state itself. Table III shows the gamma
energies in the three cascade chains observed in this work
and the deduced excitation energy of the T = 2 level. Our
value for the excitation energy of the lowest T = 2 state,

TABLE III. Gamma-ray energies for cascades from the lowest
T = 2 state in 32S.

Eγ 1 (keV) Eγ 2 (keV) Ex (keV)

5046.09(39) 4770.49(33)a 12047.96(53)
3922.37(15) 8124.12(24) 12047.86(28)
3922.37(15) 5894.32(28)a 12048.10(35)
2840.32(14) 9206.13(71) 12048.01(72)

Combined
valueb

12047.96(28)

aThis γ -ray deexcites to the first excited state. We used the excitation
energy of the first excited Ex1 = 2230.57(15) keV from Ref. [18] to
obtain Ex of the T = 2 state.
bBecause the uncertainties are correlated we use the smallest of the
uncertainties in the above data as the total uncertainty in the excitation
energy.
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FIG. 11. (Color online) Top panel: Excitation function of
3922-keV γ yield. Bottom panel: Excitation function of γ1 yield
(this includes the single escape peak for additional statistics). The
continuous line shows the upper limit described in the text.

12047.96(28) keV, is about 3.0 keV (≈7σ ) higher than that
reported by Antony et al. [8] but agrees well with the
lower-precision results of Ref. [7].

B. Isospin-violating γ decays

The 32S T = 2 state provides a clean test of the isospin
selection rule that 	T = 0, 1 in γ decays. We tested this
by searching for a resonant component in the 	T = 2 γ1

transition.
A previous measurement showed a flat background for the

γ1 yield [19]. Figure 11 shows our γ1-yield excitation function,
as well as the excitation function for the 3922-keV γ ray. We
fitted the γ1 yield to a constant plus a resonant term which we
assumed had the same shape as the 3922-keV γ yield. The
best fit gave a resonant contribution consistent with zero. By
calculating the likelihood function as we varied the magnitude
of the resonant term we obtain an upper limit on the branch
to the 2.231 MeV state of 0.25% at the 90% confidence level.
Table IV shows the relative γ branches of the A = 32, T =
2 states. Our measured strength ratio 
γ (T = 2 → 2231)/
γ

(T = 2 → 8125) when expressed as an E2/M1 ratio of
Weisskopf reduced strengths is less than 0.9%.

TABLE IV. Relative gamma branches (in %) from the lowest
A = 32 T = 2 states. Excitation energies are in keV.

Final st. 32P 32S

J π
n ;T Ex Ref. [24] Ex Ref. [9] This worka

1+
3 ;1 2230 9.4(5) 9208 11(2) 9.4(7)

1+
2 ;1 1149 85.7(8) 8125 83(8) 84.3(9)

1+
1 ;1 0 4.7(6) 7001 6(1) 6.3(7)

2+
1 ;0 N/A N/A 2231 �0.8 �0.25

aWe assumed a 6% uncertainty in the ratio of γ -detection efficien-
cies.

054313-5



S. TRIAMBAK et al. PHYSICAL REVIEW C 73, 054313 (2006)

TABLE V. Comparison of the measured mass excesses of the
lowest T = 2 quintet in A = 32 with a fit to the isospin-multiplet
mass equation.

Isobar Tz MExp (keV)a MIMME (keV)

32Si −2 −24080.86 ± 0.77b −24082.52 ± 0.61
32P −1 −19232.78 ± 0.20c −19232.48 ± 0.18
32S 0 −13967.74 ± 0.31d −13968.32 ± 0.26
32Cl +1 −8291.5 ± 1.8e −8290.05 ± 0.63
32Ar +2 −2200.2 ± 1.8f −2197.67 ± 1.50

Q(χ 2 = 13.1, ν = 2)g = 0.001

aUnless noted otherwise, ground state masses are from Ref. [23].
bFrom Ref. [20].
cEx = 5072.44 ± 0.06 keV from Ref. [24].
dThis work.
ePyle et al. [25].
fBlaum et al. [26].
gQ(χ 2

0 , ν) is the probability of obtaining a set of data with χ2 � χ 2
0 ,

given that the model is correct.

C. A test of the IMME

We combine our 32S results with the best available results
for the other four members of the A = 32 isospin multiplet to
obtain the most precisely measured isospin quintet. We used
Ref. [20] for the 32Si mass rather than the more precise value
from the latest compilation [23] because we are uncomfortable
adopting an uncertainty ≈15 times smaller than that quoted by
the experimenters themselves. Because of the high precision
attained in this multiplet, a new measurement of the 32Si mass
would be welcome as the existing mass measurements are not
well documented [20,21]. We fit these results to the IMME in
Table V and Fig. 12 and observe a significant disagreement
with the IMME prediction, Q(χ2, ν) = 0.001. Reasonable
agreement with the data, Q(χ2, ν) = 0.21, can be found
by adding a very small cubic term, dT 3

z to Eq. (2) with
d = 0.54 ± 0.16 keV, which is the smallest known and most
precisely determined violation of the IMME. For comparison,
the most precise previous determination of a d coefficient
had an uncertainty of 1.4 keV [3]. Fitting the data with a
quartic, rather than cubic, term, gives a quartic coefficient,
e = 0.53 ± 0.15 keV; with Q(χ2, ν) = 0.64.

The only significant difference on using Ref. [23] for the
32Si mass instead of Ref. [20] is that we obtain a much larger
disagreement with the IMME, Q(χ2, ν) = 5 × 10−5. The d

and e coefficients are consistent with those we quote, with
slightly smaller uncertainties. The conclusions that follow are
unaffected.

Our result provides the best demonstration of the validity
of the approximations inherent in the IMME and its utility for
predicting masses away from the valley of stability. The larger
violations of the IMME observed in the very light nuclei [3]
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FIG. 12. (Color online) Difference between measured mass ex-
cesses and IMME fit for the A = 32, T = 2 quintet in keV.

probably arise from the less tightly bound nature and smaller
Coulomb barriers of those states, which lead to nonperturbative
effects.

Excellent agreement with the IMME in the A = 32 system,
Q(χ2, ν) = 0.74, would be obtained if the excitation energy of
the T = 2 state in 32S were 2.5 keV lower than we find. Could
this be explained by isospin mixing? A 	T = 2 E2 transition
from the T = 2 state to the first excited Jπ = 2+, T = 0 state
at 2.2 MeV would be evidence for such mixing. However, we
saw no evidence for this transition. This, however does not
rule out the mixing scenario. Two 0+ levels are known [27] to
lie slightly below the T = 2 state and are candidates for the
admixed level.

A 100 eV wide Jπ , T = 0+, 0 level at Ex = 11930 keV
lies 118 keV below the T = 2 state. An isospin-mixing matrix
element of ≈17 keV would shift the T = 2 state upward by
2.5 keV, implying an isospin impurity with an intensity of
2.1%. This Jπ , T = 0+, 0 level would not affect the positions
of the T = 2 states in 32P and 32Cl, which is consistent with the
data. A second Jπ = 0+ level (of unknown isospin) occurs at
Ex = 11869 keV. If this level were responsible for the 2.5 keV
shift, it would need a mixing matrix element of 21 keV and an
isospin impurity with an intensity of 1.4%. Matrix elements of
this size are not implausible.

We measured excitation functions around both the 11930
and 11869 keV resonances and found no resonant component
to the γ1 yield on the first resonance and a significant yield
on the second. Assuming 
p/
 = 1 in all cases, the T = 2,
11930 keV and 11869 keV states have γ1 widths of �7.3, �52
and 330(70) meV. These results do not exclude either of the
levels as the source of the isospin admixture.
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[20] A. Paul, S. Röttger, A. Zimbal, and U. Keyser, Hyperfine

Interact. 132, 189 (2001).
[21] Reference [23] calculated the mass from the 31Si(n, γ ) gamma-

ray energy published in Ref. [22], but corrected the unreasonable
published uncertainty of 0.0005 keV to 0.05 keV by studying
how well other known γ -ray energies were reproduced. How-
ever, the authors of Ref. [22] themselves presented a revised
evaluation of the mass of 32Si with an uncertainty of 0.822 µu
or 0.77 keV [20].
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