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Theoretical description of the fourth-forbidden non-unique β decays of 113Cd and 115In
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The half-lives and log f t values for the fourth-forbidden non-unique beta decays of the ground states of 113Cd
and 115In were calculated using a transparent formulation for the β− transition amplitude. The microscopic
quasiparticle-phonon model (MQPM) was used to calculate the initial and final states of the transitions.
The corresponding wave functions were described as linear combinations of one- and three-quasiparticle
configurations built in a realistic single-particle model space by using a realistic microscopic two-body interaction.
The computed results for the log f t values and half-lives are reasonably close to the available experimental data.
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I. INTRODUCTION

The fourth-forbidden non-unique beta decays have log f t

values larger than 20 and half-lives around 1015 years. Only
three isotopes having only this decay channel open are
currently known: 50V, 113Cd, and 115In [1]. There are, however,
highly-forbidden beta-decay transitions, e.g., in the decays of
48Ca and 96Zr which also decay by the double beta decay (see,
e.g., Ref. [2]). In these nuclei the decay Q value allows the 0+
ground state to decay to the 4+ (fourth-forbidden non-unique),
5+ (fourth-forbidden unique), and 6+ (sixth-forbidden non-
unique) states in the daughter nuclei 48Sc and 96Nb. The decay
of 48Ca was previously treated by using the nuclear shell model
in Ref. [3].

The microscopic quasiparticle-phonon model (MQPM) [4]
was developed to describe states of open-shell odd-A nuclei
[5]. Thus it is suited to study of the decays of 113Cd and
115In. For both of these decays some experimental data exists:
in addition to the half-lives, log f t values and the excitation
spectra evaluated in Refs. [6,7], there is also a very recent
measurement for the half-life of 113Cd [1]. These data have
been collected in Fig. 1.

The kinematical part of beta decay is well established in
literature (e.g., in Ref. [8]). In the present work we apply
the formulation of Ref. [8] for the non-unique β− decays by
giving explicit expressions for the involved shape functions
and nuclear matrix elements. Calculation of the single-particle
matrix elements and the nuclear matrix elements makes use
of our explicitly written charge-changing transition densities,
which have to be computed by using a nuclear model. For
the presently discussed odd-mass nuclei the needed transition
densities are easily computed using the formalism of the
MQPM [4].

The MQPM provides an internally consistent, fully micro-
scopic way of describing spherical (or nearly spherical) open-
shell odd-A nuclei. The same nucleon-nucleon interaction
is used all the way from generating the quasiparticles and
phonons to coupling them to three-quasiparticle configura-
tions. Thus far only allowed beta decays have been considered
in the MQPM framework, e.g., in Ref. [4] and [9]. However,
since the forbiddeness of the beta decay does not affect the
description of the initial and final nuclear states, the MQPM
computed transition densities just have to be implemented

in the general beta-decay framework of Ref. [8]. Still, the
computation of the log f t values for non-unique forbidden
decays takes a lot more effort than for the allowed or unique-
forbidden decays as there are either four (second-forbidden
and higher) or six (first-forbidden) nuclear matrix elements to
be considered, instead of just one or two. Non-unique first-
forbidden beta decay was discussed earlier in Refs. [10–12]
for odd-odd mother nuclei.

This article is organized as follows. In Sec. II we give
the necessary theoretical background on the MQPM and non-
unique forbidden beta decay. In Sec. III we apply the reviewed
formalism to compute beta-decay log f t values and half-lives
for the 113Cd and 115In decays. In Sec. IV we summarize our
results and draw the conclusions.

II. THEORETICAL BACKGROUND

A. Microscopic quasiparticle-phonon model

In the BCS approach [13] the ground state of an even-even
nucleus is described as a superconducting medium where all
the nucleons have formed pairs that effectively act as bosons.
Formally the BCS ground state is defined as

|BCS〉 =
∏
α>0

(ua − vac
†
αc̃†α)|CORE〉, (1)

where |CORE〉 represents the nuclear core (effective particle
vacuum), c†α is the particle creation operator and ua and va

are the unoccupation and occupation amplitudes, which are
to be determined. The notation of Baranger [14] is adopted
here for the quantum numbers of the single-particle states:
the Roman letter a includes the quantum numbers na, la and
ja . The Greek letter α includes all the quantum numbers of
a and the magnetic quantum number mα . The notation α > 0
is interpreted as mα > 0. The time-reversed operator has been
defined as c̃†α = (−1)ja+mac

†
−α , where −α = {a,−mα}.

The BCS ground state (1) acts as a vacuum for
quasiparticles. The creation and annihilation operators
for quasiparticles are constructed via the Bogolyubov-Valatin
quasiparticle transformation: a†

α = uac
†
α + vac̃α, aα = uacα +

vac̃
†
α . The BCS quasiparticles satisfy the anticommutation

relation {a†
α, aβ} = δαβ and are therefore fermions.
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FIG. 1. Experimental data [6,7] on the decays of the ground states
of 113Cd and 115In.

The occupation and unoccupation amplitudes can be solved
by applying a variational procedure for minimizing the energy
of the BCS ground state for protons and neutrons separately.
Since the BCS ground state (1) lacks good particle number the
variation is constrained by requiring the average proton and
neutron numbers in the BCS ground state to correspond to the
ones of the even-even nucleus under discussion.

After the quasiparticle transformation the nuclear
Hamiltonian can be written in the form

H = H11 + H20 + H02 + H22 + H31 + H13 + H40 + H04,

(2)

where each term is proportional to a normal-ordered product
of creation and annihilation operators, i.e.,

Hnm ∝ a†
α1

· · · a†
αn

aβ1 · · · aβm
. (3)

It turns out that when minimizing the ground-state energy
with the variational procedure, the terms H20 and H02 vanish.
This means that the quasiparticle transformation dumps a large
part of the short-range residual interaction in noninteracting
quasiparticles.

In practice, in the BCS calculations the monopole interac-
tion matrix elements are often scaled so that the experimental
pairing gaps are reproduced. The notation for these phe-
nomenological scaling constants used here is g

(p)
pair for protons

and g(n)
pair for neutrons. The pairing gaps can be extracted

from experimental data by using the linear approximation
formulas [15]

�p
(

A
Z X
) = 1

4 (−1)Z+1
(
Sp
(A+1

Z+1 X
)− 2Sp

(
A
Z X
)+ Sp

(A−1
Z−1 X

))
(4a)

and

�n
(

A
Z X
) = 1

4 (−1)A−Z+1
(
Sn
(A+1

ZX
)

− 2Sn
(

A
Z X
)+ Sn

(A−1
ZX
))

, (4b)

where Sn(A
Z X) and Sp(A

Z X) are the neutron and proton separa-
tion energies of the A

Z X nuclide, respectively.
The logical next step in the quasiparticle framework is

to consider the two-quasiparticle excitations, and hence, the

terms H22,H40, and H04 of the residual interaction (2). This
can be done via the quasiparticle random phase approxima-
tion (QRPA) [14]. The QRPA excitations—or phonons—are
created with the operator

Q†
ω =

∑
a� a′

[
Xω

aa′A
†
aa′(JωM) − Yω

aa′Ãaa′ (JωM)
]
, (5)

where ω stands for the angular momentum Jω, the parity
πω and the additional index kω which identifies the different
excitations with the same angular momentum and parity. The
summation is restricted so that double counting of pairs is
avoided. The two-quasiparticle creation and annihilation oper-
ators are defined as A

†
ab(JωM) = (1 + δab(−1)J )−1/2[a†

aa
†
b]Jω

and its time-reversed hermitian conjugate Ãab(JωM) =
(−1)Jω−MAab(Jω,−M). The X and Y amplitudes can be solved
from the QRPA matrix equation, see, e.g., Ref. [16].

The simplest way to describe the states of an odd-A nucleus
in the quasiparticle picture is to consider only the states where
one quasiparticle is created on the BCS vacuum (the ground
state of the even-even reference nucleus). To improve this
description however, three-quasiparticle excitations should be
included. The MQPM is a fully microscopic way to introduce
the three-quasiparticle correlations and, consequently, to take
the last two residual interaction terms of Eq. (2), namely, H31

and H13, into account.
The MQPM excitation operator is written as

�
†
i (jm) =

∑
n

Ci
na

†
njm +

∑
aω

Di
aω[a†

aQ
†
ω]jm, (6)

where the amplitudes Ci
n and Di

aω are now to be determined.
Use of the methods of Ref. [16] leads to a generalized
eigenvalue equation(

A B

BT A′

)(
Ci

Di

)
= �i

(
1 0

0 n

)(
Ci

Di

)
, (7)

where the submatrix n of the metric matrix is nondiagonal, as
the three-quasiparticle basis states do not form an orthogonal
set. Typically the set of the three-quasiparticle states also
forms an overcomplete basis. The procedure to overcome this
difficulty and to transform to an ordinary eigenvalue equation
is described in more detail in Ref. [4]. In the procedure the
submatrix n is diagonalized and a complete set of basis states
is achieved by discarding the eigenstates with zero eigenvalue.

The charge-changing transition densities (CCTD) for the
β− decay in the MQPM framework are

(p‖[c†p′ c̃n′ ]L‖n) = L̂upunδpp′δnn′ (8)

and

(n‖[c†p′ c̃n′ ]L‖p) = L̂vnvpδnn′δpp′(−1)jn′ +jp′+L (9)

for transitions between one-quasiparticle states, and

(ωpj‖[c†p′ c̃n′ ]L‖n) = (−1)jp+Jω−j ĴωL̂ĵ

[{
jn j L

jp jn′ Jω

}
× X̄ω

nn′up′vn′σ−1
nn′ δpp′(−1)jn+j+L

+ δjjp′

ĵ 2
Ȳ ω

pp′vp′un′σ−1
pp′δnn′

]
(10)
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and

(ωnj‖[c†p′ c̃n′ ]L‖p)

= −(−1)jp′+jn′ +L(−1)jn+Jω−j ĴωL̂ĵ

[{
jp j L

jn jp′ Jω

}

× X̄ω
pp′vn′up′σ−1

pp′δnn′ (−1)jp+j+L

+ δjjn′

ĵ 2
Ȳ ω

nn′un′vp′σ−1
nn′ δpp′

]
, (11)

for transitions between one-quasiparticle and quasiparticle-
phonon excitations. Here we have defined σaa′ = √

1 + δaa′

and X̄ω
aa′ = Xω

aa′ − (−1)ja+ja′ −JωXω
a′a . For transitions between

two quasiparticle-phonon excitations, one obtains

(ωnj‖[c†p′ c̃n′ ]L‖ω′pj ′)

= −
[

(−1)jp+Jω−j

{
j L j ′

jn′ Jω jp′

}
δpp′

×
(

1

2
δnn′δωω′ + K(n′ωnω′; j ′)

)

+ (−1)jp′ +Jω′ −j

{
j L j ′

jn′ Jω′ jp′

}
δnn′

×
(

1

2
δpp′δωω′ + K(pωp′ω′; j )

)]

× ĵ L̂ĵ ′(−1)j+L+j ′
vp′vn′

−






j L j ′

jp jp′ Jω′

Jω′ jn′ jn


 X̄ω′

p′pX̄ω
nn′ (−1)jn′+jp′−L

+ δjjn′ δj ′jp′

ĵ 2ĵ ′2
Ȳ ω

pp′ Ȳ
ω′
n′n


 σ−1

nn′ σ
−1
pp′ ĵ L̂ĵ ′

× (−1)jp+Jω−j ĴωĴω′up′un′ , (12)

where

K(aωa′ω′; j ) = ĴωĴω′
∑

b

[{
ja′ jb Jω

ja j Jω′

}
X̄ω

ba′X̄
ω′
ba

−δjjb

ĵ 2
Ȳ ω

baȲ
ω′
ba′

]
σ−1

ba σ−1
ba′ (13)

and the matrix element (ωpj‖[c†p′ c̃n′ ]L‖ω′nj ′) is obtained by
making the substitution ua → va and va → −ua .

B. Non-unique forbidden beta decay

The general formulation to calculate non-unique forbidden
beta decays is provided in Ref. [8]. In this section this
formulation is presented in a streamlined way allowing easy
application to β−-decay calculations. Unlike in Ref. [8], where
natural units were used, we will use SI units in this work.

When only the energy spectrum of the escaping electron is
observed and the angular dependence has been integrated over,
the probability of electron emission in the energy interval We

to We + dWe is

P (We)dWe = G2
F

(h̄c)6

1

2π3h̄
C(We)pecWe(W0 − We)2

×F0(Z,We)dWe, (14)

where GF /(h̄c)3 is the Fermi coupling constant, C(We) is the
shape factor (discussed below), W0 is the endpoint energy
of the beta spectrum, and F0(Z,We) is the Fermi function.
Furthermore, We is the energy and pe the momentum of the
emitted electron. The kinematical factors pecWe(W0 − We)2

arise from the available phase space for the emitted electron
and antineutrino. The half-life becomes then

t1/2 = ln 2∫ W0

mec2 P (We)dWe

, (15)

where me is the mass of the electron.
The half-life of the decay can also be written in the form

t1/2 = κ/C̃, where the constant

κ = 2π3h̄ ln 2

(mec2)5G2
F /(h̄c)6

(16)

has the value 6147s [17] and the unitless integrated shape
factor is

C̃ =
∫ w0

1
C(we)pwe(w0 − we)2F0(Z,we)dwe, (17)

where the electron-mass scaled quantities are w0 =
W0/(mec

2), we = We/(mec
2), p = pec/(mec

2) = √w2
e − 1,

and F0(Z,we) is the Fermi function. The reduced half-life, or
log f t value, is obtained by multiplying the half-life with the
following unitless integrated Fermi function

f =
∫ w0

1
pwe(w0 − we)2F0(Z,we)dwe (18)

and taking a base-10 logarithm.
The shape factor C(we) can be obtained from [8]. It can be

written in the form

C(we) = (6.706 × 10−6)K


 ∑

ke+kν=K+1

λke

(
w2

e − 1
)ke−1

× (w0 − we)2(kν−1)g2
V D2

Kkekν
ÃK

+
∑

ke+kν=K+2

λke

(
w2

e − 1
)ke−1

× (w0 − we)2(kν−1)g2
V D̃2

Kkekν
BK


 , (19)

where ke and kν are positive integers emerging from the partial
wave expansion of the lepton wave functions. Their relation to
the orbital angular momentum l of the leptons is

k =
{

l for j = l − 1
2

l + 1 for j = l + 1
2 ,

(20)
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where j is the total angular momentum of the lepton, obtained
by coupling the orbital angular momentum with the lepton
spin.

Leading contributions to the shape factor come from the
smallest possible electron (ke) and neutrino (kν) partial waves
satisfying ke + kν = K + 1 and ke + kν = K + 2 as indicated
in (19). Hence, for the fourth-forbidden decay we have lepton
orbital angular momenta corresponding up to le, lν � 6 partial
waves. In Eq. (19) we have used the scaling

6.706 × 10−6 =
(

mec
2 · fm

h̄c

)2

(21)

by assuming that all the nuclear matrix elements in ÃK and
BK are given in units of (fm)K .

The quantities ÃK and BK can be expressed in terms
of kinematical factors and nuclear form factors FKLS(q2)
[8], where K is the multipolarity of the involved transition
operator. The form factors can be related to the nuclear matrix
elements for small momentum exchange q2 in the impulse
approximation. In this case the most important contribution
to the decay rate will arise from the form factors that are
related to the minimal transferred angular momentum. Order-
of-magnitude considerations done in Ref. [8] imply that the
following four form factors:

VF
(0)
K,K−1,1,

VF
(0)
KK0,

AF
(0)
KK1,

AF
(0)
K+1,K1 (22)

will be the most important when calculating the beta decay
rate. Above we have denoted

V/AF
(0)
KLS ≡ V/AFKLS(q2 = 0). (23)

In order to express the form factors V/AF
(0)
KLS in terms of

nuclear matrix elements we use the impulse approximation [8].
This leads to

RLVF
(0)
KLS → (−1)K−LgV

VM(0)
KLS (24a)

and

RLAF
(0)
KLS → (−1)K−L+1gA

AM(0)
KLS, (24b)

where R is the nuclear radius. We define the following matrix
elements for a fixed multipolarity K:

RK−1V F
(0)
K,K−1,1 → −gV

VM(0)
K,K−1,1 ≡ −gV M1,

(24c)

RKV F
(0)
KK0 → gV

VM(0)
KK0 ≡ gV M2, (24d)

RKAF
(0)
KK1 → −gA

AM(0)
KK1 ≡ −gAM3, (24e)

RKAF
(0)
K+1,K1 → gA

AM(0)
K+1,K1 ≡ gAM4, (24f)

RKVF
(0)
KK0(ke, 1, 1, 1) → gV

VM(0)
KK0(ke, 1, 1, 1)

≡ gV M
(ke)
2 , (24g)

RKAF
(0)
KK1(ke, 1, 1, 1) → −gA

AM(0)
KK1(ke, 1, 1, 1)

≡ −gAM
(ke)
3 . (24h)

For convenience, we adopt the linear combinations

M± = M2 ±
√

K + 1

K

gA

gV

M3 (25)

and

M
(ke)
− = M

(ke)
2 −

√
K + 1

K

gA

gV

M
(ke)
3 . (26)

The factors containing the nuclear matrix elements are then
given by

ÃK = 2K + 1

K
M̃2

1 + 1

(2ke + 1)2

[
(α̃Z)2(M (ke)

− )2

+ 2(α̃Z)weM−M
(ke)
− + (1 + w2

e

)
M2

−
]

− 2γke

kewe(2ke + 1)2
[(α̃Z)M−M

(ke)
− + weM

2
−]

+ 1

(2kν + 1)2
(w0 − we)2M2

+

− 2

2ke + 1

√
2K + 1

K
[(α̃Z)M̃1M

(ke)
− + weM̃1M−]

+ 2

2ke + 1

√
2K + 1

K

γke

kewe

M̃1M−

− 2

2kν + 1

√
2K + 1

K
(w0 − we)M̃1M+

+ 2

(2ke + 1)(2kν + 1)
(w0 − we)

× [(α̃Z)M (ke)
− + weM−]M+

− 2

(2ke + 1)(2kν + 1)

γke

kewe

(w0 − we)M−M+ (27)

and

BK = K + 1

(2ke − 1)(2kν − 1)

[
M2

2 + 2
gA

gV

ke − kν√
K(K + 1)

M2M3

+ (ke − kν)2

K(K + 1)

(
gA

gV

)2

M2
3

]
+
(

gA

gV

)2

M2
4 . (28)

Here gV and gA are the usual vector and axial-vector coupling
constants.

In Eq. (19) we have defined according to [8]

DKkekν
= 1√

2

√
(2K)!!

(2K + 1)!!

1√
(2ke − 1)!(2kν − 1)!

, (29)

D̃Kkekν
=
√

(2K)!!

(2K + 1)!!

1√
(2ke − 1)!(2kν − 1)!

, (30)

and

λke
= Fke−1(Z,we)

F0(Z,we)
. (31)
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The quantity Fke−1(Z,we) is the generalized Fermi function
[8]

Fke−1(Z,we) = 4ke−1(2ke)(ke + γke
)[(2ke − 1)!!]2

× eπy

(
2peR

h̄

)2(γke −ke)

×
( |�(γke

+ iy)|
�(1 + 2γke

)

)2

, (32)

where y = (αZwe)/(pec). The dimensionless factors γke
and

α̃ in Eq. (27) read

γke
=
√

k2
e − (αZ)2 (33)

and

α̃ = αh̄

Rmec
. (34)

The scaled matrix element

M̃1 = h̄c

mec2
M1 = 386.2 fm × M1 (35)

has been defined in Eq. (27) in order that all the matrix elements
M̃1,M2,M3, and M4 in Eq. (24) have the units (fm)K . When
expressed in these units the numerical values of the matrix
elements M̃1 and M2 – M4 can be inserted in the quantities
ÃK and BK of Eqs. (27) and (28). Then the remaining scaling
factor (fm)2K of the squared matrix elements goes into the
numerical factor (21), raised to the power K in Eq. (19).

The needed nuclear matrix elements can be calculated from
the expression

V/AM(0)
KLS = 1√

2Ji + 1

∑
pn

V/AmKLS(pn)

×(ψf ‖[c†pc̃n]K‖ψi), (36)

where the single-particle transition densities (ψf ‖[c†pc̃n]K‖ψi)
are obtained from the nuclear wave functions ψf and ψi , i.e.,
from the nuclear model. The involved single-particle transition
matrix elements V/AmKLS(pn) are given by

V mKLS(pn) = 1√
2K + 1

(p‖TKLS‖n), (37)

AmKLS(pn) = 1√
2K + 1

(p‖γ5TKLS‖n). (38)

The transition operator TKLS is given in the spherical tensor
notation as

TKLSM =
{
iLrLYLMδLK, S = 0,

iL(−1)L+1−KrL[YLσ ]KM, S = 1,
(39)

where YLM is the usual spherical harmonic and σ the Pauli
spin operator.

To evaluate the single-particle matrix elements we use the
relativistic single-particle spinor wave function

φnljm(r) =
(

Gnljm(r)
Fnljm(r),

)
(40)

where the large component Gnljm is taken to be a solution of
the non-relativistic Schrödinger equation. These solutions are
written in the form.

Gnljm(r) = ilgnl(r)[Ylχ 1
2
]jm, (41)

where χ 1
2 ms

is the nonrelativistic spin- 1
2 spinor. The small

component of the spinor wave function (40) is

Fnljm(r) = σ · p
2MNc

Gnljm(r), (42)

where MN is the nucleon mass and p its momentum, to
be interpreted as a derivative operator. Taking gnl(r) to be
harmonic-oscillator wave functions the small component can
be evaluated analytically. The result for j = 1 ± 1

2 is

Fnljm(r) = il+1h̄

2(MNc)b
(−1)l+j− 1

2

( r

b
gnl

− 2
√

n + j + 1gn,l±1

)
[Yl±1χ 1

2
]jm, (43)

where b is the harmonic-oscillator size parameter.
In terms of the large and small components of Eq. (40) the

involved single-particle matrix elements can be written as

V mKK0(pn) = 1√
2K + 1

[(Gp‖TKK0‖Gn)

+ (Fp‖TKK0‖Fn)], (44a)

AmKL1(pn) = 1√
2K + 1

[(Gp‖TKL1‖Gn)

+ (Fp‖TKL1‖Fn)], (44b)

and

V mKL1(pn) = 1√
2K + 1

[(Gp‖TKL1‖Fn)

+ (Fp‖TKL1‖Gn)]. (44c)

After some algebra the matrix elements can be rewritten as

V mKK0(pn) = ilp+ln+K 1 + (−1)lp+ln+K

2

× (−1)jp+jn+1 ĵpĵn

K̂

(
jp

1
2 jn − 1

2

∣∣K 0
)

× [(−1)ln+jn−1/2〈rK〉pn�(lplnK)

+ (−1)lp+jp−1/2{rK}p̃ñ�(l̃p l̃nK)
]
, (45a)

AmKL1(pn) = ilp+ln+L(−1)K+1 L̂ĵpĵn

K̂

1 + (−1)lp+ln+L

2

× (jp
1
2 jn − 1

2

∣∣K 0
){

[AKL(pn)

+BKL(pn)]〈rL〉pn�(lplnL)

+ (−1)lp+ln+jp+jn [AKL(pn)

−BKL(pn)]{rL}p̃ñ�(l̃p l̃nL)
}
, (45b)
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and

V mKL1(pn) = ilp+ln+L+1 1 + (−1)lp+ln+L+1

2

L̂ĵpĵn

K̂

× (jp
1
2 jn − 1

2

∣∣K 0
)

× {[AKL(pn) + BKL(pn)](−1)K+ln+jn+1/2

×{rL}pñ�(lpl̃nL)

+ [AKL(pn) − BKL(pn)](−1)K+lp+jp+1/2

×{rL}p̃n�(l̃plnL)
}
. (45c)

Above �(l1l2L) denotes the triangular condition for the
coupling of the angular momenta l1, l2, and L. Furthermore,
the geometric factors are

AKL(pn) = ĵ 2
p + (−1)jp+jn+Kĵ 2

n√
2K(K + 1)(2L + 1)

(−1)K+1

× (K11 − 1|L0)(1 − δK0), (46)

BKL(pn) = (−1)lp+jp−1/2+KL̂−1(K 0 1 0|L 0), (47)

and the auxiliary orbital angular-momentum quantum number
has been defined as

l̃ =
{

l + 1, j = l + 1
2 ,

l − 1, j = l − 1
2 .

(48)

The involved radial factors are defined as

{rL}pñ = k(b)
(
b−1〈rL+1〉pn − 2

√
nn + jn + 1〈rL〉pñ

)
,

(49a)

{rL}p̃n = k(b)
(
b−1〈rL+1〉pn − 2

√
np + jp + 1〈rL〉p̃n

)
,

(49b)
and

{rL}p̃ñ = k(b)2
(
b−2〈rL+2〉pn2b−1

√
np + jp + 1〈rL+1〉p̃n

− 2b−1
√

nn + jn + 1〈rL+1〉pñ

+ 4
√

(np + jp + 1)(nn + jn + 1)〈rL〉p̃ñ

)
, (49c)

where the basic radial integral reads

〈rL〉pn =
∫ ∞

0
gnplp (r)rLgnnln r

2dr. (50)

Here the notation p̃ (ñ) has to be understood as a set of quantum
numbers p̃ = npl̃pjp (ñ = nnl̃njn). The involved auxiliary
quantity has been defined as

k(b) = 1

2Mnb
= 0.1051

b [fm]
, (51)

where in the last, numerical expression the harmonic oscillator
parameter

b = 197.33√
939h̄ω

fm, h̄ω = 45A−1/3 − 25A−2/3, (52)

has been expressed in units of fm. When the basic radial
integral (50) is expressed as (fm)L then all the single-particle
matrix elements (45a)–(45c) have the dimension (fm)L.

The ke dependent matrix elements M
(ke)
2 and M

(ke)
3 are

calculated just like M2 and M3 except that the Coulomb factor

I (ke, 1, 1, 1; r) =
{

3
2 − 2ke+1

2(2ke+3)

(
r
R

)2
, 0 � r � R

2ke+1
2ke

R
r

− 3
2ke(2ke+3)

(
R
r

)2ke+1
, r > R

(53)
is appended to the integrand of the radial integral (50).

From the single-particle matrix elements of Eqs. (45a)–
(45c) we can write our final matrix elements M1–M4 as

M1 = Ĵ−1
i

∑
pn

V mK,K−1,1(pn)(ψf ‖[c†pc̃n]K‖ψi), (54a)

M2 = Ĵ−1
i

∑
pn

V mKK0(pn)(ψf ‖[c†pc̃n]K‖ψi), (54b)

M3 = Ĵ−1
i

∑
pn

AmKK1(pn)(ψf ‖[c†pc̃n]K‖ψi), (54c)

and

M4 = Ĵ−1
i

∑
pn

AmK+1,K1(pn)(ψf ‖[c†pc̃n]K+1‖ψi). (54d)

III. NUMERICAL APPLICATION

The mean-field single-particle states were generated by
a coulomb-corrected Woods-Saxon (WS) potential with the
parametrization of Bohr and Mottelson [18]. The adopted
valence space consisted of the 3h̄ ω and 4h̄ ω oscillator major
shells augmented by the 0h states from the 5h̄ ω major shell.
Slight modifications (see Table I) were made to some of the
WS single-particle energies. In this way the resulting BCS
quasiparticle spectra for protons and neutrons would better
correspond to those experimental low-energy states in the
adjacent proton-odd and neutron-odd nuclei that could be
reasonably assumed to be dominantly of one-quasiparticle
character. The two-body interaction matrix elements used
throughout the calculations were generated from the Bonn
one-boson-exchange potential applying G-matrix techniques
[19].

The interaction matrix elements involved in the BCS
calculations were scaled by a constant g

(p)
pair for the protons

TABLE I. Woods-Saxon energies and the manually
adjusted energies in units of MeV. The proton and neutron
orbitals are denoted with π and ν, respectively.

Nucleus Orbital Woods-Saxon Adjusted

112Cd π1p3/2 −11.14 −10.0
π0g9/2 −8.57 −9.4
ν0g7/2 −8.66 −9.5
ν0h11/2 −6.04 −7.1

116Sn π1p1/2 −9.58 −8.8
π1p3/2 −11.10 −9.4
ν1d3/2 −7.74 −7.4
ν0h11/2 −6.83 −7.2

054301-6



THEORETICAL DESCRIPTION OF THE FOURTH- . . . PHYSICAL REVIEW C 73, 054301 (2006)

and g(n)
pair for the neutrons, so that the phenomenological proton

and neutron pairing gaps were reproduced. The pairing gaps
were calculated by Eqs. (4a) and (4b) using the experimental
separation energies from Refs. [6,7,20–23]. The following
values for the scaling constants were obtained: for 112Cd
g

(p)
pair = 1.02 and g(n)

pair = 0.93, and for 116Sn g
(p)
pair = 1.13 and

g(n)
pair = 0.94. Hence the scaling needed was quite small,

indicating that the monopole part of the used G-matrix is,
as such, suitable for pairing calculations.

The quasiparticle energy spectra were quite succesful in
reproducing the low-energy spectra of the relevant odd-mass
nuclei in all the cases except 113Cd. In the case of 116Sn, due to
the magic proton number Z = 50 and the fact that the isotope
115In was to be modeled using this reference nucleus, a proton
number Z = 48 had to be used instead to achieve a reasonable
quasiparticle energy spectrum for protons. Without this little
trick, no reasonable ordering of the one-quasiparticle states
could be achieved. The proton-quasiparticle spectrum for Z =
50 would have, however, nicely agreed with the low-energy
spectrum of 117Sb.

In the QRPA calculations the interaction matrix elements
were scaled separately for each multipole, as tabulated in
Table II. The scaling constants were taken to be gph for the
particle-hole part and gpp for the particle-particle part of the
proton-neutron residual interaction, as discussed in Ref. [24].
In this way the lowest excitation energy of each multipole was
brought as close to the experimental energy as possible. If
this was not possible with a reasonable scaling, then a more
complex structure of the state was assumed and the scaling
constant was taken to be 1 in default of any better alternative.

The 0+, 2+, and 4+ triplet of excited states around
1.3 MeV was ignored when doing the QRPA calculation for
112Cd because of their known two-phonon nature [25], which
is obviously beyond the scope of the QRPA.

As the final step, the MQPM calculations were performed
for the beta-decay mother and daughter nuclei starting from
the same even-even reference nucleus. The number of the
QRPA phonons used was increased until there was no notable
effect on the low-energy spectra of the involved odd-mass
nuclei. Finally, four 2+ and two 4+, 5− and 6+ in addition to

TABLE II. Values of the interaction scaling con-
stants used in the QRPA calculations: gph is the scaling
constant for the particle-hole and gpp for the particle-
particle interaction matrix elements. The blank voids
denote the default value 1.

J π 112Cd 116Sn

gph gpp gph gpp

0+ 1.07 0.87 0.78 0.86
1− 0.52 0.48
2+ 0.71 0.62
3− 0.72 0.75
4+ 0.89 0.66
5− 0.82 0.56
6+ 0.39
7− 1.05

one 1−, 3−, and 7− QRPA phonons were used in the MQPM
calculation for the A = 113 nuclei. Similarly, six 2+, 3−, 4+,
and 5−, as well as four 1− phonons were used for the A =
115 nuclei. The final MQPM spectra, and their comparison to
the experimental low-energy spectra of the involved odd-mass
nuclei, are presented in Fig. 2.

As seen in Fig. 2, the MQPM was unable to exactly
reproduce the ordering of the low-energy states of 113Cd. This
traces all the way back to the BCS quasiparticle spectrum,
where the attempts to improve the ordering of the computed
single-quasiparticle spectrum by slight adjustments to the
single-particle energies failed. However, it is reasonable to
expect that this has little effect on the ground-state wave
function.

Interestingly, in the MQPM spectrum for 113In there are
plenty of low-energy states not seen in the experimental
spectrum. In most of these states the dominant component is
2+

1 ⊗ 0g9/2. The fact that these states push themselves so low
in the MQPM spectrum reduces slightly the dominance of the
0g9/2 one-quasiparticle state in the ground-state wave function.
Consequently, this may partially explain why the calculated
decay rate is slower than the corresponding experimental one.

In the MQPM spectrum of 115Sn the ordering of the 7
2

+
1

and 11
2

−
1 is reversed relative to the experiment. The MQPM

spectrum of 115In, on the other hand, seems to agree with the
experimental one rather nicely, even if the density of states
above 800 keV of excitation energy is lower in the MQPM
spectrum. This is natural, since the excitations of five and
more quasiparticles are absent from the MQPM.

Once the MQPM description of the nuclei was complete,
the resulting wave functions were used to compute the charge-
changing transition densities needed in the beta-decay-rate
calculations. It was observed that, unsurprisingly, the tran-
sition densities (113In; 9

2
+
g.s.‖[c†π0g9/2

c̃ν2s1/2 ]4,5‖113Cd; 1
2

+
g.s.) and

(115Sn; 1
2

+
g.s.‖[c†π2s1/2

c̃ν0g9/2
]4,5‖115In; 1

2
+
g.s.) were clearly domi-

nant in the corresponding decays. The nuclear matrix elements,
the log f t values, and the half-lives were then calculated
utilizing the formulas presented in Sec. II B. The obtained
nuclear matrix elements are listed in Table III.

TABLE III. Calculated beta-decay nuclear
matrix elements in units of fm4.

113Cd → 113In 115In → 115Sn

M̃1 2.6313 5.8251
M2 596.51 −554.77
M3 532.99 −477.23
M4 876.49 832.43
M

(1)
2 655.96 −612.25

M
(2)
2 612.71 −572.37

M
(3)
2 589.52 −550.97

M
(4)
2 575.23 −537.77

M
(1)
3 586.88 −527.15

M
(2)
3 548.36 −492.92

M
(3)
3 527.70 −474.53

M
(4)
3 514.96 −463.19
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FIG. 2. Comparison between the MQPM spectra and the experimental low-energy spectra of the nuclei 113Cd, 113In, 115In, and 115Sn. The
spin-parity of the state is indicated on the left of the level, whereas the excitation energy on the right of the level. For the theoretical spectrum
also the main component of the wave function of the state is given on the right.

The computed log f t values 23.94 and 23.20 were obtained
for the ground-state-to-ground-state decays of 113Cd and
115In, respectively. The corresponding experimental values
[6,7] are 23.20(10) and 22.5, respectively. This implies
that the transitions are somewhat faster in reality than
obtained by the MQPM. However, the difference is not
very large and the trend of the log f t values is correctly
reproduced.

The half-lives calculated from the obtained log f t values
were 4.95 × 1016 yrs for the decay of 113Cd and 1.99 ×
1015 yrs for the decay of 115In. The corresponding experi-
mental values are 7.7(3) × 1015 yrs and 4.41(25) × 1014 yrs,

respectively. The recent measurement for 113Cd [1] gives
(8.2 ± 0.2(stat.)+0.2

−1.0(sys.)) × 1015 yrs.

IV. SUMMARY AND CONCLUSIONS

The mother and daughter nuclei of the fourth-forbidden
non-unique beta decays of 113Cd and 115In were modelled
using the microscopic quasiparticle-phonon model. The result-
ing low-energy excitation spectra of the involved mother and
daughter nuclei corresponded rather well to the experimental
spectra. This was considered as a test of the theoretical
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framework since only the composition of the wave functions of
the ground states of the involved nuclei were of interest to us.

The computed ground-state wave functions were used to
calculate the required transition densities for evaluation of
the beta-decay half-lives and log f t values of the discussed
transitions. In this step we applied the Behrens and Bühring
formulation of the β− decay amplitudes for non-unique
forbidden transitions.

According to the available experimental data, the transitions
seem to be faster than what was predicted by the calculations.

The difference between the experimental and theoretical values
is, however, not as large as one could expect considering
previous calculations [9] for the allowed beta decays in some
medium-mass and heavy nuclei.
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