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Three-body continuum energy correlations in Borromean halo nuclei. II
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The general properties of intrinsic energy correlations in the three-body continuum of Borromean halo nuclei
are considered. A model that describes the system as a three-body α + n + n cluster structure and reproduces
the experimentally known properties of 6He and 6Li is used to study low-lying resonances and soft modes. The
intrinsic correlated structure of the 6He continuum reveals a unique structure for three-body 2+

1 , 2+
2 , and 1+

1

resonances and a lack of resonant structure in soft dipole and monopole modes.
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I. INTRODUCTION

Developments during the past decade of dynamic ap-
proaches to three-body continuum theory [1–4] have made
it possible to perform detailed studies of specific features of
the continuum of a Borromean system with a halo ground
state. This article continues our studies of the continuum
properties of halo nuclei, with particular reference to and
illustrations for 6He. Three-body α + n + n dynamics, de-
termined by the three-body Schrödinger equation within the
method of hyperspherical harmonics (HH) (see Refs. [1,2,5,6])
has by now been consistently applied for both bound and
continuum states. A “realistic” αn interaction [5] with purely
repulsive s-wave component and the GPT nn interaction [7]
were used, reproducing resonances and phase shifts in the
binary channels. In our articles [1,2] we have investigated
three-body scattering phase shifts and simple responses of
transitions from halo ground state to the continuum, summed
over final states. We found a significant compression of
the low-lying continuum spectrum for 6He, compared to
calculations where all binary potentials were progressively
increased by scaling factors λ > 1 to make structures and states
bound.

For three-body Borromean systems, an ideal experiment
would be to observe the intrinsic structure of the continuum
in 3 → 3 scattering, but such experiments seem impossible
at present to perform in the laboratory. Thus, we have to be
satisfied with more or less complicated reactions that induce
transitions from the halo ground state (g.s.) to the three-body
continuum. One-step reaction theories [for example DWBA,
or the semiclassical electromagnetic dissociation (EMD)
method] intertwine correlations from both the g.s. and the
three-body continuum, with additional distortion from reaction
mechanisms. We will return to this topic in a forthcoming
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paper, so in the present paper, even if 3 → 3 scattering remains
a thought experiment, we study the genuine intrinsic features
of the Borromean continuum theoretically.

The doubly peaked (“di-neutron”+“cigar”) plot [5,6] for
the spatial correlation density of the 6He g.s. has been
a useful tool for elucidating halo properties. Recently, in
Ref. [8] (henceforth referenced as (I)] we have calculated
similar spatial correlation densities of the continuum wave
functions in 6He. By summing over angles and partial waves,
plots of the continuum correlated densities were presented in
coordinate space. The present paper continues this analysis and
discusses the physics contained in intrinsic energy correlations
of the three-body continuum.

The three-body dynamics has previously been successfully
tested in calculations for bound and lowest excited states of
the A = 6 nuclei [1,5], for calculation of the dipole strength
function [9], and inelastic 6He(n, n′) and charge-exchange
6Li(n, p) reactions to the 6He continuum [4,10]. The con-
tinuum and g.s. wave functions were more recently also used
for studying elastic and inelastic breakup of 6He on 12C and
Pb targets [11] under the kinematically complete conditions
of GSI experiments [12]. Very recently [13], angular and
energy correlations have been measured and compared with
predictions of our models [2].

The three-body continuum structure of 6He, which we
have used as a reference case for more complicated halo
nuclei, exhibits a challenging structure. In addition to the
sharp 2+

1 three-body resonance at 0.8 MeV above the three-
body threshold, a second 2+

2 resonance has been calculated
at an energy of 2.1 MeV with a width � � 1.4 MeV, a
1+ resonance at E = 2 MeV with � ∼= 1.2 MeV, and a
0+ excitation peaking at E = 1.6 MeV with � = 1.5 MeV.
Evidence for the three-body resonance behavior has been
derived both from well-defined potential pockets and from
scattering eigenphases.

A question that has not yet been fully answered after more
than a decade is that of the origin of accumulation of dipole
strength at low continuum energy. The nature of the so-called
soft dipole mode, suggested in [14], and responsible for the
abnormally large EMD cross sections, still needs clarification
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and is of great interest for theory as it involves both s and p
motion [15,16] of valence neutrons.

Various attempts [1,2,9,17–26], based on the three-body
representation of 6He and 11Li, have not given a conclusive
answer concerning the existence of a dipole resonance in
either 6He or 11Li. For example, neither the most elaborated
methods such as HH with strict treatment of the three-body
continuum [1,2,9], nor the complex rotation method applied
to the three-body Schrödinger equation [20,25,27], nor the
three-body RGM [17] show the dipole mode as resonance. At
the same time, in the adiabatic hyperspherical approach, in
particular using the complex energy (Gamow states) method,
numerous resonant poles were calculated by the Aarhus group
[23] in the 6He dipole continuum.

Available experimental results, where the dipole response
function of 6He in EMD is reconstructed [12], do not show
the 1- to 2-MeV sharp peak in the dipole strength function
predicted by some three-body approaches but is consistent
with our findings [28].

Given these considerations, it is possible to point out four
main sources of enhancements of the continuum cross sections:

(i) true three-body resonances, which are caused by interac-
tion of all three particles in the interior domain;

(ii) a long-lived binary resonance in one of the constituent
pairs;

(iii) resonances resulting from strong coupling between chan-
nels (a “CC resonance” in a few channels) or “parametric
resonance” in quantum diffusion with complex coeffi-
cients [29,30]; and

(iv) The low-energy response of an extended system (having a
halo-like g.s. structure) to long-range transition operators
used to excite the continuum.

The resonance criteria are similar to those in the two-body
case: (a) a concentration of the wave function in the interior
region (except for barrier top and virtual-state or antibound
cases), and (b) that the existence and properties of an intrinsic
resonant state should not depend on the reaction mechanism
(electromagnetic, strong or weak interaction, etc.) that excites
the resonance. In the three-body halo problem, we have
however to deal with “binary” subsystems, involving any pair
of particles and the relative motion of this pair with respect
to the third constituent. Thus we should analyze correlation
properties of three-body system to clarify the sometimes
complicated structure of the continuum.

In the current article, we analyze the continuum wave
functions in terms of their asymptotic amplitudes and elastic
cross sections when written as functions of the energies
of the pairs of Jacobi coordinates. We give an analysis of
two-dimensional intrinsic energy correlations in a Borromean
three-body problem, pointing out their simplest analytical
properties and possibilities thereby for discriminating experi-
mental and/or theoretical ambiguities.

We use, as already mentioned, realistic potentials for the
6He benchmark case [1–3,7] and the Feshbach reduction
method for reducing a nearly complete functional space
(up to hyperangular momentum K ∼ 40 for high-accuracy
convergence) to an active space of K � 11 [11] giving the

same values for a wide set of the bound-state and continuum
observables.

II. THEORETICAL OVERVIEW

A. Three-body dynamics

The three-body continuum problem includes two extreme
scales of three-body effective interactions [8]:

(i) A short-range scale with a size about the sum of the
ranges of the binary interactions, which produces compact
spatial structure such as a true three-body resonance.
The most remarkable feature of a “true” three-body
resonance is that it exists in the configurations with the
lowest hyperangular momenta (hypermoments), which
corresponds to all three particles interacting while close
to each other.

(ii) The phenomenon of a long-ranged effective three-body
interaction with a range about the sum of the scattering
lengths in the binary subsystems. This is responsible for
the Efimov effect [31] and for spectral compression near
the three-body threshold in Borromean halo nuclei.

In general (b) reflects the presence of the interaction
between a particle pair and a third constituent even at a
distance up to the scattering length. For short-range bi-
nary interactions, the effective three-body interaction (the
angular-spin-projected sum of three binary interactions) is
a function V (ρ) of a collective variable, the hyperradius ρ,
with characteristic asymptotic behavior ∼1/ρ3 in the general
case, and ∼1/ρ2 for the Efimov effect. The hyperradius ρ is
proportional to the square root of the sum of all interparticle
distances weighted with their corresponding reduced masses,

ρ =
√∑

µij r
2
ij with (µij in units of the nucleon mass).

When we deal with a Borromean halo, the neutron-neutron
interaction with scattering length ∼16 fm is decisive for this
effect (also called “continuum pairing”). Additionally, in the
11Li case, the presence of an intruder virtual s level (antibound)
in 10Li gives a large (but still not fully known) scattering length,
which contributes essentially to the abnormally large matter
r.m.s. radius.

For three-body systems, a residual three-body centrifugal
barrier 15

4 h̄2/(2mρ2) is present, even in case of the smallest
hypermoment K = 0 with zero intrinsic binary angular mo-
menta (except for the Efimov regime). This gives, in contrast
to a binary system, the possibility for the existence of narrow
low-lying “s”-wave resonances with pair angular momenta
equal to zero.

An abnormally large correlation distance could also be
realized by a long-living binary resonance propagating to a
large distance, as well as from a binary virtual (antibound)
state. In this case, no concentration of the three-body wave
function inside the region of interaction of all constituents
will take place, but there will be a long-range spreading of
correlations.

The Appendix summarizes relevant formalism using the
Jacobi relative momentum coordinates kx and ky , used to
describe the scattering states of three-body systems, and gives
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also the plane wave and distorted continuum wave functions,
including final state interactions (FSI), of three-body systems
consisting of a spinless core and two nucleons. We henceforth
use the notation defined in the Appendix for three-body wave
functions and S-matrix elements.

B. Defining energy correlations

In general, all possible correlations are contained in the
scattering amplitudes. In this paper we focus on the simplest
(but very important) characteristics, the angular-integrated
energy correlations. From a theoretical point of view, we
should clearly use Jacobi coordinates to describe internal
excitations of the system and corresponding energies of
relative motion between two particles (εxi) and for their
c.m. relative to the third one (εyi). Among three Jacobian
systems {i} only two are essentially different because of the
identity of the two halo neutrons. In the T system we use
the neutron-neutron relative motion energy Enn = εxi and the
energy between the core (c) and the c.m. of the two neutrons,
E(nn)−c = εyi . In the Y system (“shell model”) we use the
neutron-core relative motion energy Ecn = εxj and the energy
between their c.m. and the second neutron, E(cn)−n = εyj .

Angular-integrated correlation functions characterising the
low-energy continuum can be obtained from the partially
integrated cross sections of Eq. (A16) for 3 → 3 scattering
(which reflects intrinsic properties of the continuum), if we
integrate these over the directions of the incident particles,
the distribution of the total energy between them (�κ

5), and
also over the directions of scattered particles (dk̂f

xdk̂f
y). After

integration and summation over the projection M of the total
angular momentum J, the differential cross section describing
the distribution of total energy E = εxi

+ εyi
by subsystems

xi, yi will be an incoherent sum over the quantum numbers of
the incident particles as well as the angular momenta of the
scattered ones:

1

sin2 αf cos2 αf

dσ (3)

dαf

= 2

πκ5

1

(2s1 + 1)(2s2 + 1)

∑
JKγγ ′

(2J + 1)

×
∣∣∣∣∣
∑
K ′

(
δKγ ;K ′γ ′ − SJ

Kγ ;K ′γ ′
)
ψ

l′x l
′
y

K ′ (αf )

∣∣∣∣∣
2

. (1)

Since the S matrix in the 3 → 3 scattering amplitude of
Eq. (A14) has instructive analytic properties, and because
we want to study energy correlations coming from intrinsic
properties of the three-body continuum, we will omit the strong
energy dependence ∼κ−5, which can generate artificial bumps
in cross sections (see Sec. III E). By taking into account that
sin2 αf = εx/E, a correlation function can be defined as a
function of εxi

, εyi
at a fixed E = εxi

+ εyi
:

BJ
intr(εx, εy) =

∑
Kγγ ′

∣∣∣∣∣
∑
K ′

(
δKγ ;K ′γ ′ − SJ

Kγ ;K ′γ ′(E)
)
ψ

l′x l
′
y

K ′ (αf )

∣∣∣∣∣
2

.

(2)

For small (εxi, εyi), the behavior of the correlation function
is defined by the lowest partial angular momenta lx, ly of
the state Jπ via multipliers (εxi)lx (εyi)ly arising from the
product of the hyperangular parts of hyperspherical functions
ψ

lxly
K (αi)ψ

lxly
K ′ (αi)—see Eq. (A4).

To compare with the energy correlations extracted from
nuclear reactions we will also use a correlation function
corrected for the three-body phase volume

BJ
reac(εx, εy) = √

εxεy BJ
intr(εx, εy). (3)

This phase space factor
√

εxεy will affect only the behavior of
correlations at small values of εx, εy .

Borromean nuclei, represented as core + n + n, should in
the “shell-model” Y coordinate system have a correlation
function that is almost symmetrical about the hyperangle
αY ∼ 45◦ (εx = εy) because of the antisymmetry between the
valence nucleons, but with a correction depending on finite
masses, which is a recoil effect that vanishes in the limit of
an infinitely heavy core to give then a symmetrical correlation
function.

C. Energy correlations from resonances in 3 → 3 scattering

The intrinsic properties of the halo continuum are contained
in the scattering amplitudes that characterize the asymptotics
of the wave functions at large distances.

The scattering amplitude may in general have several kinds
of analytical singularities corresponding to long-living states,
but we will concentrate on two of them, the most physically
transparent [32] (where for simplicity of notation we omit the
spin indices):

(i) A “true” three-body resonance for given Jπ is one, for
which the 3 → 3 scattering amplitude f J of Eq. (A13)
has the analytical property (a simple pole)

f J
(
E,�

ρ

5 ,�κ
5

) ∼ κ−5/2 AJ
(
�

ρ

5 ,�κ
5

)
E − (E0 − i�0/2)

, (4)

where E is the total energy calculated from three-body
threshold, and E0 and �0 are, respectively, the position
and width of the resonance pole.

For wide resonances we can expect the same resonant
structure to appear in part of the S-matrix elements
distorted by a background.

The resonant structure of the wave function in coordi-
nate space is manifested as a pronounced enhancement
according to a Breit-Wigner form with the same E0 and
�0 in the interior region, as discussed in (I).

(ii) In absence of a “true” three-body resonance, remnants
of two-body resonances in the binary subsystems may
produce amplification with a simpler analytical structure.
A rather general expression, in the case of a long-living
resonant state in one binary subsystem that interacts
weakly with the third particle, is

f J
(
E,�

ρ

5 ,�κ
5

) ∼ κ−5/2AJ
2

(
�

ρ

5 ,�κ
5

) cβ(E)

ε − (ε̃ − i�̃/2)
.

(5)
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Here β labels the quantum numbers of the binary
resonance, ε is the part of the total energy E shared by the
resonant binary subsystem, and ε̃ − i�̃/2 = ε0 + �ε −
i(�̃0/2 + ��/2) with ε0 and �0 being the position and
width, respectively, of the binary resonance without the
presence of the third particle. The term �ε − i��/2 is
the shift and additional width caused by the coupling
with the third particle. The amplitude cβ(E) is some
smooth function of the total energy E. We can also use this
expression for a binary virtual (antibound) state, keeping
in mind that it can be approximately represented as a
near-threshold resonance.

To gain a qualitative understanding, we can apply these
analytic properties to the 3 → 3 scattering amplitudes to obtain
the prototypical behavior for cases 1 and 2. We first expand the
energy dependent part of scattering amplitude A(E,�

ρ

5 ,�κ
5)

in terms of hyperspherical harmonics (A2) with coefficients
A

J (3)
Kγ ;K ′γ ′ derived from a pole of the S-matrix

A
J (3)
Kγ ;K ′γ ′

E − (E0 − i�0/2)
= δKγ ;K ′γ ′ − SJ

Kγ ;K ′γ ′ (E), (6)

where Kγ labels the �κ
5 asymptotic component of the ingoing

waves, and K ′γ ′ labels the rescattered wave at �
ρ

5 . For a
narrow true three-body resonance the correlation function (2)
simplifies to the transparent form

BJ
intr(εx, εy) ∼ 1

(E − E0)2 + �2
0/4

∑
K ′γ ′

∑
Kγ,K ′′

A
J (3)
Kγ ;K ′γ ′A

∗J (3)
Kγ ;K ′′γ ′

×χ
l′x l

′
y

K ′ (εy, εx)χ
l′x l

′
y

K ′′ (εy, εx). (7)

Since E = εxi + εyi is invariant (i.e., the same in any Jacobi
system i), it is clear that a correlation plot of BJ

intr(εx, εy)
should have a maximum along the straight line E0 = εxi + εyi

for narrow resonances and sections in a contour plot of
elliptical type with width ∼ �0. The general behavior is
defined by the partial structure of the state contained in the
lowest K components of the hyperangular part of the wave

function χ
lx ly
K (εy, εx) ∼

√
ε

lx
xiε

ly
yiP

lx+1/2,ly+1/2
(K−lx−ly )/2 ( εy−εx

E
), where P

is a Jacobi polynomial [see (A4)]. Small values of εy, εx are
indicators of partial content of the state in the correlation
function since it is defined by kinematical factors ∼εlx

x and

∼ε
ly
y from the lowest binary angular momenta. An example of

a true three-body resonance is the 2+
1 state in 6He, discussed

in Sec. III A.
For the case of the correlation function of Eq. (3) with phase

space factors included, the plot will be modified by the factor√
εxiεyi which shifts the maxima line from resonance position

by δE ∼= �2
0/4E0 and changes the maxima behavior along the

ridge, suppressing the correlation function at small values of
εxi, εyi .

For a two-body resonance in one of the binary subsystems,
we may neglect all partial waves except the one set {lx, ly}
containing the resonance [32] and use the Jacobi system with
the x coordinate corresponding to the resonant pair. Integrating
over angles [using the “reaction” expression (3), which is

a prototype for transition correlations] yields a correlation
function with the following functional form:

BJ
reac(εx, εy) ∼ F3(E)(εxi/E)lx

√
εxiεyi

(εxi − ε̃i)2 + �2
i /4

, (8)

where the amplitude F3(E) is a smooth function of E. The
corresponding correlation plot has in this case characteristic
maxima along the straight line εxi = ε̃i perpendicular to the
εxi axis, and with behavior defined by phase space and the
partial angular momentum lx �= 0 giving multipliers (εxi)lx .
For lx �= 0 or ly �= 0 the maxima line εxi = ε̃i will be shifted
to larger εxi energies. We note that to reproduce a binary long-
living resonance we need a large number of hyperspherical
harmonics.

To transform from an initial (say T) to another (Y)
Jacobi system, we should use the full transform relations
[see Eq. (A10)] for momenta kx, ky (i.e., not an expression
integrated over angles). In the vicinity of the resonance
energy ε̃i , however, the only fast-varying quantity is the
resonant denominator. Therefore we will simply replace εxi

in the denominator of Eq. (8) by εxj sin2 φij + εyj cos2 φij +
(h̄2/m)kxj · kyj sin φij cos φij and then integrate over angles
in the rotated system. In the numerator of Eq. (8) only
partial angular momenta lx and ly will be changed, while
conserving the parity and total orbital momentum L, so the
total energy E and phase space will be the same. Then we
should integrate the rotated cross section over the new angles.
For simplicity we average the scalar product (kxj · kyj ) in
the denominator over angles, which gives approximately zero.
This results in a maximum curve in Eq. (8) along a straight line
ε̃i = εxj sin2 φij + εyj cos2 φij , looking similar to that from
a three-body resonance, but with inclination angle defined
by the ratio of mass numbers, tan2 φij = Ak(Ai + Aj +
Ak)/AiAj , and with contour plot of elliptical type with “width”
∼ �i .

The prototype behavior for a system like 6He or 11Li
with a resonance (and an approximate virtual state) in the
two-body subsystems is illustrated in Fig. 1 for the three-
body dipole-type excitation Jπ = 1−. We choose the dipole
three-body continuum because it corresponds to final states
that can be excited by Coulomb E1 excitation from the 0+
g.s. of Borromean systems. The structure lx = 0, ly = 1 in the
final continuum state will be energetically preferable in the T
partition owing to the n−n virtual state and in the Y partition
it becomes an almost symmetric mixture of lx = 0, ly = 1 and
lx = 1, ly = 0.

The lower part of Fig. 1 shows the energy correlation
induced by a core-n resonance in the l = 1 partial wave,
typical for p-shell nuclei. The maximum line for constant εxj

transforms to the line ε̃i = εxj sin2 φij + εyj cos2 φij in the
T system, resembling a three-body resonance, but the inclina-
tion angle is not π/4 as for a three-body resonance.

In the upper part of Fig. 1 the position of the binary
resonance is chosen near the threshold, so that it simulates the
energy dependence of the lx = 0 virtual state in the nn system,
with almost zero interaction between the nn pair and the third
particle. The visible maxima line for constant εxj in the T
Jacobi system transforms in the Y Jacobi system to an oval
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FIG. 1. (Color online) Prototype dipole energy correlations for a two-body resonance and a virtual state in a three-body dipole continuum,
modeled from the analytical properties of the scattering amplitude. Upper row: induced by a virtual (antibound) state in the nn subsystem.
Lower row: induced by a low-lying core-n two-body resonance. Left column: in cluster T basis; right column: in “shell-model” Y basis.

in the vicinity of the origin. This asymmetric transformation
can serve as a discriminating tool in doubtful cases, when
in the total cross section there is a bump of unknown
nature.

It should be mentioned here that in reality the resonance
component will always contain some nonresonant background.

Using the example of 6He we shall demonstrate the most
important cases of three-body energy correlations:

(i) energy correlations for narrow resonances;

(ii) energy correlations for wide resonances; and
(iii) energy correlations for three-body virtual-like excita-

tions, which are characterized by a fast increase of the
lowest eigenphase at small energies (with subsequent
decrease) but not crossing π/2, in contrast to the case
of a resonance [2].

In more complicated cases, when we have only a resonant-
like enhancement in the main partial cross-sections, we need
additional observables using the correlation responses.
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FIG. 2. (Color online) Intrinsic energy correlation plot for the 2+
1 resonance of 6He: in T basis (left) and in Y basis (right).

III. ENERGY CORRELATIONS IN 6He

A. The 2+
1 resonance

The clearest case of a three-body resonance is the well-
known 2+

1 resonance at 0.8 MeV above the three-body
threshold. The correlation plots in Figs. 2 and 3 show
this classic example of a three-body resonance, where in
both coordinate systems the maximum contours follow the
rule E0 = εxi + εyi = 0.84 MeV, derived from the analytic
structure of the scattering amplitude. The K = 2 components
give almost the full width of this state. The partial structure is
discussed in detail in [2].

From the asymmetric shape in n−n and α−nn coordinates
(T basis in Fig. 2 we can see that the preferable mode of
the resonance decay is an s-wave one with small relative

energy between neutrons, since the angular momentum lx = 0
gives nonzero value of the correlation function [Eq. (2)]
Bint ∼ (εxi)lx �= 0 at small εxi = En−n. At the same time
almost all the resonance energy will be contained in the α − nn

relative d-wave motion (ly = 2). At small εyi = Ec−(nn), s-
wave motion with ly = 0 will also be enhanced owing the
factor (εyi)ly = 1 in the correlation function. These features
demonstrate the dominance of the configurations lx = 0, ly =
2 and lx = 2, ly = 0 in the vicinity of resonance energy, with
the former being twice as pronounced.

The correlation plot in the Y basis is almost symmetric
about the angle π/4, in accordance with the antisymmetriza-
tion of the valence neutrons. The large admixture of lx = 0
(ly = 0) components at small Ec−n (E(cn)−n) is a manifestation
of s−d shell admixture and recoil effects. The intermediate

FIG. 3. (Color online) Energy correlation plot for 2+ resonance with three-body phase space included in cluster T basis (left), and in
“shell-model” Y basis (right).
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FIG. 4. (Color online) Intrinsic energy correlation plot for 0+ states in cluster T basis (left) and in “shell-model” Y basis (right). Note the
reversed axes of the left plot.

energy shape of the correlation function is mostly defined
by lx = 1, ly = 1 in accordance with the dominant (p3/2)2

component in the resonance structure of 2+ state in the Y basis.
The situation changes when the phase space is included,

as shown in Fig. 3. The influence of phase space on the
visible resonance position is negligible, but in the T basis
the amplification of the s-wave n−n correlation at small En−n

is overridden by the phase space factor, as is also the s-wave
behavior at small Ec−(nn). Nevertheless, the asymmetric shape
of the correlation plot along the ridge gives an indication of a
preferable decay with smaller relative n−n energy and larger
c − nn energy. In the Y basis, the phase space factor suppresses
the s-wave behavior at small Ec−n and E(cn)−n but does not
significantly change the profile of the correlation function.

At higher energy both plots show the appearance of the
second 2+ resonance.

B. Monopole 0+ continuum

The monopole 0+ intrinsic continuum correlations (Fig. 4
show no presence of three-body resonant behavior, but they
do reflect a strong influence of FSI. Figure 4 demonstrates in
the cluster T basis an extremely narrow s-wave peak along the
small En−n energy. This peak resembles the schematic case of
a virtual binary state (Fig. 1) and is even more evident when
the phase space is included (Fig. 5). The s-wave behavior also
dominates at small Ec−(nn) energy.

In the Y basis an oval-shaped peak was expected in
accordance with the qualitative picture of Fig. 1, but only a
monotonically growing background can be seen in Fig. 5. To
explain this feature, and also the cases of wide 2+

2 and 1+
resonances, we can draw an analogy with two-body scattering.
There, only the impact parameters that are less then the size
of interaction region contribute to the scattering cross section.
In the three-body case the hyperradius ρ, hypermoment K,
and hypermomentum κ(=

√
2m(εxi + εyi)/h̄2) play the same

respective roles as r, L, and k of the two-body case. For
example, if we take a radius ρ0 of the three-body interaction
region of about 5 fm, and a continuum energy of about 2 MeV,

then K ∼ κρ0 ∼ 1.5. Because of channel couplings, however,
higher K (corresponding to larger values of the impact
parameter) can add some contribution to the background.

We can make a filter for those partial waves for which the
impact parameter matches the interaction radius in the energy
range of interest. The result for the leading K = 2 terms (in-
and outgoing) is presented in Fig. 6. In the T basis there are
two pronounced wings corresponding to correlated motion
of two neutrons with small energy En−n of relative motion
and small Ec−(nn) energy between the two neutrons and the
core. Interference with the structureless K = 0 component
will reduce the c−(nn) peak and increase the n−n peak. In
the Y basis there is not quite so pronounced a peak at Ec−n ∼
E(cn)−n ∼ 1.2 MeV, in accordance with a qualitative analysis
of the binary resonance and virtual state, and this is almost
smeared out after adding components with higher K. Including
the higher K values adds ∼50% to the background at energies
En−n, Ec−(nn) > 2 MeV, while conserving the peak structure.

Nevertheless, the long-range spatial correlations up to
∼20 fm in the three-body monopole continuum, as discussed at
Ref. (I), manifest themselves as pronounced n−n energy cor-
relations with small En−n, and as c−(nn) energy correlations at
small Ec−(nn) (partially) smeared by the background, both with
pair angular momenta lx, ly = 0. Physically this corresponds
to a significant part of the decay probability proceeding via the
neutron-neutron s-wave virtual state.

In contrast, the kinematics of the decay in the Y basis does
not show a definite decay via the p3/2 resonance in 5He located
at 0.8 MeV. This can be understood qualitatively as changing
the predominant p2

3/2 structure of the g.s. to p2
1/2 plus s2

1/2 in
the low-energy continuum.

As expected from qualitative considerations, the mirror
0+

2 state (orthogonal in angular-spin content to the ground
state) has a predominant S = 1 component, which should have
a symmetric shape in the correlation plot because of its angular
momentum structure. It should have lx = ly = 1, L = 1 in
both systems, in contrast to a monopole breathing mode where
S = 0, lx = ly = 0, L = 0 in α−nn (i.e., the n−n T system)
and lx = ly = 1, L = 0 in n−α [i.e., the (nα) − n Y system].
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FIG. 5. (Color online) Energy correlation plot for 0+ states with three-body phase space included in cluster T basis (left) and in “shell-model”
Y basis (right). Lower panels give contour plots of upper panels.

FIG. 6. (Color online) Energy correlation plot for 0+ state for only K = 2 with three-body phase space included: in cluster T basis (left),
in and “shell-model” Y basis (right).
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FIG. 7. (Color online) Intrinsic energy correlation plot for the 1− continuum in cluster T basis (left) and in “shell-model” Y basis (right).

From S-matrix analyses and correlation properties, we find that
it does not exist as a sufficiently narrow resonance, because of
spreading into the continuum.

C. Dipole 1− continuum

Analysis of eigenphases for the dipole continuum in
Ref. [2] has shown the three-body virtual-like character of this
excitation. The dipole correlations (Fig. 7) are very similar
to those of the monopole. At small pair energies of relative
motion the swave prevails in both T and Y bases. Also, as in
the 0+ case, in the T basis there is a very narrow ridge along
small energies En−n of n−n relative motion. This ridge also
comes when all states with K = 1–11 are included, which is
a signal of the binary decay mode via the n−n virtual state.
Spatial correlations in the three-body continuum are again
of long range [8]. The α−nn energy distribution has s-wave
behavior at small Ec−(nn) from admixed lα−nn = 0.

In the Y basis, an oval-shaped peak was expected in
accordance with the qualitative picture of Fig. 1. As in the

monopole case, only a monotonically growing background
can be seen in Fig. 7. The kinematics of the decay in the Y
basis does not show a definite decay via the p3/2 resonance in
the 5He. This can be understood qualitatively as a competition
between p3/2 and s1/2 waves in the 5He subsystem, owing to
the predominant p3/2s1/2 structure in the Y basis of the 6He
dipole continuum.

We applied a filter for partial waves with K = 1, 3,
corresponding to a matching of the impact parameter with
surface values of the interaction radius. In the T basis there is
a structureless picture (not shown) with small amplification of
s-wave motion with small En−n. In the Y basis, as in the 0+
case, there is a not so pronounced peak at Ec−n ∼ E(cn)−n ∼
2 MeV, which is almost smeared out after adding components
with higher hypermomenta K.

A structure very similar to that of 0+ appeares when the
phase space factor is included in the energy correlations. In
Fig. 8 there is a clearly seen n−n ridge, corresponding to
decay via the s-wave virtual state, but it is not so pronounced
as in 0+ correlations.

FIG. 8. (Color online) Energy correlation plot for the 1− continuum with three-body phase space included in cluster T basis (left) and in
“shell-model” Y basis (right).

054002-9



B. V. DANILIN et al. PHYSICAL REVIEW C 73, 054002 (2006)

FIG. 9. (Color online) Intrinsic energy correlation plot for 2+
2 state in cluster T basis (left) and in “shell-model” Y basis (right). Note the

2+
1 small peaks along the ridge Ec−(nn) + En−n = E(cn)−n) + Ec−n = 0.8 MeV.

FIG. 10. (Color online) Intrinsic energy correlation plot for 2+
2 resonance for only K = 2 in cluster T basis (left) and in “shell-model” Y

basis (right). Lower panels give contour plots of upper panels.
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FIG. 11. (Color online) Intrinsic energy correlation plot for the 1+ state in cluster T basis (left) and in “shell-model” Y basis (right).

FIG. 12. (Color online) Intrinsic energy correlation plot for 1+ resonance for only K = 2 in cluster T basis (left) and in “shell-model” Y
basis (right). Lower panels give contour plots of upper panels.
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D. Summary

The analysis performed here has confirmed that the well-
known 2+

1 state is a real three-body resonance. Three-body
correlations for all configurations have demonstrated that, in
spite of presence of a soft dipole resonance-like peak in both
nuclear and electromagnetic response functions at ∼1.5 MeV,
there is a lack of noticeable resonant behavior in the interior
region (as is also true for the monopole case). The physical
reasons are quite different. In the monopole case, it is the
spreading into the continuum caused by dominating s motion
between the two halo neutrons, and because of less expressed
s motion between the correlated nn pair and the core. In the
dipole case, there is almost complete cancellation in the three-
body matrix elements in ρ between the s-wave repulsion and
p-wave attraction between the halo neutrons and the α particle.
Thus the s-wave nn attraction alone dominates the dynamics,
and the structure of this mode is quite similar to 0+, being
defined by p-wave motion between the core and a correlated
nn-pair with relative angular momentum lnn = 0.

E. Second 2+
2 resonance

In addition to the sharp 2+
1 resonance at 0.8 MeV above

threshold, the calculations gave a wide second 2+
2 resonance. It

is most interesting that the resonant behavior appears largely in
one partial T component K = 2, L = 2, S = 0, lx = 2, ly =
0, at a continuum energy of 2.3 MeV and a width � ∼ 1.4
MeV. The eigenphase of the lower 2+

1 resonance crosses π/2
at an energy of 2 MeV, which is within the width of the 2+

2
resonance [33].

Intrinsic energy correlations are presented in Fig. 9. In both
plots one can also see the very narrow 2+

1 resonance at 0.8
MeV, now with a somewhat distorted peak caused by the larger
(0.1 MeV) energy step in this plot. At higher energies this plot
is very similar to plots of energy correlations in the 0+ and 1−
continua.

After filtering out the background to leave only the K = 2
partial wave, the resonant structure became evident. As in the
2+

1 case, the plot in Fig. 10 has an asymmetric shape in the
T basis with dominating K = 2, L = 1, S = 1, lx = ly = 1
component strongly influenced by the “binary” (n−n) decay
channel with K = 2, L = 2, S = 0, lx = 0, ly = 2, analogous
to 0+ and 1− cases. In the Y basis there is a strong component
with the same K = 2, L = 1, S = 1, lx = ly = 1 configura-
tion, giving a symmetric shape, but for 2+1 states other sig-
nificant components (L = 2, S = 0, lx = 0, ly = 2 and L =
2, S = 0, lx = 2, ly = 0) have small and equal weights.

F. 1+ resonance

Finally we address the very interesting features exhibited
by the 1+ state. We have analyzed all the characteristics of the
three-body continuum [1,34] and found nearly coinciding res-
onances at 1.6–2.0 MeV having completely different natures.
One of these strongly overlapping structures, like the 2+2 , is a
true three-body resonance, which is caused by a pocket in one
of diagonal potentials with K = 2, L = S = 1, lx = ly = 1.
Another is a coupled-channels resonance, which originates

from strong couplings in a large set of channels having
repulsion in their diagonal potentials.

The intrinsic correlation plot in Fig. 11 for the 1+ state
shows a peculiar feature, namely a resonance-like behavior in
the Y basis and a lack of it in the T basis. Results for the filtered
K = 2 (Fig. 12) component shows a resonance in both bases
at ∼2.8 MeV with width � ∼ 1.5 MeV in accordance with the
analytic structure of the scattering amplitude. The same ridge
maxima lines in both T and Y systems confirm its three-body
resonance nature.

IV. CONCLUSION

We have performed a detailed study of the 6He energy
correlations in the Borromean three-body continuum using
an α + n + n model with realistic interactions between the
constituents, interactions that reproduce all observables in
the binary subsystems. Diagnostic tools and procedures for
analysis of a three-body continuum were discussed in [1,8].
In this article we have presented further developments of
our continuum exploration in terms of three-body energy
correlation functions.

We have discussed two main sources of amplification of
continuum cross sections:

(i) true three-body resonances, which are due to interaction
of all three constituents in the interior domain, and

(ii) a long-lived binary resonance in one of the constituent
pairs

The analytic properties of (i) and (ii) and wave functions
have been discussed in terms of the natural Jacobian energy
correlations. They depend on the moduli of two relative
momenta (energy), which are dynamic characteristics of the
internal structure of excited states. These intrinsic properties of
the halo excitations are manifested in the scattering amplitudes,
as these characterize the asymptotics of the wave function at
large distances. For sharp three-body resonances the poles in
the S-matrix coincide with the peak energy, with a resonant
amplification of the interior part of the wave function. The
intrinsic energy correlations for 3–3 scattering should almost
coincide with the transition energy correlations for reactions.

The main criterion for existence and properties of any
intrinsic resonant state is that its position and other charac-
teristics should not depend on the excitation mechanism (elec-
tromagnetic, strong or weak interaction). A “true” three-body
resonance exists in lowest configurations, which corresponds
to three particles interacting close to each other. It is partially
caused by pockets in the diagonal potential terms and manifests
itself by an eigenphase rapidly crossing π/2.

We have shown that the analytic properties of scattering
amplitudes are displayed by outstanding structures of energy
correlation functions, which for 6He are most pronounced in
the 2+

1 true three-body resonance and less pronounced for
the 2+

2 and 1+
1 resonances. In accordance with Ref. [29],

it is not necessary that resonance behavior shows up in all
elements of the S matrix for wide resonances. In particular the
wide 2+

2 and 1+
1 resonances exhibit resonant behaviors only

in one (2+
2 ) or two (1+

1 ) of the lowest partial components.
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In both cases there are large contributions to the correlation
function from components with higher hypermomenta K
(which correspond to larger impact parameters) owing to
strong coupling of different configurations, and this sometimes
washes out the resonant structure. Nevertheless, filtering of
the lowest configurations can reveal a three-body resonance
nature, as we have shown.

In the case of a narrow resonance, the spatial wave
function has strong amplification in the interior region, which
corresponds to the short range of the binary interactions of all
three constituents. In this situation the total resonance energy is
distributed between a pair of particles and the third constituent
according to the strongest binary interaction, or according
to an inherent symmetry such as the Pauli principle for 2+

1
resonance.

In addition, we have shown that there can exist “three-body
virtual excitations” produced by low-lying resonances (or
virtual states) in binary systems. Their pronounced inherent
quality is a very long spatial range of formation, about the
n−n scattering length, and this leads to a very large number
of configurations needed in the HH basis. There might well
be a lack of deep pockets in the diagonal potential terms and
strong off-diagonal (coupling) terms. Our exploration of the
binary energy correlations (n−n and α−n in 6He) has shown
a dominant role of the s-wave nn virtual state, and a lack of
strong manifestation of the p3/2 resonance in α−n (5He), both
for monopole and soft dipole modes. Moreover, this feature
is also present in the 2+ continuum beyond the narrow 2+

1
resonance. The unnatural parity 1+ excitation does not contain
an s-wave nn virtual state in any component, and this generates
a different shape of continuum correlations at low En−n. We
will return to this issue in a separate communication. Three-
body correlations for all configurations have demonstrated
that, in spite of presence of a soft dipole resonance-like peak in
both nuclear and electromagnetic response functions at ∼1.5
MeV, there is a lack of noticeable resonant behavior in the
interior region (as is also true for the monopole case).
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APPENDIX: MOMENTUM COORDINATES, WAVE
FUNCTIONS, AND CROSS SECTIONS

We use normalized Jacobi momenta kx and ky , which are
defined in terms of laboratory momenta pi = h̄Pi as

kx3 = (A12)−1/2P12 = (A12)1/2(P2/A2 − P1/A1),

ky3 = (A(12)3)−1/2P(12)3 = (A(12)3)1/2

× [P3/A3 − (P1 + P2)/(A1 + A2)], (A1)

P = P1 + P2 + P3.

Here A12 = A1A2/(A1 + A2) is the reduced mass of the
(1 + 2) binary subsystem (in units of the nucleon mass m),
A(12)3 = (A1 + A2)A3/A is the reduced mass of the (12) pair
with respect to particle 3, and A = A1 + A2 + A3. Alternative
sets, (kx1, ky1) and (kx2, ky2), of Jacobi coordinates are
obtained by cyclic permutations of (1,2,3). They are connected
by an orthogonal transformation (kinematic rotation)

kxj = − cos φjikxi − sin φjikyi ,

kyj = sin φjikxi − cos φjikyi ,

cos φji =
√

AjAi

AjAi + AkA
.

Spatial normalized Jacobi coordinates (xi , yi) are defined
in an analogous way (see e.g., [1,5,6]) and have the same
transformation properties. The hyperradius is given by ρ =√
x2 + y2 in any Jacobi system, and the hyperangle in a

particular Jacobi system (i) is defined by sin α
ρ

i = xi/ρ

We shall designate the Jacobi systems of our core + n + n

Borromean halo nuclei as “cluster” T basis with x ∼ rnn (with
corresponding kx) and y ∼ r(nn)−c (with corresponding ky) and
as “shell-model” Y basis (more exactly the translationally in-
variant shell model) with x ∼ rcn and y ∼ r(cn)−n coordinates.
The following formulas refer to such nuclei.

The continuum energy E, measured from the three-body
threshold, is connected with normalized Jacobi momenta
via the relation k2

xi + k2
yi = 2mE/h̄2; that is, the invariant

energy E = εxi + εyi is partitioned into kinetic energies εxi =
h̄2k2

xi/2m and εyi = h̄2k2
xyi/2m for each Jacobi subsystem,

with m being the nucleonic mass. Note that the phase space
volume

√
εxiεyidεxidεyi is also invariant under kinematic

transformations. The hypermomentum κ =
√

2mE/h̄2 is con-
nected with the moduli of Jacobi momenta in a particular
Jacobi system (i) via the conjugate hyperangle ακ

i ∈ [0, π/2],
which is a measure of the distribution of the total excitation
energy E between the binary subsystems: sin ακ

i = kxi/κ , or
sin2 ακ

i = εxi/E.
The bound-state and continuum wave functions can be

expanded on a generalized angle-spin basis, which includes
HH

Y lx ly
KLM (�5) = ψ

lxly
K (α)

[
Ylx (x̂) ⊗ Yly (ŷ)

]
LM

(A2)

and a coupled spin function of the two halo nucleons,

XSMS
= [

χs1 ⊗ χs2

]
SMs

=
∑
m1m2

< s1m1s2m2|SMs > χs1m1χs2m2 . (A3)

Here �5 contains the remaining angular and hyperangular parts
of the six-dimensional coordinate space {x, y} (�ρ

5 = x̂, ŷ, αρ)
or momenta space {kx, ky} (�κ

5 = k̂x, k̂y, ακ ), ⊗ is usual tensor
coupling, lx and ly are the quantum numbers of the Jacobi
orbital momenta, and L,ML are the total orbital momentum
and its projection. The hyperangular part of the HH (depending
on angles αρ or ακ ) is defined for binary angular momenta lx , ly
and hyperangular momentum (hypermoment) K and has the
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following explicit form:

ψ
lxly
K (α) = N

lxly
K (sin α)lx (cos α)ly P

lx+1/2,ly+1/2
(K−lx−ly )/2 (cos 2α), (A4)

where P
α,β
n are Jacobi polynomials and N

lxly
K is a normaliza-

tion coefficient given by
∫

ψ
lxly
K (α)ψ

lxly
K ′ (α) sin2 α cos2 αdα =

δKK ′ . The structure of the HH functions differs from angular
spherical harmonics Ylx (x̂) or Yly (ŷ) because, as well as
Jacobi polynomials (Legendre in the spherical case), they have
extra (sin α)lx (cos α)ly multipliers of kinematical origin. These
characterize the influence of binary (Jacobi) angular momenta
and hypermoment on the energy distribution.

A generalized angle-spin basis with total momentum J and
projection M is constructed, by analogy with coupled-channels
formulations (see, e.g., [35]), using

ϒJM
Kγ (�ρ

5 ) = [
Y lx ly

KL(�ρ

5 ) ⊗ XS

]
JM

, (A5)

where γ refers to the quantum number set γ = {LSlxly} and
XSMS

is the channel-spin function (A3).
The antisymmetrization between two halo neutrons with

definite isospin T = 1 can be easily done in the T basis,
where x is proportional to the relative distance between two
halo neutrons with definite total spin S. In the HH method,
the antisymmetrizer Ânn acts only on the angle-spin part
of scattering function and selects configurations with odd
T + S + lx .

The corresponding six-dimensional plane wave, with inclu-
sion of spins s1 and s2 of the halo nucleons, is a reference frame
for calculations of scattering amplitude and partial S-matrix
elements:

Ânn (2π )−3 exp[i(kx · x + ky · y)] · χs1m1χs2m2

= Ânn(κρ)−2
∑

KLMLlx ly

iKJK+2(κρ)Y lx ly
KLML

(�ρ

5 )

× [Y lx ly
KLML

(�κ
5)]∗ · χs1m1χs2m2

= Ânn

(κρ)2

∑
JMKγ

iKJK+2(κρ)

×
∑

MLMS

〈s1m1s2m2|SMS〉〈LMLSMS |JM〉

×ϒJM
Kγ (�ρ

5 )Y lx ly
KLML

(�κ
5)∗, (A6)

where JK+2 is the cylindrical Bessel function of integer
index.

The antisymmetrization operator Ânn acting on the valence
nucleons in a plane wave will again select odd T + S + lx .
Therefore we use the term “antisymmetrised plane wave” for
expression (A6).

The antisymmetrized continuum wave function in the
presence of interactions between the constituents can
be represented as the general solution of a coupled-
channels problem for given spin projections m1 and m2

before collision:

�(+)
m1m2

(x, y, k̂x, k̂y, α
κ )

= (κρ)−5/2
∑

J,Kγ,K ′γ ′
iKψJ

Kγ,K ′γ ′(κ, ρ)

×ϒJM
K ′γ ′(�

ρ

5 )
∑

MLMS

〈s1m1s2m2|SMS〉

× 〈LMLSMS |JM〉[Y lx ly
KLML

(�κ
5)]∗, (A7)

where ψ
J (+)
Kγ,K ′γ ′(κρ) are the ρ-radial functions. The primed

indices in Eq. (A7) correspond to momenta of outgoing
waves. Momenta of ingoing waves only enter the dynamical
equations via the boundary conditions, such as fixed values
of spin projections m1,m2 in the ingoing wave, as well as
directions k̂x, k̂y and distributions of energies ακ of incident
particles with corresponding angular lx, ly and hyperangular
K momenta.

For hyperradial continuum wave functions, the asymptotic
behavior at ρ → ∞ for uncharged particles is

ψ
J (+)
Kγ,K ′γ ′(κρ) =

√
2

π

i

2

[
H−

K+3/2(κρ)δKγ,K ′γ ′ − SJ
Kγ,K ′γ ′

× H+
K ′+3/2(κρ)

]
. (A8)

Here H−
Land H+

L are the generalized well-known Riccati-
Bessel functions of half-integer index, which coincide with
the Coulomb functions H±

L = GL ± iFL of half-integer index
(L = K + 3/2) with Sommerfeld parameter η = 0 in our case,
with asymptotics FK+3/2(κρ) � sin[κρ − (K + 3/2)π/2] and
GK+3/2(κρ) � cos[κρ − (K + 3/2)π/2]. The functions H±

L ,
having asymptotics ∼ exp(±iκρ), describe out- and in-going
three-body spherical waves, and SJ

Kγ,K ′γ ′ is the S-matrix
for the 3 → 3 scattering of an incoming wave Eq. (A6)

in channel Kγ . The factor
√

2
π

i
2 gives plane wave asymp-

totics JK+2(κρ) �
√

2
πκρ

cos[κρ − (K + 2)π/2 − π/4] in the

absence of interaction, with normalization∫
ψ

J (+)
Kγ,K ′γ ′(κρ)ψJ (+)

Kγ,K ′γ ′(κ ′ρ)dρ = δ(κ − κ ′). (A9)

With Sommerfeld parameter η = 0, the Bessel function

JK+2(κρ) =
√

2
πκρ

FK+3/2(κρ) in the whole space, so we can

define the phase shift or the partial wave S matrix using
FK+3/2(κρ) as the asymptotic form.

The factor (κρ)−5/2 in Eq. (A7) is compensated by
the behavior of the hyperradial continuum wave function
ψJ

Kγ,K ′γ ′(κρ) ∼ (κρ)K+5/2 at the origin. Therefore, most im-
portant for energy dependence are the partial angular momenta
of the final state, lx, ly (εlx/2

x ε
ly/2
y ), and the polynomial structure

of P
lx+1/2,ly+1/2
(K−lx−ly )/2 [(εy − εx)/E] coming from the hyperangular

part of Y lx ly
KLML

(�κ
5). The lower index n = (K − lx − ly)/2 in

P
lx+1/2,ly+1/2
n gives the number of nodes in the polar angle

ακ = atan
√

εx/εy coordinate.
Since the set of hyperradial wave functions in any Jacobi

system can be obtained by a linear combination of any other,
we need only generate them for one Jacobi system. The
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hyperharmonics Y lx ,ly
KLML

from one Jacobi set (i) transform
to another ( j) via a kinematic rotation through the unitary
Raynal-Revai coefficients [36]

Y lx ,ly
KLML

(�i
5) =

∑
l′x ,l′y

〈j, l′x, l′y |i, lx, ly〉KLY
l′x ,l

′
y

KLML
(�j

5). (A10)

In this rotation the quantum numbers K,L,M are conserved.
Possible values of the pairwise angular momenta l′x, l

′
y are

limited by condition (−1)lx+ly = (−1)l
′
x+l′y which guarantees

parity conservation, and by the conservation of the hypermo-
ment K = 2n + lx + ly = 2n′ + l′x + l′y .

To derive the scattering amplitudes and elastic cross section
it is convenient to rewrite Eq. (A7) in the matrix form

�(+)
m1m2

(x, y, kx, ky) =
∑
m′

1m
′
2

χs1m
′
1
χs2m

′
2
ψ

(+)
m′

1m
′
2m1m2

(x, y, kx, ky),

(A11)

where ψ
(+)
m′

1m
′
2m1m2

contains the observable spin projections
m′

1m
′
2 of the outgoing wave:

ψ
(+)
m′

1m
′
2m1m2

(x, y, kx, ky)

= (κρ)−5/2
∑

J,Kγ,K ′γ ′

∑
MLMSM

〈s1m1s2m2|SMS〉〈LMLSMS |JM〉

×
∑

M ′
LM ′

S

〈s1m
′
1s2m

′
2|S ′M ′

S〉〈L′M ′
LS ′M ′

S |JM〉

× iKY l′x l
′
y

K ′L′M ′
L

(
�

ρ

5

)[
Y lx ly

KLML

(
�κ

5

)]∗
ψJ

Kγ,K ′γ ′(κ, ρ). (A12)

Asymptotically the elastic scattering wave function of
Eq. (A12) has the form

Ânn(2π )−3 exp[i(kx · x + ky · y)]δm1m
′
1
δm2m

′
2

+ fm′
1m

′
2m1m2 (E,�

κf

5 ,�κ
5)

exp(iκρ)

ρ5/2
, (A13)

where ρ−5/2 exp(iκρ) is an outgoing three-body spherical
wave with the antisymmetrized 3 → 3 scattering amplitude
fm′

1m
′
2m1m2 (E,�

κf

5 ,�κ
5) given at large distances ρ by

fm′
1m

′
2m1m2

(
E,�

κf

5 ,�κ
5

)

= i

2

√
2

π

1

κ5/2
e−iπ3/4

×
∑

JKγK ′γ ′

∑
MLMSM

〈s1m1s2m2|SMS〉〈LMLSMS |JM〉

×
∑

M ′
LM ′

S

〈s1m
′
1s2m

′
2|S ′M ′

S〉〈L′M ′
LS ′M ′

S |JM〉

× (
δKγ ;K ′γ ′ − SJ

Kγ ;K ′γ ′
)[
Y lx ly

KLML

(
�κ

5

)]∗Y l′x l
′
y

K ′L′M ′
L

(
�

κf

5

)
,

(A14)

where �
ρ

5 is replaced by �
κf

5 to characterize the directions of
the momenta {kf

x, kf
y} and energy distribution ακf of scattered

particles.
The elastic differential 3→3 scattering cross section with

fixed spin projections m′
1m

′
2m1m2 is defined as a square

modulus of the antisymmetrized scattering amplitude:

d5σm′
1m

′
2m1m2 (3)

d�
κf

5

= ∣∣fm′
1m

′
2m1m2

(
E,�

κf

5 ,�κ
5

)∣∣2
. (A15)

After averaging over the initial spin projections m1m2 and
summing over the final m′

1m
′
2, we have an incoherent sum over

the channel spins:

d5σ (3)

d�
κf

5

= 1

2πκ5

1

(2s1 + 1)(2s2 + 1)

∑
SMS,S ′M ′

S

×
∣∣∣∣∣∣

∑
JKLlx lyMLK ′L′l′x l′yM

′
LM

〈LMLSMS |JM〉

× 〈L′M ′
LS ′M ′

S |JM〉(δKγ ;K ′γ ′ − SJ
Kγ ;K ′γ ′

)

× [
Y lx ly

KLML

(
�κ

5

)]∗Y l′x l
′
y

K ′L′M ′
L

(
�

κf

5

)∣∣∣∣∣∣
2

.

To obtain the energy correlations between scattered par-
ticles it is necessary to integrate over the directions of the
incident particles and the distribution of total energy between
them (�κ

5), and over the direction of the scattered particles
(k̂f

x, k̂f
y). After integration and summation over the projection

M, the differential cross section describing the distribution of
the total energy E = εxi

+ εyi
over the subsystems xi, yi will

be an incoherent sum over the quantum numbers of the incident
particles as well as the angular momenta of the scattered ones,
giving the equation [Eq. (1)] we use in this paper:

1

sin2 αf cos2 αf

dσ (3)

dαf

= 2

πκ5

1

(2s1 + 1)(2s2 + 1)

×
∑

JKγγ ′
(2J + 1)|

∑
K ′

(
δKγ ;K ′γ ′

− SJ
Kγ ;K ′γ ′

)
ψ

l′x l
′
y

K ′ (αf )|2. (A16)
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