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Two- and three-charged-particle nuclear scattering in momentum space:
A two-potential theory and a boundary condition model
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The two- and three-charged-particle nuclear scattering problems are investigated in momentum space. The
three-body equations with a short-range nuclear potential, a three-body force potential, and the long-range
Coulomb potential are presented in a mathematically rigorous way within a generalized two-potential theory.
To remove the serious singularity in the two- and three-body Coulomb problems in momentum space, we have
proposed a novel boundary condition to the phase shift that arises from a potential difference, the so-called
auxiliary potential (AP), between the Coulomb potential and the screened Coulomb one: V φ = V C − V R .
Furthermore, we point out the importance of the off-shell amplitude for the AP, by which one can uniquely obtain
the two-body on-shell and off-shell Coulomb amplitude in momentum space. Therefore, this formulation is also
useful for atomic systems, which is another benefit. It is recalled that the traditional phase-shift renormalization
theory, in which the screened Coulomb amplitude is sandwiched by renormalized phase factors eiφ , is not
consistent with two-potential theory. Some ambiguities or misunderstandings of the traditional methods for
handling the Coulomb problem are clarified. Finally, the three-body unitarity relation is proved for the amplitude
generated from these three kinds of potential. Moreover, a generalized two-potential theory is presented. It is
pointed out that the asymptotic three-body nuclear wave function with the Coulomb potential could not be
written by a product of two individual wave functions ψ̃x(x)ψ̃y(y) defined in terms of Jacobi coordinates x and
y, respectively.
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I. INTRODUCTION

The two-body Lippmann-Schwinger (LS) equation for the
Coulomb potential in momentum space suffers a serious
numerical difficulty caused by overlapping or coincidence
of the Green’s function singular pole and the logarithmic
singularity of the Coulomb potential [1,2]. Furthermore, the
partial wave expansion series of the Rutherford scattering
amplitude does not converge, but it does converge as a
distribution [3,4]. Although we have an analytic solution for
the two-body Coulomb wave function, the three-body analytic
Coulomb solution has not been discovered yet [5]. To avoid
such difficulties, a naive Coulomb correction was made by
sandwiching an amplitude with respect to the short-range
potential by the Coulomb phase factors eiσl [6,7]. It is known
that a screened Coulomb potential has been widely used
for practical calculations in physics. However, in few-body
systems, the calculated results do not always converge by
increasing the screening range. One of the most promising
methods for the screened Coulomb potential was introduced
by Gorshkov in 1960 [8,9], in which the Coulomb phase
shift is considered as composed of the screened Coulomb
phase shift plus a renormalization phase [10,11]. In 1970,
Veselova applied this method to the three-body system at
energies below the three-body threshold [12–14]. Alt et al.
generalized the three-body AGS (Alt-Grassberger-Sandhas)
equation [15] for the two-charged-particle system (i.e., (p + d

scattering), in which they pointed out an additional important
Coulomb interaction between the charged pair and spectator in
momentum space [16–21]. Hereafter we denote these works as
the Mainz-Bonn model (MBM). A boundary condition method

in configuration space was proposed by Merkuriev [22–26]. He
described the asymptotic behavior of the three-body breakup
wave function by using the eikonal approximation [27]. In
[26], numerical results for p + d scattering were compared
with previous calculations [16,17]. Furthermore, in [19], a
critical discussion was presented in comparison with [26].
Besides these three-body calculations, variational calculations
in terms of hyperspherical variables are used by Kievsky
and co-workers [28–33]. Many of the approaches for treating
three-body Coulomb scattering separate the nonsingular part
from the singular Coulomb part. It was proved that the
former part safely converges, whereas the latter singular term
results in two-body Coulomb scattering, which is composed
of two charged fragments; the p + d system is one example.
Therefore, the two-charged-particle system in the three-body
problem seems to be essentially the two-body Coulomb
problem even if the energy is above the three-body breakup.
This may be said to belong to the first generation of history
in the three-body Coulomb problem. Although many efforts
to solve the Coulomb problem were made, most few-body
scattering calculations were based on the incomplete Coulomb
method of the past half century.

Mukhamedzhanov et al. produced a painstaking work
involving three charged particles with the same sign as a
natural extension of the earlier MBM approach, although nu-
merical calculations have not yet been presented [34,35]. The
three-charged-particle problem is very important, not only
for atomic systems but also for nuclear reactions. However,
the screened Coulomb potential plus the renormalization
technique, which is the basis of their method, will encounter
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trouble when the Coulomb parameter η(k) becomes large,
which means that the charges or the masses of the charged
fragments become large or the energy becomes small i.e.,
the nuclear three clusters for instance, which were already
mentioned in [36]. However, the screened Coulomb potential
plus renormalization approach, such as the MBM, is clearer
and more straightforward in the three-body Faddeev scheme.
Therefore, we will mainly discuss our theory in comparison
with the MBM.

We will point out that the phase-shift renormalization is not
consistent with two-potential theory. This means that any effort
within the MBM method will fail to reach the exact Coulomb
amplitude even when one is on the energy shell. The traditional
renormalization phase was obtained from the modified wave
function, which is given by a screened Coulomb potential,
in comparison with the pure Coulomb one [10]. The phase
could be obtained by solving the LS equation with respect to
the potential difference between the Coulomb potential and
the screened Coulomb potential. The two-potential theory, in
this case, demands two potentials, consisting of a screened
Coulomb potential V R and the remainder potential V φ =
V C − V R . The latter potential creates the renormalization
t matrix T φ , which may generate the renormalization phase,
whereas the former t matrix consists of a short-range t matrix
T Rφ but modified by the latter t matrix T φ . Nevertheless,
several authors persist in considering only the T Rφ term but
neglecting T φ . This is one of the reasons that the traditional
renormalization method fails to reach the genuine Coulomb
t matrix. Moreover, the remainder t matrix contains a serious
unsolved problem, similar to that of the Coulomb LS equation.
The equation also has a notorious overlapping singularity in the
kernel. This paper will introduce a novel method that can solve
the problem. Using this method, we can obtain not only the
Coulomb phase shift but also the off-shell Coulomb t matrix.
Although in our former papers we proposed a new definition of
the Coulomb amplitude that contained several new aspects for
handling a long-range potential, where two-potential theory
was often adopted in two- and three-body momentum space,
the renormalization amplitude still had a long-range problem
caused by the Coulomb interaction [37–39]. Our new scheme
can avoid such difficulty by introducing two- and three-body
off-shell boundary conditions for a typical auxiliary potential
V φ [39].

Section II introduces an “effective auxiliary potential”
whose t matrix can be completely obtained by solving the LS
equation. By utilizing the auxiliary t matrix catalyst, the fully
off-shell Coulomb t matrix is obtained within the framework
of two-potential theory, although the Coulomb LS equation
cannot be directly solved. Furthermore, the off-shell t matrix
for the short-range plus Coulomb potential is also presented.
In Sec. III, the full three-body scattering formalism (the
nuclear force, the three-body force, and the Coulomb force) is
investigated in analogy with the Faddeev-type decomposition
and two-body Coulomb method. A summary and discussion
are given in Sec. IV. The unitarity for the new three-body
amplitude is proven in Appendix A. The two-potential theory
for the three-body equation is given in Appendix B. The
asymptotic behavior of the three-body Coulomb wave function
is discussed in Appendix C.

II. TWO-BODY COULOMB t MATRIX

A. Overlapping singularity

The Coulomb potential with charges Ze and Z′e is given in
configuration space by

V C(r) = ZZ′e2

r
. (1)

The screened Coulomb potential is given generally as

V R(r) = V C(r)ξ (r, R), (2)

where ξ (r, R) is a damping function. The Heaviside func-
tion θ (r − R) and the exponential functions e−(r/R)m(m =
1, 2, . . .) are popular. The Yukawa-type function m = 1 and
the Gaussian function m = 2 are also well known. The
momentum representation of Eq. (1) is given by introducing
a small damping parameter λ for the integral in the Fourier
transformation with m = 1. Furthermore, the partial wave
expansion can be represented in the following way;

〈−→
p |V C |−→p′ 〉 ≡ lim

λ→0

4πZZ′e2

|−→p − −→
p′ |2 + λ2

= lim
λ→0

∞∑
l=0

(2l + 1)V C
l (p, p′; λ)Pl(cos θ ), (3)

with

V C
l (p, p′; λ) ≡ V0

2pp′ Ql

(
p2 + p′2 + λ2

2pp′

)
, (4)

where V0 = 4πZZ′e2 = 4πkη(k)/ν with the Coulomb pa-
rameter η(k) = ZZ′e2ν/k and the reduced mass ν.

Then, in the limit of λ → 0, the LS equation for this
potential is written as

T C
l (p, p′; λ; z) = V C

l (p, p′; λ) +
∫ ∞

0
V C

l (p, p′′; λ)G0(p′′; z)

× T C
l (p′′, p′; λ; z)dp′′, (5)

with

G0(p′′; z) = ν

π2

p′′2

k2 − p′′2 + iε
. (6)

The kernel has a pole at p′′ = k = √
2νz in the Green’s

function and a logarithmic singularity at p = p′′ for λ = 0.
Since both singularities are overlapped or coincide in the
limit of λ → 0, which we call an “overlapping singularity,”
the integral equation cannot be solved directly. This is one
of the well-known difficulties in solving the LS equation in
momentum space for the Coulomb problem. Hereafter, we will
suppress λ in the momentum space Coulomb potential except
where essential, and we will write the LS equation omitting λs
as

T C
l (p, p′; z) = V C

l (p, p′)

+
∫ ∞

0
V C

l (p, p′′)G0(p′′; z)T C
l (p′′, p′; z)dp′′.

(7)
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B. Auxiliary potential and analyticity

To avoid the difficulty associated with an overlapping
singularity, we define an “auxiliary but effectively long-range
potential” (AP), V φ(r) ≡ V C(r) − V R(r), which describes a
difference between the Coulomb potential and a “screened
Coulomb potential” (SCP) with a critical range R ≡ Rcl .
The singularity at r = 0 is completely removed in V φ(r)
but the long-range property remains. One could imagine
that V φ(r) is a shallow long-range potential. If we increase
the screening range, then V

φ

l (p, p′) = V C
l (p, p′) − V R

l (p, p′)
in momentum space becomes smaller and smaller except
for the infinite value along the “blade of a knife” on the
diagonal line at p = p′. Finally, it will vanish, and the
t matrix T

φ

l (p, p′; z) for V
φ

l (p, p′) could reach a trivial
solution that has an effectively “zero phase shift”: φl(R, k) ≡
φ(R, k, l) = 0. However, if we could find a very large but
appropriate finite range R = Rcl that satisfies φ(R, k, l) =
±πn(n = 0, 1, 2, . . .), then we have a nontrivial solution
T

φ

l (p, p′; z).
Let us start from the Coulomb potential that consists of a

short-range SCP and the AP,

V C = V R + (V C − V R) ≡ V R + V φ. (8)

We obtain for the LS equation with respect to the potential
V φ

T φ = V φ + V φG0T
φ ≡ V φωφ ≡ ωφV φ, (9)

ωφ ≡ 1 + G0T
φ,

(10)
ωφ ≡ 1 + T φG0.

Therefore, the screened Coulomb t matrix tRφ given by two-
potential theory is

tRφ = V R + V RGφtRφ ≡ V RωR ≡ ωRV R, (11)

ωR ≡ 1 + GφtRφ,
(12)

ωR ≡ 1 + tRφGφ,

with

Gφ = 1

z − H0 − V φ
= G0 + G0T

φG0. (13)

Here, the fully off-shell Coulomb t matrix is defined by

T C ⇐ T Rφ + T φ = ωφtRφωφ + T φ. (14)

It should be noted that the pure Coulomb t matrix is not
obtained by solving the Coulomb LS equation but by summing
a short-range renormalized t matrix and the long-range AP
t matrix. We will see that the on-shell T

φ

l (k, k; z) does
not yield the renormalization phase φ(R, k) = η(k)(ln 2kR −
γ /m), which was given by the differential equation in
the traditional method [10,17] but we obtain the off-shell
T

φ

l (p, p′; z), and on-shell T
φ

l (k, k; z) = 0 is required. Then
we can calculate tRφ with V R and Gφ in Eq. (11) and
complete (14). As a consequence, it will be shown that
T C 	= ωφtRωφ .

Let us solve the following LS equation;

T
φ

l (p, p′; z) − V
φ

l (p, p′) =
∫ ∞

0
V

φ

l (p, p′′)G0(p′′; z)

× T
φ

l (p′′, p′; z)dp′′ (15)

=
∫ ∞

0
T

φ

l (p, p′′; z)G0(p′′; z)

×V
φ

l (p′′, p′)dp′′, (16)

where V
φ

l (p, p′) is nonsingular except for p 	= p′. The
G0(p′′; z) has a pole at p′′ = k.

To investigate the right-hand side of (15), we define

Il(p, p′; z) ≡
∫ ∞

0
V

φ

l (p, p′′)G0(p′′; z)T φ

l (p′′, p′; z)dp′′

≡ IP
l (p, p′; z) + iI δ

l (p, p′; z)

= ν

π2

[
P

∫ ∞

0

V
φ

l (p, p′′)T φ

l (p′′, p′; z)

k2 − p′′2 p′′2dp′′

− i
πk

2
V

φ

l (p, k)T φ

l (k, p′; z)

]
, (17)

where the integral is the principal value part and the second
term comes from the δ function of the Green’s function.
Calculating the integral equation of (16) gives

Il(p, p′; z) ≡
∫ ∞

0
T

φ

l (p, p′′; z)G0(p′′; z)V φ

l (p′′, p′) dp′′

≡ I
P

l (p, p′; z) + iI
δ

l (p, p′; z)

= ν

π2

[
P

∫ ∞

0

T
φ

l (p, p′′; z)V φ

l (p′′, p′)
k2 − p′′2 p′′2dp′′

− i
πk

2
T

φ

l (p, k; z)V φ

l (k, p′)

]
. (18)

Here, the principal parts of Eqs. (17) and (18) are calculated
safely by standard procedures,

P

∫ ∞

0

Fl(p′′)
k2 − p′′2 dp′′ =

∫ ∞

0

Fl(p′′) − Fl(k)

k2 − p′′2 dp′′. (19)

In the δ-function part in the integral Il(p, p′; z), Eqs. (15)
and (16) have trouble only at p = k and p′ = k.

Lemma 1. If the on-shell t matrix T
φ

l (k, k; z) = 0 is given,
then the half-off-shell t matrices satisfy

T
φ

l (p, k; z) = T
φ

l (k, p′; z) = 0.

Proof. From Eq. (17), and T
φ

l (k, k; z) = 0, we obtain

I δ
l (p, k; z) = − νk

2π
V

φ

l (p, k)T φ

l (k, k; z) = 0 (for p 	= k).

(20)

Using Eqs. (15)–(19) and (20), we have a finite value for

Il(p, k; z) = I l(p, k; z). (21)
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Since V
φ

l (k, k) = ∞, then the half-off shell t matrix should
satisfy

T
φ

l (p, k; z) = 0 (for p 	= k). (22)

In the same way, T
φ

l (k, p′; z) = 0 is obtained.
Lemma 2. If the relations

T
φ

l (k, k; z) = T
φ

l (k, p′; z) = T
φ

l (p, k; z) = 0 (23)

are given, then the off-shell t matrix T
φ

l (p, p′; z) is a real
function. As a consequence, T

φ

l (p, p′; z) is obtained by the
K matrix equation.

Proof. Because of the relations

I δ
l (p, k; z) = Ī δ

l (k, p′; z)

= I δ
l (k, k; z) = I δ

l (p, p′; z) = 0. (24)

Eqs. (15) and (16) are written as

T
φ

l (p, p′; z) − V
φ

l (p, p′)

= IP
l (p, p′; z)

= P

∫ ∞

0
V

φ

l (p, p′′)G0(p′′; z)T φ

l (p′′, p′; z)dp′′

≡
∫ ∞

0
V

φ

l (p, p′′)GP
0 (p′′; z)T φ

l (p′′, p′; z)dp′′

≡ K
φ

l (p, p′; z) − V
φ

l (p, p′). (25)

Therefore, T
φ

l (p, p′, z) = K
φ

l (p, p′, z) is a real function that
can be given by K matrix theory. The relation between the
t matrix and the K matrix is given by, for p = p′ = k,

T
φ

l (p, p′; z) = K
φ

l (p, p′; z)

+ iρ(k)
K

φ

l (p, k; z)Kφ

l (k, p′; z)

1 − iρ(k)Kφ

l (k, k; z)

−→ K
φ

l (p, p′; z), (26)

where ρ(k) = −νk/2π .
Lemmas 1 and 2 are true in the Coulomb scattering theory

in which the on-shell t matrix vanishes or phase shifts are
±πn (n = 0, 1, 2, . . .) at specific k. The auxiliary amplitude
has two parameters R and k, at least, to satisfy the phase shift
φl(R, k) = 0 at points (or on the line) R = Rcl(k) for a fixed l.
Hence, the off-shell auxiliary LS equation can be safely solved
for all energies but by different ranges. Then we can obtain
the fully off-shell Coulomb amplitude at any energy not by the
Coulomb LS equation but by the two-potential formula.

Consequently, the screening range R = Rcl(k) has to be
sought to obtain T

φ

l (k, k, z) = 0 by a proper method. The range
will provide “a unique boundary value”; otherwise the off-shell
T

φ

l has no solution as the original Coulomb LS equation has
none.

C. The boundary range and a solution method

One of the methods for obtaining T
φ

l (k, k, z) = 0 could
be given by solving the Schrödinger equation with respect

to V
φ

l (R, r) ≡ V
φ

l (r) = V C
l (r) − V R

l (r) in which the phase
shift satisfies φl(R, k) = ±πn(n = 0, 1, 2, . . .). We can solve
the differential equation for the auxiliary potential V

φ

l (Rcl , r)
with the Coulomb asymptotic wave function

(z − H0)ψφ

l (r) = V
φ

l (r)ψφ

l (r). (27)

From the equation, the auxiliary phase shift φl(R, k) could be
easily obtained.

We can also propose another method to solve Eq. (15)
in momentum space directly. For a practical calculation, we
recall the parameter λ in Eq. (5), taking the limit λ → 0 for
0 < λ 
 1/R; then Eq. (15) becomes

T
φ

l (p, p′; λ; z) = V
φ

l (p, p′; λ) +
∫ ∞

0
V

φ

l (p, p′′; λ)

× G0(p′′; z)T φ

l (p′′, p′; λ; z)dp′′, (28)

with

V
φ

l (p, p′; λ) = V C
l (p, p′; λ) − V R

l (p, p′), (29)

where the limit of the auxiliary potential exists,

lim
λ→0

V
φ

l (p, p′; λ) = V
φ

l (p, p′). (30)

Therefore, we can calculate Eq. (28) for a sufficiently small
λ except for the overlapping singularity at λ = 0 and obtain
Rcl(k; λ) to satisfy T

φ

l (k, k; λ; z) = 0 ; then we can perform

lim
λ→0

T
φ

l (k, k; λ; z) → T
φ

l (k, k; z) = 0, (31)

with

lim
λ→0

Rcl(k; λ) → Rcl(k), (32)

where we will find a specific range R = Rcl(k) that satisfies
Eq. (31).

Once we find Rcl(k), the K-matrix equation is verified with
respect to V

φ

l (p, p′) by using Lemmas 1 and 2; that is, putting
T

φ

l (p, p′; z) ≡ K
φ

l (p, p′; z), we have

T
φ

l (p, p′; z) = V
φ

l (p, p′) +
∫ ∞

0
V

φ

l (p, p′′)GP
0 (p′′; z)

× T
φ

l (p′′, p′; z)dp′′

= V
φ

l (p, p′) + ν

π2
P

∫ ∞

0
V

φ

l (p, p′′)
p′′2

k2 − p′′2

× T
φ

l (p′′, p′; z)dp′′, (33)

where no overlapping singularity exists in the kernel of
Eq. (33). Using such a unique range Rcl we can represent
the off-shell T

φ

l (p, p′; z) or K
φ

l (p, p′; z) without a singular
pole of the free Green’s function.

Finally, we can conclude that the Coulomb t matrix is not
obtained by solving the LS equation (5), but by using (14) and
the off-shell solution of (33).
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Here, we have to solve (11), that is,

t
Rφ

l (p, p′; z) = V R
l (p, p′) +

∫ ∞

0
V R

l (p, p′′)Gφ

l (p′′; z)

× t
Rφ

l (p′′, p′; z)dp′′ (34)

= V R
l (p, p′) +

∫ ∞

0
KRφ

l (p, p′′; z)G0(p′′; z)

× t
Rφ

l (p′′, p′; z)dp′′, (35)

with

KRφ

l (p, p′′; z) =
∫ ∞

0
V R

l (p, p′′′)
{
δ(p′′′ − p′′) + GP

0 (p′′′; z)

× T
φ

l (p′′′, p′′; z)
}
dp′′′, (36)

where the new resolvent is given by G
φ

l (z) = G0(z) +
G0(z)T φ

l (z)G0(z) = ω
φ

l (z)G0(z) = G0(z)ωφ

l (z), and T
φ

l (z) ≡
K

φ

l (z) is used in the integrand.
The kernel KRφ

l is a real function, because in Eq. (36)
the δ-function part of G0(z) ensures that the half-on-shell
K

φ

l (k, p′′; z) = 0 owing to (23), (26).
Furthermore, the Coulomb phase shift is given by

σl(k) = tan−1

(
Im

[
ω

φ

l t
Rφ

l ω
φ

l

]
Re

[
ω

φ

l t
Rφ

l ω
φ

l

]
)

= tan−1

(
Im

[
t
Rφ

l

]
Re

[
t
Rφ

l

]
)

≡ δ
Rφ

l (k), (37)

where we have used a half-on-shell relations for ω
φ

l (z) and
ω

φ

l (z), which follow from (23),

lim
p→k

ω
φ

l (p, p′; z) = δ(k − p′),

lim
p′→k

ω
φ

l (p, p′; z) = δ(p − k),

(38)
lim
p→k

ω
φ

l (p, p′; z) = δ(k − p′),

lim
p′→k

ω
φ

l (p, p′; z) = δ(p − k).

In this process, the specific range R(k, l) that satisfies
T

φ

l (k, k; z) = 0 should be searched for. It is known that the
first approximation for such a range is

R(k, l) = 1

2k
exp

[
C(k, l)

η(k)

]
≡ Rcl(k), (39)

where C(k, l) = C0(k, l) ± nπ is a factor that depends on the
SCP shape and n. This is a kind of boundary condition at
r = R = Rcl that is not comparable with the usual differential
equation. The AP phase shift is taken as ±πn.

Finally, one can conclude

φl(R, k) ≡ φ(R, k, l) = ±πn (n = 0, 1, 2, . . .). (40)

Merkuriev developed practical boundary conditions for dif-
ferential equations in coordinate space. He investigated the
asymptotic behavior of the three-body Coulomb wave function
in which the eikonal approximation was widely used [27].
It should be recalled that the asymptotic behavior of the

Coulomb three-body breakup wave function is very important
because the asymptotic behavior offers a new six-dimensional
spherical wave that is completely different from the usual
two-body boundary condition framework in the hyperspherical
coordinate. The numerical p + d calculation by Merkuriev
was critically discussed in [19].

In the Jacobi coordinate, the three-body Coulomb wave
function cannot be separable with respect of the coordinates
x and y (see Appendix C). If the separable approximation
of the three-body wave function is adopted, then it should
be admitted that the method contains a screened Coulomb
approximation. Therefore, only for limited cases such as the
short-range potential, or below the p + d breakup threshold
in the Coulomb field, can one adopt the particular boundary
condition for the wave function of x, and that for the wave
function of y, respectively [29]. Generally, the boundary
condition for the three-body Coulomb wave function: ψ(x, y)
above the p + d breakup threshold as well as the intermediate
state could not be separable with respect to x or y. In other
words, the x-y separated form: ψ̃x(x)ψ̃y(y) is equivalent to a
screend Coulomb potential case [40].

In this paper, we are not concerned with the boundary
condition of the differential equation in coordinate space, but
we introduced a new boundary condition in momentum space
for the integral equation.

In the conventional nuclear reaction calculation within the
boundary condition model, it is said that the major wave
function is obtained by using a particular long-range SCP that
is smoothly continued using the Coulomb asymptotic wave
function at a specified range. However, the screened Coulomb
wave function should be distorted by the AP with the defined
long-range behavior. That is, the SCP wave function could not
be connected smoothly with the pure Coulomb wave function
at finite range, but it can be done at infinite range. This will be
seen in the following discussion.

The Schrödinger equation for the Coulomb potential and
the asymptotic behavior of the wave function are given in the
AP formalism by V

φ

l (r) = V C
l (r) − V R

l (r), and so[
z − H0 − V

φ

l (r)
]
ψC

l (r) = V R
l (r)ψC

l (r), (41)

ψC
l (r) −→ exp

{
i

[
kr − πl

2
− η(k) ln 2kr + σl(k)

]}
(for r → ∞) (42)

≡ exp

{
i

[
kr − πl

2
− η(k) ln 2kr + δ

Rφ

l (k) + φ(R, k, l)

]}
.

(43)

The SCP of range R gives

(z − H0)ψR
l (r) = V R

l (r)ψR
l (r), (44)

ψR
l (r) −→ exp

{
i

[
kr − πl

2
+ δR

l (k)

]}
. (45)

Recall that δ
Rφ

l (k) 	= δR
l (k) is already confirmed by the

existence of the T
φ

l -modified resolvent G
φ

l (z) in Eq. (34).
This idea is not a new one, having been mentioned in

the textbook of Jackson [41]; for instance, see Eq. (3.26) on
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p. 40. Equation (44) generates δR
l (k) in (45), which refers to the

resolvent G0(z). The smooth matching of the wave function
(42) to that of (45) at r = R is given by ψC

l (R) = ψR
l (R)

and [ψC
l (R)]′ = [ψR

l (R)]′, which lead to a phase-shift condi-
tion σl(k) = δR

l (k) + η(k) ln 2kR and a momentum relation
k = k − η(k)/R. These relations are only allowed at r =
R → ∞. This method is inadequate for our present purpose.
Therefore the relation (39) gives a unique screening range
R = R(k, l) ≡ Rcl at which the asymptotic wave function (42)
is smoothly continued with the wave function (43) along with
the relation σl(k) = δ

Rφ

l (k) + φ(R, k, l). Here the phase shifts
φ(R, k, l) = ±πn(n = 0, 1, 2, . . .) are satisfied. Then these
give σl(k) = δ

Rφ

l (k) ± πn. Many nuclear reaction calculations
have been performed without care being taken to define a
unique range.

D. Off-shell Coulomb t matrix

Finally, our main purpose is ready for harvest in this
subsection. The Coulomb potential is separated into two parts,

V C = V R + (V C − V R) = V R + V φ. (46)

Then one can use two-potential theory and obtain by means of
Eq. (14)

T C
l (p, p′; z) =

∫ ∞

0

∫ ∞

0
ω

φ

l (p, p′′; z)tRφ

l (p′′, p′′′; z)

×ω
φ

l (p′′′, p′; z)dp′′dp′′′ + T
φ

l (p, p′; z)

=
∫ ∞

0

∫ ∞

0

[
δ(p − p′′) + T

φ

l (p, p′′; z)

×GP
0 (p′′; z)

]
t
Rφ

l (p′′, p′′′; z)
[
δ(p′′′ − p′)

+GP
0 (p′′′; z)T φ

l (p′′′, p′; z)
]
dp′′dp′′′

+ T
φ

l (p, p′; z), (47)

where T
φ

l (p, p′; z) is already given in the previous section,
and t

Rφ

l (p, p′; z) is calculated numerically by Eqs. (11), (34),
and (35), but the details will be shown in the next section.

E. A short-range force and a Coulomb force

Let us consider the system with nuclear and Coulomb
forces. The potential is given by

V (C) = V S + V C = (V S + V R) + (V C − V R)

= V (R) + V φ, (48)

where V S is a short-range nuclear potential. By analogy with
Eq. (9) and Eq. (11), the t matrix is given as

T (R) = V (R) + V (R)GφT (R)

= ωRtsRωR + tRφ, (49)

with

t sR = V S + V SGRφtsR, (50)

where tRφ was given by (11). Then we easily deduce by using
Eqs. (9), (11), (14), (48), and (49)

T (C) = ωφT (R)ωφ + T φ

= ωφ(ωRtsRωR + tRφ)ωφ + T φ

= ωφωRtsRωRωφ + ωφtRφωφ + T φ

= ωCtsRωC + T C, (51)

where the Coulomb Møller operators are defined by ωC =
ωRωφ and ωC = ωφωR . Here we can prove that t sR = t sC by
using the resolvent; that is,

GRφ = 1

z − H0 − V R − V φ

= 1

z − H0 − V C
≡ GC (52)

= G0 + G0T
CG0. (53)

Here it should be stressed that Eq. (52) contains an “important
proof” from the screened Coulomb to the pure Coulomb
Green’s function (i.e., GRφ = GC at a “finite given range R”).
If we miss V φ , then we have to take R → ∞ to reach GC .
Therefore, all other calculations should be done at infinite
range. If the numerical results converge at finite range, they
are inconsistent [40,42,43].

Then Eq. (50) becomes

t sR = V S + V SGCtsR ≡ t sC (54)

= V S + KSCG0t
sR, (55)

with the kernel

KSC = V S(1 + G0T
C). (56)

Therefore Eq. (51) gives

T (C) = ωCtsCωC + T C. (57)

For the term ωCtsCωC of Eq. (57), we obtain by using
Eqs. (49)

ωCtsCωC = ωφ(ωRtsCωR)ωφ

= ωφ(T (R) − tRφ)ωφ. (58)

Here, the on-shell (T (R) − tRφ) converges because of the
operators ωφ = ωφ = 1. The off-shell amplitude will be
directly calculated from Eq. (58). In the MBM, ωφ = eiφ

and ωφ = eiφ oscillate very rapidly when R → ∞. However,
eiφ(T (R) − tR)eiφ instead of Eq. (58) seems to be converged
because the oscillations of both terms could be canceled at a
certain range R. Since the later (T (R) − tR) is not the same as
Eq. (58), then the converged values are not proper amplitudes,
because they approximate Gφ by G0, which are seen in
Eq. (21b) in [43] and Eq. (27) of [40].

We will see that the renormalization, which was inferred
from Ref. [19], is not correct but is completed only by using
Eq. (14),

ωφT (R)ωφ = ωφ(ωRtsRωR + tRφ)ωφ

= ωφωRtsRωRωφ + ωφtRφωφ

= ωCtsCωC + ωφtRφωφ

= ωCtsCωC + T C − T φ

≡ T (C) − T φ, (59)
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where the existence of T φ is emphasized. Finally, we obtain
the following relations from Eq. (59);

ωφT (R)ωφ 	= T (C) ≡ ωCtsCωC + T C, (60)

ωφtRφωφ 	= T C, (61)

ωφωRtsRωRωφ = ωCtsCωC. (62)

To investigate Eq. (61) practically, let us consider the two-
body on-shell amplitude, putting T C

l (k, k; z) = −2π/νf C
l (k).

Now, if we adopt the MBM’s renormalization technique [17],
then ωφ = ωφ → eiφ is given. Therefore, the left-hand side of
Eq. (61) becomes

lim
R→∞

ωφt
Rφ

l ωφ = lim
R→∞

−2π

ν
eiφ

(
e2iδ

Rφ

l − 1

2ik

)
eiφ

= lim
R→∞

−2π

ν

(
e2i(δRφ

l +φ) − e2iφ

2ik

)
,

where δ
Rφ

l (k) is the phase shift from Eq. (34). However, the
MBM takes δR

l (k) instead of δ
Rφ

l (k) in which G0 is adopted for
Gφ in Eq. (34); that is, the MBM employs tRl instead of tRφ .
Therefore, if and only if δR

l (k) + φ(R, k) → σl(k) is admitted,
it gives

lim
R→∞

ωφtRl ωφ = lim
R→∞

−2π

ν

(
e2iσl − e2iφ

2ik

)
	= T C

l (k),

where φ(R, k) = η(k)[log(2kR) − γ ] and γ = 0.5772 . . . is
the Euler constant. Since limR→∞ φ(R, k) → ∞, then e2iφ

oscillates very quickly and never converges to the Coulomb t
matrix T C

l (k).
It is also seen that there exists the same confusion in

the three-body AGS equation, Eq. (2.17) of [19], which
corresponds to our Eq. (59) after making the following
replacements;

ωφ → Z
−1/2
α,R (qα), (63)

ω → Z
−1/2
β,R (q ′

β), (64)

T (R) → T (R)
βα (q′

β, qα), (65)

T C → δβαδα3t
C
α (q′

α, qα), (66)

ωCtsCωC → 〈
q′

β,C

(−)∣∣T SC
βα (E + i0)

∣∣q(+)
α,C

〉
. (67)

Then, one can compare Eq. (59) with Eq. (2.17) of [19] in the
elastic scattering limit, using Zα,R(qα) = exp[2iφα,R(qα)] ≡
ZR(qe). First, let us consider Eq. (60) by using the replace-
ments (63), (64), and (65);

lim
R→∞

Z −1
R (qe)T (R)SL

dd (qe, qe; E + i0)

= lim
R→∞

Z−1
R (qe)

[
T SR,SL

dd (qe, qe; E + i0)

+ tLR (qe, qe; 3q2
e /4mN + i0)

]
= lim

R→∞
Z−1

R (qe)
{
Tdd

SR,SL(qe, qe; E + i0)

+ 3

4πimNqe

exp(−2iφR)[exp(2iδR,L) − 1]
}

= lim
R→∞

Z−1
R (qe)Tdd

SR,SL(qe, qe; E + i0)

+ lim
R→∞

3

4πimNqe

{exp[2i(−φR + δR,L)]

− exp[−2iφR]} (68)

	= Tdd
(C)SL(qe, qe; E + i0). (69)

The second term on the right-hand side of Eq. (68) oscillates
very quickly by e−2iφR when R goes to infinity, although
the sum [−φα,R(qα) + δR,L] may converge. Therefore, the
renormalization of this formula never converges. The same
relation appears also in other articles; Eq. (2.21) of [17],
Eq. (3.29) in [18], Eq. (4) in [20], Eq. (17) in [21], Eq. (21a)
in [43], etc. This is a misunderstanding of the traditional
screening method, which is clear from Eq. (59) and the related
discussion.

Second, Eq. (62) for the on-shell limit corresponds to
(in [19])

lim
R→∞

Z −1
R (qe)Tdd

SR,SL(qe, qe; E + i0)

= lim
R→∞

−3

4πimNqe

exp[2i(−φR + δR,L)]

× [exp(2i2S+1δSR,L) − 1]

= −3

4πimNqe

e2iσL [exp(2i2S+1δSC,L) − 1]

= Tdd
SC,SL(qe, qe; E + i0). (70)

It converges. This contradiction is only resolved by the
definition of Eq. (14) with the “auxiliary t matrix,” which
is seen in Eqs. (60)–(62).

In [19], the renormalization phase −φR = σL − δL,R is
obtained by the Yukawa-type screened Coulomb potential
[m = 1 : ξ (r, R) = e−r/R in Eq. (2)], which appears in the
textbook of Goldberger-Watson [10] (p. 265),

φα,R(qα) = −e2Mα

qα

[log(2qαR) − γ ]

+O

(
log(qαR)

qαR

)
. (71)

Unfortunately, Eq. (71) is not a good representation for a large
Coulomb parameter η(qα) = ZZ′e2Mα/qα with heavy masses
and large charges and at very low energies [36]. Another
attempt with respect to m > 1 in Eq. (2) exists, for which
φα,R(qα) = −η(qα)[ln 2qαR − γ /m] is obtained, but it is still
an approximation.

Another way finding φα,R may be possible with the aid
of relations −φα,R(qα) = σL(qα) − δL,R(qα) in which δL,R is
given numerically for proper R, and σL is obtained analytically.
However, this attempt will also fail, because δL,R should be
distorted by φα,R or Gφ in Eq. (34).

In our theory, we use the notation (R, q0) instead of (R, qα)
in [19], and we take δR�

L (q0) for δL,R(qα) and �(R, q0, L) for
−φα,R(qα), respectively. Here, three phases are linked by the
relation between (42) and (43); that is, σL(q0) = δR�

L (q0) +
�(R, q0, L) [41]. To cut the linkage, we have to adopt the
on-shell three-body auxiliary matrix X�

αα,L(q0, q0; E)(= 0)
in (134) with the phase shift �(R, q0, L)(= ±πm : m =
0, 1, 2 . . .) in Eq. (153). However, the off-shell auxiliary matrix
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X�
αα,L(q, q ′; E) ( 	= 0) takes an important part to make the

three-body off-shell t matrix as well as the two-body auxiliary
matrix T

φ

l (p, p′; z)( 	= 0) did.
Therefore, the off-shell extension of the three-body scatter-

ing amplitude by the phase-shift renormalization of the MBM
is not correct. Then any calculations for the breakup amplitude
by the traditional phase-shift renormalization will fail. Details
will be given later.

III. THREE-BODY SCATTERING EQUATION

A. The three-charged-particle t matrix in nuclear systems

Our “regulation” for the two-body Coulomb t matrix in
Eq. (14) and (51) is obviously written for the three-body
transition t matrix T (C) for a nuclear system in which the
full potential is given by

V (C) = V S + W 0 + V C

= (V S + W 0 + V R) + (V C − V R)

= V (R) + V φ, (72)

where V S,W 0, and V Care a nuclear force, a short-range three-
body force, and the Coulomb force, respectively. Here we
introduce the three-body Jacobi-coordinate channels α, β, and
γ or 1, 2, and 3. The two-body potentials V are given by Vα, Vβ ,
and Vγ , whereas the three-body force W 0 could be presented
by W 0

αβ . Therefore, Eq. (72) indicates

V
(C)
αβ = V S

α δαβ + W 0
αβ + V C

α δαβ

= (
V S

α δαβ + W 0
αβ + V R

α δαβ

) + (
V C

α − V R
α

)
δαβ

= V
(R)
αβ + V φ

α δαβ. (73)

Hereafter we suppress the indices for simplicity except when
necessary. Then the formal equation for such a three-body
t matrix could be represented by

T (C) = V (C) + V (C)G0T
(C)

= (V (R) + V φ) + (V (R) + V φ)G0T
(C). (74)

However, the three-body t matrix can also be decomposed
using two-potential theory as

T (C) = ωφT (R)ωφ + T φ

= ωφ(ωRT sRωR + T R)ωφ + T φ (75)

= ωφ[ωR(�
0
T �0 + T 0)ωR + T R]ωφ + T φ

= ωC�
0
T �0ωC + ωCT 0ωC + T C, (76)

where these t matrices are given by the three-body Jacobi
channels α, β, and γ ;

T φ ⇒ T
φ
αβ = V φ

α δαβ +
∑

γ

V φ
α δαγ G0T

φ
γβ (77)

= T φ
α δαβ +

∑
γ

T φ
α δαγ G0T

φ
γβ (78)

≡ T φ
α ω

φ
αβ ≡ ω

φ
αβT

φ
β , (79)

T R ⇒ T R
αβ = V R

α δαβ +
∑

γ

V R
α Gφ

αγ T R
γβ, (80)

T sR ⇒ T sR
αβ = (

V S
α δαβ + W 0

αβ

)
+

∑
γ,δ

(
V S

α δαγ + W 0
αγ

)
GC

γδT
sR
δβ

≡
∑
γ,δ

�
0
αγ Tγ δ�

0
δβ + T 0

αβ, (81)

T 0 ⇒ T 0
αβ = W 0

αβ +
∑
γ,δ

W 0
αγ GC

γ δT
0
δβ

≡
∑

γ

W 0
αγ �0

γβ ≡
∑

γ

�
0
αγ W 0

γβ, (82)

T ⇒ Tαβ = V S
α δαβ +

∑
γ

V S
α GH

αγ Tγβ, (83)

where δαβ = 1 − δαβ is defined. Equation (78) is the three-
body Faddeev equation for the AP in which ω

φ
αβ and ω

φ
αβ are

defined.
The resolvents of the operator forms are given by

G0 = 1

E − H0
, (84)

Gφ = 1

E − H0 − V φ
= G0 + G0T

φG0, (85)

GC = 1

E − H0 − V R − V φ
= 1

E − H0 − V C

= G0 + G0T
CG0, (86)

GH = 1

E − H0 − V C − W 0

= GC + GCT 0GC. (87)

These are also represented by the matrix elements of the
Jacobi-channel notation,

Gφ ⇒ G
φ
αβ = G0δαβ + G0T

φ
αβG0, (88)

GC ⇒ GC
αβ = G0δαβ + G0T

C
αβG0, (89)

GH ⇒ GH
αβ = GC

αβ +
∑
γ,δ

GC
αγ T 0

γ δG
C
δβ. (90)

Here, T R
αβ can be obtained from Eqs. (80) and (88) and by

adopting T R
α ≡ tRφ of Eq. (11);

T R
αβ = V R

α δαβ +
∑

γ

V R
α Gφ

αγ T R
γβ

= T R
α δαβ +

∑
γ

T R
α

(
Gφ

αγ − Gφ
αδαγ

)
T R

γβ

= T R
α δαβ +

∑
γ

T R
α G0U

φ
αγ G0T

R
γβ (91)

≡ T R
α ωR

αβ ≡ ωR
αβT R

β , (92)

T R
α = V R

α + V R
α Gφ

αT R
α = V R

α + T R
α Gφ

αV R
α

≡ V R
α ωR

α ≡ ωR
α V R

α , (93)

where U
φ
αβ is a completely connected amplitude that is related

to the AGS operator u
φ
αβ for the AP,

U
φ
αβ ≡ T

φ
αβ − T φ

α δαβ = T φ
α G0u

φ
αβG0T

φ
β . (94)
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The pure three-body Coulomb t matrix or the Rutherford
transition matrix, defined by analogy with two-body case, is

T C
αβ =

3∑
γ,δ=1

ωφ
αγ T R

γ δω
φ
δβ + T

φ
αβ, (95)

where the three-body AP t matrix T
φ
αβ could be solved using the

Faddeev equation (78) with the two-body boundary condition,
and also with the three-body boundary condition, which will
be shown later.

Now the Coulomb Møller operators with α, β, and γ

channels are defined by

ωC = ωRωφ ⇒ ωC
ζβ =

3∑
γ=1

ωR
ζγ ω

φ
γβ, (96)

where ω
φ
γβ and ωR

ζγ are matrix elements of the three-body
renormalization Møller wave operator and the screened
Coulomb one, respectively. Therefore, we can solve Eq. (91)
by using (78). Then, T C

αβ of (95) can be obtained as well as
ωC

αβ of (96).
Finally, the three-body channel representation of Eqs. (75)

and (76) with α, β, and γ becomes

T (C) =
3∑

α,β=1

3∑
η,ζ=1

3∑
γ,δ=1

[
ωC

αη

(
�

0
ηγ Tγ δ�

0
δζ + T 0

ηζ

)
ωC

ζβ + T C
αβ

]
.

(97)

By solving (82) and (83), and substituting into (97), we obtain
the three-charged particle amplitude with the nuclear force and
the three-body force.

More details about Eq. (97) will be discussed in the next
section.

B. A new Faddeev-type equation

In this section we derive a new Faddeev-type three-body
equation with a short-range potential

V S = V1 + V2 + V3, (98)

where V1 stands for a short-range two-body potential V23, V2

for V31, and so on.
Let us start from Eq. (83),

T = (V1 + V2 + V3) + (V1 + V2 + V3)GHT . (99)

Consequently, the Faddeev-like reduction can be carried out
by separating the three-body T matrix into three channels:

T = T 1 + T 2 + T 3 =
3∑

α=1

T α =
∑
α,β

Tαβ . (100)

Then we have

T α = Vα + VαGH

3∑
β=1

T β, (101)

Tαβ = Vαδαβ +
∑

γ

VαGH
αγ Tγβ, (102)

where α and β stand for the particle channels, which run from
one to three, respectively.

Two-body amplitudes in the three-body Hilbert space in
the Coulomb field satisfy (54), by putting t sC → Tα, V S →
Vα, etc.;

Tα = Vα + VαGC
α Tα

= Vα

(
1 + GC

α Tα

) = (
1 + TαGC

α

)
Vα, (103)

with a resolvent for the α channel of

GC
α = (

E − H0 − V C
α

)−1 = G0 + G0T
C
α G0. (104)

Multiplying the factor (1 + TαGC
α ) to Eq. (101) from the left,

we obtain

T α = Tα + TαG
H

α T α + TαGH
∑

β

δαβT β, (105)

Tαβ = Tαδαβ + Tα(GH
αα − GC

α )Tαβ +
∑

γ

TαGH
αγ δαγ Tγβ,

(106)

where we use the notation GH
αβ in (90) and

G
H

α = GH
αα − GC

α , (107)

δαβ = 1 − δαβ. (108)

It should be noted that Tαβ is the same t matrix seen in
Eq. (97). Now we define a new matrix Uαβ by

Uαβ = Tαβ − Tαδαβ. (109)

Then the Faddeev-like equation (106) is reduced to the
following form:

Uαβ = Tα

(
G

H

α δαβ + GH
αβδαβ

)
Tβ

+
∑

γ

Tα

(
G

H

α δαγ + GH
αγ δαγ

)
Uγβ, (110)

where the Born term and the kernel are reduced by using the
relations

GH
αβ = GC

αβ + GC
αγ T 0

γ δG
C
δβ, (111)

GC
αβ = G0δαβ + G0T

C
αβG0

= ωC
αβG0 = G0ω

C
αβ, (112)

G
H

α δαβ + GH
αβδαβ = GC

αγ T 0
γ δG

C
δβ

+ (
GC

αβ − GC
α

)
δαβ + GC

αβδαβ

= G0
[
G−1

0 δαβ + (
T C

αβ − T C
α δαβ

)
+ωC

αγ T 0
γ δω

C
δβ

]
G0, (113)

where, in Eqs. (111) and (113), we used dummy indices
without summation signs “

∑
γ ,

∑
γ,δ” for the inner channels

between two operators, and hereafter we will use the same
notation for simplicity without further indication. We define
the new AGS operator uαβ by

Uαβ ≡ TαG0uαβG0Tβ. (114)

054001-9



SHINSHO ORYU PHYSICAL REVIEW C 73, 054001 (2006)

Then we obtain Tαβ from (109)

Tαβ = TαG0uαβG0Tβ + Tαδαβ. (115)

Therefore, by using Eqs. (110) and (113), a new AGS equation
is given as follows;

uαβ = [
G−1

0 δαβ + (
T C

αβ − T C
α δαβ

) + ωC
αγ T 0

γ δω
C
δβ

]
+ [

G−1
0 δαγ + (

T C
αγ − T C

α δαγ

) + ωC
αδT

0
δζω

C
ζγ

]
G0

× Tγ G0uγβ. (116)

For the two-body t matrix Tγ , substituting Vγ = |�γ 〉λs
γ 〈 �γ | into

Eq. (103), then we obtain

Tγ = Vγ + Vγ GC
γ Tγ = |�γ 〉τ sC

γ 〈 �γ |, (117)

where λs
γ denotes a matrix of specified rank and | �γ 〉 is the

corresponding vector.
Now, τ sC

γ is a two-body propagator given by

τ sC
γ (zγ ) ≡ τ sC

γ

(
E − q2

γ /2µγ

)
= [

1 − λs
γ 〈 �γ |GC

γ (zγ )| �γ 〉]−1
λs

γ (118)

= SsC
γ (zγ )

zγ (kγ ) − zγ

(
k0
γ

) (119)

= SsC
γ (zγ )[

E − zγ

(
k0
γ

)] − q2
γ

/
2µγ

(120)

≡ SsC
γ (zγ )

E
(
q0

γ

) − H0(qγ )
, (121)

with

SsC
γ (zγ ) = lim

kγ →k0
γ

[
zγ (kγ ) − zγ

(
k0
γ

)]
τ sC
γ (kγ ), (122)

E
(
q0

γ

) = E − zγ

(
k0
γ

)
,

H0(qγ ) = q2
γ

/
2µγ , (123)

where it has a two-body pole at energy zγ = zγ (k0
γ ). Further-

more, the two-body wave function in the three-body Hilbert
space is given by |ψs

γ 〉 = G0| �γ 〉. Therefore, by substituting
(117) into Eq. (115), the three-body t matrix is given by

Tαβ = |�α〉τ sC
α

〈
ψs

α

∣∣uαβ

∣∣ψs
β

〉
τ sC
β 〈 �β| + |�α〉τ sC

α 〈�α|δαβ. (124)

Finally, we obtain the integral equation for the transition
matrix by sandwiching the new AGS operator between the
wave functions:〈

ψs
α

∣∣uαβ

∣∣ψs
β

〉
= 〈

ψs
α

∣∣[G−1
0 δαβ + (

T C
αβ − T C

α δαβ

) + ωC
αγ T 0

γ δω
C
δβ

]∣∣ψs
β

〉
+ 〈

ψs
α

∣∣[G−1
0 δαγ + (

T C
αγ − T C

α δαγ

) + ωC
αδT

0
δζω

C
ζγ

]∣∣ψs
γ

〉
× τ sC

γ

〈
ψs

γ

∣∣uγβ

∣∣ψs
β

〉
. (125)

In Eq. (125), the Born term as well as the kernel contains a
weakly connected Coulomb-like potential VC

α between a pair
and the third particle. We can separate the Born term into two
parts by using Eqs. (107) and (113):〈

ψs
α

∣∣[G−1
0 δαβ + (

T C
αβ − T C

α δαβ

) + ωC
αγ T 0

γ δω
C
δβ

]∣∣ψs
β

〉
= 〈α|GH

αβδαβ |β〉 + 〈α|(GH
αβ − GC

α

)
δαβ |β〉

≡ BC
αβ + VC

α δαβ, (126)

where the first term of Eq. (126) is a nondiagonal term, and the
second term is a diagonal one and manifests a Coulomb-like
potential, which was pointed out in the MBM [16,17]. That is,
we have

BC
αβ = 〈α|GH

αβ |β〉δαβ

= 〈
ψs

α

∣∣(G−1
0 + T C

αβ + ωC
αγ T 0

γ δω
C
δβ

)∣∣ψs
β

〉
δαβ, (127)

where we can easily confirm that the term is completely
connected. While, the diagonal term is given by

VC
α δαβ = 〈

α
∣∣(GH

αβ − GC
α

)∣∣β〉
δαβ

= 〈
ψs

α

∣∣(T C
αβ − T C

α + ωC
αγ T 0

γ δω
C
δβ

)∣∣ψs
β

〉
δαβ

= [
VR

α + (
VC

α − VR
α )

]
δαβ ≡ (

VR
α + V�

α

)
δαβ, (128)

where V�
α is the three-body AP with a screening range ρ = R

in which ρ is the coordinate between the c.m. of a pair and the
spectator particle. VR

α stands for a harmless screened Coulomb
term but V�

α has a Coulomb-like structure. The three-body
long-range behavior can be treated the same way as those in
the two-body case.

Let us separate the Born term of Eq. (126) into two parts;

BC
αβ + VC

α δαβ = (
BC

αβ + VR
α δαβ

) + (
VC

α − VR
α

)
δαβ (129)

≡ B(R)
αβ + V�

α δαβ, (130)

B(R)
αβ ≡ BC

αβ + VR
α δαβ, (131)

V�
α ≡ VC

α − VR
α . (132)

The three-body rearrangement amplitude 〈ψs
α|uαβ |ψs

β〉 is
also separated into two parts in the same way as Eq. (14),
by using two-potential theory (see Appendix B). We define
〈ψs

α|uαβ |ψs
β〉 ≡ X

(C)
αβ ; then we have in Eq. (125)

X
(C)
αβ = (

B(R)
αβ + V�

α δαβ

) + (
B(R)

αγ + V�
α δαγ

)
τ sC
γ X

(C)
γβ , (133)

where the three-body AP t matrix satisfies

X�
αα = V�

α + V�
α τ sC

α X�
αα ≡ V�

α ��
α ≡ �

�

α V�
α , (134)

with

X
(C)
αβ = �

�

α X
(R)
αβ ��

β + X�
ααδαβ, (135)

X
(R)
αβ = B(R)

αβ + B(R)
αγ τ sC�

γ X
(R)
γβ

= (
BC

αβ + VR
α δαβ

) + (
BC

αγ + VR
α δαγ

)
τ sC�
γ X

(R)
γβ (136)

= �
R

α χsC
αβ �R

β + XR
ααδαβ, (137)

where the submatrices, sub-Møller operators, and the extended
propagators are defined by

XR
αα = VR

α + VR
α τ sC�

α XR
αα ≡ VR

α �R
α ≡ �

R

αVR
α , (138)
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with

τ sC�
α = SsC

α (zα)

E
(
q0

α

) − H0(qα) − V�
α

= τ sC
α + τ sC

α X�
αατ sC

α . (139)

The core t matrix χsC
αβ satisfies

χsC
αβ = BC

αβ + BC
αγT C

γ χsC
γβ , (140)

where a new resolvent, given by using Eq. (139), is

T C
γ = SsC

γ (zγ )

E
(
q0

γ

) − H0(qγ ) − V�
α − VR

α

= SsC
γ (zγ )

E
(
q0

γ

) − H0(qγ ) − VC
α

= τ sC
γ + τ sC

γ XC
γγ τ sC

γ . (141)

Here the resolvent T C
γ is nonsingular at the singular point of

VC
α ; therefore, Eq. (140) is solvable.

The three-body rearrangement t matrix, given by a sand-
wiched form by substituting (137) into (135), is

X
(C)
αβ = �

�

α

(
�

R

α χsC
αβ �R

β + XR
ααδαβ

)
��

β + X�
ααδαβ

= �
C

α χsC
αβ �C

β + (
�

�

α XR
αα��

β + X�
αα

)
δαβ

= �
C

α χsC
αβ �C

β + XC
ααδαβ, (142)

where the Coulomb Møller wave operators are defined by

�C
α ≡ �R

α ��
α ,

(143)

�
C

α ≡ �
�

α �
R

α .

Then the pure three-body Coulomb t matrix is given by

XC
αα ≡ �

�

α XR
αα��

α + X�
αα. (144)

Finally, we obtain the three-body rearrangement t matrix
from〈

ψs
α

∣∣uαβ

∣∣ψs
β

〉 = �
C

α χsC
αβ �C

β + XC
ααδαβ ≡ X

(C)
αβ . (145)

Therefore, the t matrix in Eq. (124) can be rewritten as

Tαβ = |�α〉τ sC
α

(
�

C

α χsC
αβ �C

β + XC
ααδαβ

)
τ sC
β 〈 �β| + |�α〉τ sC

α 〈�α|δαβ.

(146)

Consequently, the [3] → [3] t matrix is obtained by
substituting (146) into (97);

T (C) =
3∑

α,β=1

3∑
η,ζ=1

3∑
γ,δ=1

(
ωC

αη

{
�

0
ηγ

[| �γ 〉τ sC
γ

(
�

C

γ χsC
γ δ �C

δ

+XC
γγ δγ δ

)
τ sC
δ 〈�δ| + | �γ 〉τ sC

γ 〈 �γ |δγ δ

]
�0

δζ + T 0
ηζ

}

×ωC
ζβ + T C

αβ

)

=
3∑

α,β=1

3∑
γ,δ=1

3∑
η,ζ=1

ωC
αη�

0
ηγ |γ 〉τ sC

γ Aγ δτ
sC
δ 〈δ|�0

δζω
C
ζβ

+
3∑

α,β=1


 3∑

γ,δ=1

ωC
αγ T 0

γ δω
C
δβ + T C

αβ


 , (147)

where the first term originates from the new AGS term, the
second one is the Rutherford term, and the last one is the direct
propagation. One finds that an onion-like structure appears in
a multipotential t matrix. The label Aγ δ is defined by

Aγ δ = �
C

γ χsC
γ δ �C

δ + XC
γγ δγ δ + (

τ sC
γ

)−1
δγ δ. (148)

This term stands for the [2] to [2] rearrangement amplitude in
terms of the full interaction.

More clearly explicating this formula term by term, one can
show that by using implied summations over indices, and also
by (97), (115), (95), (124), (96), (146), and (143),

T (C) = ω
φ
αξω

R
ξη�

0
ηγ Tγ G0uγδG0Tδ�

0
δζ ω

R
ζρω

φ
ρβ

+ω
φ
αξω

R
ξη�

0
ηγ Tγ �0

γ ζω
R
ζρω

φ
ρβ + ω

φ
αξω

R
ξηT

0
ηζω

R
ζρω

φ
αβ

+ω
φ
αξT

R
ξρω

φ
ρβ + T

φ
αβ

= ωC
αξ�

0
ξγ

(|γ 〉τ sC
γ 〈γ |G0uγδG0|δ〉τ sC

δ 〈δ| + Tγ

)
�0

γ ζ ω
C
ρβ

+ωC
αξT

0
ηζω

C
αβ + T C

αβ (149)

= ωC
αξ�

0
ξγ |γ 〉(τ sC

γ �
C

γ χsC
γ δ �C

δ τ sC
δ + τ sC

γ XC
γγ δγ δτ

sC
δ

+ τ sC
γ δγ δ

)〈δ|�0
δζ ω

C
ρβ + ωC

αγ T 0
γ δω

C
δβ + T C

αβ (150)

= ωC
αξ�

0
ξγ |γ 〉τ sC

γ Aγ δτ
sC
δ 〈δ|�0

δζω
C
ρβ + ωC

αγ T 0
γ δω

C
δβ + T C

αβ.

(151)

The amplitude in the core of the onion-like structure satisfies
a Faddeev-type integral equation with a screened Coulomb
potential that is completely prescribed by the three-body
boundary conditions, which will be seen in the next section.
Therefore, all of the calculations are performed without any
ambiguity using short-range potential scattering methods.

C. Three-body boundary condition

In the three-body system, we must define two boundary
conditions, not only for the two-body relative coordinate r
but also for the Jacobi coordinate ρ between the c.m. of two
particles and the spectator to make a specific range ρ = R.
Here, the Coulomb phase shift of the α channel, σL(q0), is
not given by the screening phase shift plus the renormalization
phase, σL(q0) = δR�

L (q0) + �(R, q0, L), but by the phase shift
δR�
L (q0) with respect to the on-shell t matrix of Eq. (138)

under the condition that the on-shell auxiliary t matrix of (134)
vanishes, where q0 and L are the corresponding momentum and
the orbital angular momentum, respectively.

Furthermore, in Eq. (134), we demand that the on-shell and
half-on-shell auxiliary X�(E) matrix vanish; that is,

X�
αα(q0, q0; E) = 0,

X�
αα(q0, q

′; E) = 0, (152)

X�
αα(q, q0; E) = 0,
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where q0 stands for the on-shell momentum of the α channel.
This leads to the auxiliary phase that satisfies

�(R, q0, L) = ±πm (m = 0, 1, 2, . . . .), (153)

and also the half-on and half-off-shell operators satisfy �
�

α =
��

α = 1. Therefore, we obtain the phase shift from Eqs. (138)
and (144);

σL(q0) = tan−1

[
Im

(
�

�

α XR
αα��

α

)
Re

(
�

�

α XR
αα��

α

)
]

= tan−1

[
Im

(
XR

αα

)
Re

(
XR

αα

)
]

(154)

≡ δR�
L (q0). (155)

Therefore, Eq. (134) is rewritten as

X�
αα(q, q ′; E) − V�

α (q, q ′; E)

= P

∫ ∞

0
V�

α (q, q ′′; E)τ sC
α (q ′′; E)X�

αα(q ′′, q ′; E)dq ′′

≡ JP
αβ(q, q ′; E), (156)

where P stands for the principal part of the singular integral that
comes from the pole of τ sC

α (q ′′; E). Therefore, JP
αβ (q, q ′; E) is

free from the singularity coincidence, and it is converged as
well as that in the two-body case which, is given by Lemmas
1 and 2.

From (153) and (154), one could say that the three-body
renormalization formula of the MBM is an approximation
because, for instance, in Eq. (70), Z−1

R (qe) is not fixed at unity
but oscillates for R → ∞.

Here, one can obtain an energy-dependent range for the
α channel of

R(q0, L) = 1

2q0
exp

[
C(q0, L)

η(q0)

]
≡ RcL(q0). (157)

At this boundary, the effective Coulomb t matrix between
a charged cluster and the charged spectator is obtained. We
can obtain the inverse functions for Eqs. (39) and (157), as

k = R−1
cl (R) and q0 = R

−1
cL (R), respectively. A closed-circuit

relation between the two- and three-body boundary conditions
exists;

1

2να

[
R−1

cl (R)
]2 + 1

2µα

[
R

−1
cL (R)

]2 = E, (158)

where E is the three-body energy and να and µα are the reduced
masses for the corresponding channel, respectively.

If we have a simple energy-dependent form such as R =
Al/k and R = BL/q0 with constants Al and BL, then energy
conservation for the three-body system defines a boundary
region

1

2να

(
Al

R

)2

+ 1

2µα

(
BL

R

)2

= E. (159)

On the closed circuit (158) or (159), the two- and the
three-body renormalization phases φ(R, k, l) and �(R, q0, L)
become ±πm(m = 0, 1, 2, . . .).

Finally, we can conclude that the two- and three-body
boundary conditions are mutually linked in the long-range
Coulomb field.

IV. SUMMARY AND DISCUSSION

To obtain a rigorous Coulomb t matrix in momentum space,
we have divided the Coulomb potential into a major screened
Coulomb potential and a minor but effectively long-range
auxiliary potential. We proposed a new boundary condition
model on-shell and half-on-shell AP t matrix which is zero at
the range r = Rcl , but the off-shell t matrix is not. Then the AP
phase shift becomes zero or ±πn. Here the off-shell K-matrix
equation for the AP is solved easily at this boundary because no
singularities coincide in the integral kernel. It should be noted
that the LS equation for the SCP has a T φ-modified resolvent
that is not that of the free Green’s function. Therefore, the SCP
phase shift is not the phase shift resulting from the pure SCP. As
a result, our boundary condition allows the SCP amplitude to
yield the rigorous Coulomb phase shift. Hence, the long-range
difficulty in obtaining the Coulomb amplitude is completely
removed within any required accuracy. Furthermore, the fully
off-shell Coulomb t matrix is given by the off-shell K matrixes
of the AP and the SCP using two-potential theory. One could
say that the Coulomb LS equation cannot be solved but
that the solution can be obtained by using the AP K matrix
and the specified boundary condition, although it is not the
typical boundary condition of the differential equation in
r space.

As a consequence, we can reliably calculate the amplitude
without any difficulty after we have required zero on-shell and
half-on-shell amplitudes.

For the practical calculation in two-body problems, it is
useful to recall our algorithm:

(i) Find the screening range Rcl(k) of Eq. (39) and obtain the
fully off-shell t- or K matrix T φ with Rcl and calculate
the kernel (36) as well as Gφ .

(ii) Solve the LS equation (34) for the short-range amplitude
tRφ with potential V R .

(iii) Find the on-shell amplitude to obtain δRφ , which becomes
the Coulomb phase shift.

(iv) Calculate Eq. (47), which is the fully off-shell Coulomb
t matrix.

(v) Substitute (47) into (56) to generate this kernel.
(vi) By using the kernel, solve Eqs. (54) and (55), and

substitute into (51). Then we obtain the two-body nuclear
amplitude.

In the case of a separable short range potential, the
nuclear two-body propagator is also represented by a Coulomb
modified form, but it has no trouble with the long range
difficulty. This fact is mathematically proved by using the
AP-formulation.

In the three-charged particle system, the three-body Fad-
deev equation is only verified for the AP, but the major SCP
leads to another Faddeev-like equation. This equation is also
calculated with the results of the AP-Faddeev amplitude. As
a consequence, the three-charged particle Coulomb t matrix is
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obtained by using the generalized two-potential theory which
is mentioned in Appendix B.

The previously proposed phase shift renormalization
method [16–19] can not improve the precision, in principle,
because the phase of (71) has no unique value for a large
Coulomb parameter. Moreover, such a method can not supply
a rigorous off-shell amplitude. Furthermore, the method is not
adequate for the three-body break-up reaction because of the
missing Coulomb three-body break-up Møller operator ωC

αβ

even if the three-body force break-up operator �0
αβ is omitted.

Therefore, our formulation presents the entire three-body
amplitude for the first time, which has ever been seen before.

It may be useful to summarize the algorism advocated to
obtain the pure Coulomb three-body t matrix in practice:

(i) Prepare T φ
α from Eq. (33). Substitute it into (78) to obtain

T
φ
αβ .

(ii) Solve (11) or (34) to obtain tRφ ≡ T R
α . Substitute it into

(91) to obtain T R
αβ .

(iii) Calculate (95) to obtain the pure Coulomb three-body
t matrix T C

αβ .

This process is for the pure three-body Coulomb problem.
Next for the three-charged “nuclear problems”, we have to

take into account the above results and the nuclear short range
forces by the following routine;

(iv) Obtain |−→γ > and τ sC
γ (z) from (117), and (118).

(v) Obtain XC
αα by Eqs. (134), (138), and (144).

(vi) Substitute XC
αα and τ sC

γ (z) into (141) to obtain T C
γ .

(vii) Calculate T 0
αβ from (82). Substitute T 0

αβ and T C
αβ and ωC

αβ

of (96) into (127) to obtain BC
αβ .

(viii) Solve (140) using BC
αβ and T C

γ to obtain χsC
αβ .

(ix) Obtain 〈uαβ〉 from (145) by using �C
α of (143).

(x) From (150) and (151), one can calculate any physical
amplitude.

Finally, our three-body t matrix formalism is presented
in a universal style following the mathematically rigorous
manner to use it in practical applications involving the
Coulomb force, a three-body force, and a short-range force.
It includes the three-particle to three-particle amplitude
[3] → [3], two to three [2] → [3] (breakup), or vice versa
[3] → [2] (absorption), two to two [2] → [2] (rearrangement),
and cascade [1] → [2] and [1] → [3] (photo-disintegration),
respectively. These amplitudes include the initial- and final-
state interactions exactly, interactions in which the two-
and three-body forces and the Coulomb force mutually
interfere.

One can include interference effects in Coulomb breakup
problems, for instance. Furthermore, it could be applicable
even for photoabsorption, photoemission, and photodisinte-
gration problems, that are frequently occurring three-body
problems. This paper includes some points from previously
published articles [37] and [38] by the author that are very
useful in terms of highlighting new aspects of physics, but the
author must admit that some parts in the articles [37] and [38]
involve an approximation with respect to the Møller operator
and its phase-shift representation eiφ . Consequently, these

approximations are corrected in the present article. Practical
calculations will be presented elsewhere.
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APPEENDIX A: THE UNITARITY RELATION

Let us prove the unitary relation for the new three-body
AGS-like Eq. (116). Consider the matrix form of Eq. (116),

[u(E)]αβ ≡ uαβ(E), (A1)

[u0(E)]αβ ≡ (
G−1

0 δαβ

) + (
T C

αβ − T C
α δαβ

) + (
ωC

γδT
0
γ δω

C
δβ

)
(A2)

(�)αβ ≡ G0TαG0δαβ. (A3)

Then Eq. (116) becomes

u(E) = u0(E) + u0(E)�(E)u(E). (A4)

Let us multiply u−1
0 (E) from the left in Eq. (A4) and u−1(E)

from the right to obtain

u−1(E) = u−1
0 (E) − �(E). (A5)

Here the amplitude operator u(E) stands for E = E+ = E +
iε, and u(E)† = u(E − iε). Therefore, we have[

u−1(E)]† = [
u−1

0 (E)
]† − [

�(E)
]†

. (A6)

Now we define

�u−1 ≡ [
u−1(E)

]† − [
u−1(E)

]
, (A7)

�u−1
0 ≡ [

u−1
0 (E)

]† − [
u−1

0 (E)
]
, (A8)

�� ≡ �† − �. (A9)

Consequently, we obtain from (A5) and (A6)

�u−1 = �u−1
0 − ��. (A10)

Sandwiching the equation between u† and u, we get

u†(u†−1 − u−1)u = u − u†

= u†(�u−1
0

)
u − u†��u

≡ −�u. (A11)

In the same way, we can calculate �u−1
0 :

u†
0

(
u†

0

−1 − u−1
0

)
u0 = u0 − u†

0 ≡ −�u0. (A12)

Therefore (A11) becomes

�u = u†(u−1
0

)†
�u0

(
u−1

0

)
u + u†��u. (A13)

Before we calculate �u0 we must redefine u0 (A2);

(u0)αβ = G−1
0 δαβ − T C

α δαβ + T C
αβ + ωC

αγ T 0
γ δω

C
δβ

= G−1
0 δαβ − T C

α δαβ + T C
αβ, (A14)
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with

T C ≡ T C + ωCT 0ωC

= (V C + W0) + (V C + W0)G0T C. (A15)

Then we replace the discontinuity of u0 by

(�u0)αβ = (u†
0 − u0)αβ

= − (
T C

α

† − T C
α

)
δαβ + (T C† − T C)αβ

= − 2πiT C
α

†
δ(E − H0)T C

α δαβ

+ 2πi
[
T C†

δ(E − H0)T C
]
αβ

. (A16)

Finally, we obtain ��. Because of Eq. (117) and Eq. (A3),
� satisfies the following equation, with (C)αβ ≡ G0V

s
α G0δαβ

and (K)αβ ≡ G0V
s
α ωC

α δαβ ;

� = C + K�. (A17)

Multiplying C−1 from the left in (A17) and �−1 from the right,
we get

�−1 = C−1 − C−1K. (A18)

Here, C−1K becomes

(C−1K)αβ = (
G0V

s
α G0

)−1
G0V

s
α ωC

α δαβ

= G−1
0 δαβ + T C

α δαβ. (A19)

Then we obtain

(�−1)αβ = (
C−1

)
αβ

− G−1
0 δαβ − T C

α δαβ. (A20)

Therefore, we have

(��−1)αβ = (�C−1)αβ − �T C
α δαβ. (A21)

Sandwiching ��−1 between �† and �, we obtain

�†(�†−1 − �−1)� = −��, (A22)

�� = �†(C−1)†�C(C−1)�

+ 2πi�†[T C
α

†
δ(E − H0)T C

α δαβ

]
�.

(A23)

Since �C is zero for the real potential V s
α , the new AGS

operator satisfies the unitarity condition

�u = 2πiu†u−1
0

†T C†
δ(E − H0)T Cu−1

0 u

− 2πiu†(u0
−1)†

[
T C

α

†
δ(E − H0)T C

α δαβ

]
u−1

0 u

+ 2πiu†�†[T C
α

†
δ(E − H0)T C

α δαβ

]
�u. (A24)

APPENDIX B: GENERALIZED TWO-POTENTIAL THEORY

To derive the generalized two-potential formulation, let us
start from the following LS-type equation:

Xαβ(qα, q ′
β ; E) = [

Vαβ(qα, q ′
β ; E) + V 0

αβ(qα, q ′
β ; E)

]
+

∫ ∞

0
dq ′′

γ

∫ ∞

0
dq ′′′

δ

[
Vαγ (qα, q ′′

γ ; E)

+V 0
αγ (qα, q ′′

γ ; E)
]
G0

γ δ(q ′′
γ , q ′′′

δ ; E)

×Xδβ (q ′′′
δ , q ′

β ; E). (B1)

We can put this in matrix form by omitting the momentum
variables as well as the signs of the integral and the summation;

X = (V + V0) + (V + V0)G0X, (B2)

with

X ≡ Xαβ(qα, q ′
β ; E), (B3)

V ≡ Vαβ(qα, q ′
β ; E), (B4)

V0 ≡ V 0
αβ (qα, q ′

β ; E), (B5)

G0 ≡ G0
αβ(qα, q ′

β ; E). (B6)

Here we take a LS-type equation for V0,

X0 = V0 + V0G0X0 (B7)

≡ V0�0 ≡ �
0
V0, (B8)

with

�0 ≡ 1 + G0X0,
(B9)

�
0 ≡ 1 + X0G0.

Or, we can rewrite these in the concrete form

�0
αβ = δαβ + G0

αγ X0
γβ,

(B10)
�

0
αβ = δαβ + X0

αγ G0
γβ .

Multiplying Eq. (B2) by �
0

from the left, and defining
X ≡ X0 + Y, we obtain

Y = �
0
V + �

0
VG0(X0 + Y)

= �
0
V�0 + �

0
VG0Y. (B11)

If we adopt a sandwiched form for Y(i.e., Y ≡ �
0Y�0), we

have a symmetric equation,

�
0Y�0 = �

0
V�0 + �

0
VG0�

0Y�0. (B12)

Then Y satisfies a kind of LS-type equation,

Y = V + VGY, (B13)

with

G ≡ G0�
0 = G0 + G0X0G0. (B14)
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Finally, we obtain the solution X by

X = Y + X0 = �
0Y�0 + X0. (B15)

APPENDIX C: THE ASYMPTOTIC BEHAVIOR OF
THE THREE-BODY WAVE FUNCTION

To prove that the asymptotic three-body wave function is
not always separable, let us recall the three-body kinematics
in the three-body c.m. system:

x ≡ x3 = r2 − r1,

y ≡ y3 = −m1(m1 + m2 + m3)

m3(m1 + m2)
r1, (C1)

− m2(m1 + m2 + m3)

m3(m1 + m2)
r2,

where rα(α = 1, 2, 3) and mα are the coordinates of the
individual particles and masses, respectively, and x and y
are the Jacobi coordinates. Then the individual coordinates
and two-body relative one are given with µ−1

3 ≡ m−1
3 + (m1 +

m2)−1,

r1 = −µ3y − m2x
m1 + m2

= −m3

m1 + m2 + m3
y − m2

m1 + m2
x,

(C2)

r2 = −µ3y + m1x
m1 + m2

= −m3

m1 + m2 + m3
y + m1

m1 + m2
x

and

x1 ≡ r3 − r2 = y − m1

m1 + m2
x ≡ αy + βx, (C3)

x2 ≡ r1 − r3 = −y − m2

m1 + m2
x ≡ γ y + δx. (C4)

By using Eqs. (C3) and (C4), the three-body potential is
represented as follows:

V1(x1) + V2(x2) + V3(x3)

= V1(x, y) + V2(x, y) + V3(x)

= V1(αy + βx) + V2(γ y + δx) + V3(x). (C5)

Then, the three-body Schrödinger equation is given by[
− �x

2ν3
− �y

2µ3
+ V1(x, y) + V2(x, y) + V3(x)

]
ψ(x, y)

= Eψ(x, y), (C6)

where ν3 and µ3 are the reduced masses with respect to the
Jacobi coordinates x and y, respectively.

Now, the asymptotic forms of the potentials are given by
three cases.

Case 1: {x → ∞, y < ∞}. The potential becomes

V1(x, y) + V2(x, y) + V3(x) → Ṽ1(δx) + Ṽ2(βx) + V3(x);

(C7)

then, the asymptotic wave function will be given by multiply-
ing the two-body wave function with respect to the coordinate
x and the plane wave for the relative momentum q regarding,
the Jacobi coordinate y,

ψ(x, y) → φ̃x(x) exp(iqy). (C8)

Case 2: {y → ∞, x < ∞}. This leads to the asymptotic
potential

V1(x, y) +V2(x, y) + V3(x) → Ṽ1(αy) + Ṽ2(γ y) + V3(x);

(C9)

then, the asymptotic wave function will be

ψ(x, y) → ψ̃x(x)ψ̃y(y). (C10)

This case lead a separable wave function in the asymptotic
region.

Case 3: {x → ∞, y → ∞ }. Here the potential becomes

V1(x, y) + V2(x, y) + V3(x)

→ Ṽ1(αy + βx) + Ṽ2(γ y + δx) + V3(x). (C11)

One finds that the potential does not change on one side of
the coordinates. This fact leads to a nonseparable but mixed
asymptotic wave function

ψ(x, y) 	= ψ̃x(x)ψ̃y(y). (C12)

Finally, one can conclude that the relative coordinates x1 and
x2 cannot be separable with respect to x and y; only the cases
{x → ∞, y < ∞} and {y → ∞, x < ∞} leads to a separable
wave function. This situation will occur not only for the three-
charged-particle systems but also for a two-charged-particle
system in the three-body problem.

[1] W. F. Ford, Phys. Rev. 133, B1616 (1964).
[2] W. F. Ford, J. Math. Phys. 7, 626 (1966).
[3] J. R. Taylor, Nuovo Cimento 23B, 313 (1974).
[4] M. D. Semon and J. R. Taylor, Nuovo Cimento 26A, 48

(1975).
[5] L. D. Faddeev, J. Exptl. Theoret. Phys. 39, 1459 (1960) [Sov.

Phys. JETP 12, 1014 (1961)].
[6] W. Tobocman and M. H. Kalos, Phys. Rev. 97, 55 (1955).
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