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Low-energy transfer cross section for Borromean halo nuclei
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We describe a schematic coupled-channels transfer calculation for the reaction 6He+238U at near-barrier
energies. We also present a simple semiclassical DWBA calculation of the two-neutron transfer. Both calculations
are meant to supply the conditions under which the transfer cross section becomes much larger than the complete
fusion one at subbarrier energies. It seems that a feasible mechanism is the incoherent contributions of two or
more processes with quite different Q values.
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Cross sections for fusion reactions with neutron halo nuclei
in the energy region below the Coulomb barrier are necessary
for calculating the thermonuclear reaction rates in massive
stars. In addition, such reactions provide useful information
about the shape of the nuclear potential on the inner side of
interaction barrier. Furthermore, interpretation of such cross
sections may bring possible gain information on the influence
of the distribution of nuclear matter and the nuclear reaction
dynamics, especially for those energies where penetrability
effects are important [1].

Recently, nuclear reactions involving the neutron-rich nu-
cleus 6He have attracted considerable attention. In particular,
very interesting experimental data on the fusion of He isotopes
with 238U have been obtained. These data show no enhance-
ment of the 6He+238U fusion cross section, but a very high
transfer cross section has been observed [2,3]. The physical
process leading to this result has not yet been established.
The natural candidates are the coupling with the breakup
and transfer channels. However, understanding the effect
of the neutron halo on fusion has been controversial, because
the weakly bound neutrons in 6He are expected to influence
the fusion cross section in two ways. First by the static effect
of barrier lowering because of the existence of a halo and
second through the coupling with the breakup channel. Also, in
neutron halo nuclei reaction, the neutron transfer cross section
should play an important role in subbarrier fusion of heavy
nuclei, because of the small binding energy of neutrons halo
and the positive Q value.

Furthermore, reactions with stable nuclei, at energies below
Coulomb barrier are caracterized by large enhancements in
the fusion cross section with respect to calculations based on
one-dimensional barrier penetration models. It has been quite
well understood that these enhancements are because of the
coupling to different degres of freedom acting on the tun-
neling process, mainly static deformations and surface vibra-
tions of nuclei. The role of transfer channels is however, still
unclear.

In this Brief Report we describe a schematic coupled-
channels transfer calculation for the reaction 6He+238U at
near-barrier energies. We also present a simple semiclassical
distorted-wave Born approximation (DWBA) calculation of
the two neutron transfer. Both calculations are meant to supply
the conditions under which the transfer cross section becomes

much larger than the complete fusion one at subbarrier
energies. In fact, such a situation seem to prevail for light
systems [4]. For the purpose of completeness, we also calculate
the fusion cross section and demonstrate that there is little
difference when compared to that of the system 4He+238U.

In the calculation to follow we take as optical potential the
single folding one given by the integral

VN (r) =
∫

vn−A2 (r − r′)ρ(r′)d3r′. (1)

Above, vn−A2 is an appropriate nucleon-target interaction and
ρ(r′) is the projectile’s density. The full optical potencial is

U (r) = VN (r) − iW (r) + VC(r), (2)

where VC(r) is the Coulomb potential.
A good description of the fusion cross section for collision

of the stable isotope 4He+238U is obtained when we use the real
part of the nucleon-target interaction of Madland and Young
[5] and a Gaussain form for the projectile’s density. For the
imaginary part we take a Woods-Saxon parametrization with
W0 = 50 MeV, ri = 1.0 fm, and ai = 0.10 fm.

For the real part of the interaction of the 6He+238U system
we merely use a different density profile to take into account
the two-neutron halo in a realistic parametrization given by
the symmetrized Fermi distribution of [6],

ρ6He(r) = ρ0

{[
1 + exp

(
r − R

a

)]−1

+
[

1 + exp

(−r − R

a

)]−1

− 1

}
(3)

with

ρ0 = 3A

4πR3

[
1 −

(πa

R

)2
]−1

, (4)

A = 6, R = 1.23A1/3 fm, and a = 0.57 fm.
The fusion cross section may be expressed in terms of the

optical model transmission factor as follows,

σF = π

k2

∑
l=0

(2l + 1)T F
l , (5)
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FIG. 1. The full line is the fusion cross section from Eq. (5),
multiplied by a factor 0.6, using an effective optical potential with
the same parameters as in Ref. [7]. The dashed line is 4He fusion. The
squares is the experimental data of Refs. [2] (solid squares) and [8]
(open squares).

where k =
√

2µE/h̄2 and the transmission coefficient is given
by

T F
l = 4k

E

∫ ∞

0
drW opt(r)|ul(k, r)|2, (6)

with, W opt(r) is the imaginary part of the optical potential and
ul(k, r) are solutions of the radial equation.

We have calculated, within a one-channel optical model,
the fusion of 4,6He with 238U using the above interaction. The
results are shown in Fig. 1. The result for 6He fusion was
multiplied by a factor 0.6 to account for elastic breakup and
other processes as was found in Refs. [9,10] for the system
9Be+208Pb. In fact the elastic breakup of 6He leading to two
flying out neutrons clearly does not contribute to the fission
events, which are attributed to 2n removal or transfer. This
is borne out by the data as well. We turn to the two-neutron
removal cross section.

Within the WKB approximation we may take as the neutron
absorption survival probability, P surv

l [11]

P surv
l = exp

[
βI

l

]
, (7)

where

βI
l = −4

h̄

∫ ∞

r0(l)

Wn(R)

vl(r)
dr. (8)

The quantities, vl(r) and r0(l) are the local radial velocity
along a classical trayectory with momentum h̄l and the closest
distance of approach, respectively, for the relative motion in
the nuclear, Coulomb, and centrifugal potentials and Wn the
neutron absortion potential. Thus, the transfer cross section is

obtained by considering that

T T
l = 1 − P surv

l . (9)

In our calculations, to estimate P surv
l we have considered

pure Rutherford trajectories, neglecting the nuclear potential
diffractive effects. For the absorptive potential we use the orig-
inal Madland-Young, imaginary potential [5] that describes
very well neutron scattering from actinide nuclei at En <

10 MeV. It is given by

Wn(R) = −4aiW0f
′
I (R)

fI (R) =
[

1 + exp

(
R − RI

aI

)]−1

W0 = 9.265 − 12.666

[
N − Z

A

]
(10)

− 0.232ELab + 0.03318E2
Lab

RI = 1.256A
1/3
T

aI = 0.553 + 0.0144ELab.

Let us consider the collision of 6He, treated within the
dineutron approximation, with a heavy target. The imaginary
part can be written

Wn(r, x) = Wn(|R|), (11)

where R = r + 2x/3, here r is the vector joining the centers
of mass of projectile and target and x is the vector from the
4He core to the dineutron.

Thus, from Eqs. (5)–(11) the 2n-removal cross section is
given by

σ−2n(x) = π

k2

∑
l=0

(2l + 1)T 2n
l (x), (12)

where

T 2n
l (x) = 1 − exp

[
βI

l (x)
]
. (13)

The expected value of the 2n-removal cross section is given
by

σ̄−2n = 〈φ0|σT |φ0〉, (14)

where φ0 describes the ground state of the projectile in its rest
frame and is a function of the relative coordinates of de 2n

halo and the core,

φ0(x) = (2πα)−1/2 e−x/α

x
, α = h̄√

2B2nµ(6He)
, (15)

where B2n (= 0.973 MeV) is the dineutron binding energy in
6He and µ(6He) = 4

3m0 is the reduced mass of the 6He system
being m0 the nucleon mass. From Eq. (15), we obtain the root
mean square radius rrms = 2.84 fm.

In Fig. 1, we compare σ̄−2n, Eq. (14), with the expression

σ̂−2n = π

k2

∑
l=0

(2l + 1)T̂ 2n
l (x), (16)

where

T̂ 2n
l (x) = 1 − exp

[〈φ0|βI
l |φ0〉

]
. (17)
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FIG. 2. The 2n-removal cross sections for 6He obtained with
different approaches developed here. The full and dashed lines from
Eqs. (14) and (16), respectively. The experimental data are from
Ref. [3]. The vertical arrow indicates the position of the Coulomb
barrier.

From Peierls’s inequality [12]

〈exp F 〉 � exp〈F 〉, (18)

we have

σ̄ � σ̂ , (19)

as seen in Fig. 2, for the range of energies shown here. This
difference is mainly because of the great spatial distribution of
nucleons in the halo, leading to an uncertainty in the location
of the nucleons.

Both calculations of the 2n removal cross section miss
completely the data. This calls for a different approach. Before
we turn to our next attempt in understanding the nature
of the subbarrier transfer data, we calculate the amount of
angular momentum transferred in the complete fusion (to the
compound nucleus 244Pu) and in the 2n transfer process (to
the isotope 240U). The formulas we use for this purpose were
derived in Refs. [1,13], and we give only the results here.
At below-barrier energies the complete fusion transfers about
4 units of h̄ to 244Pu, whereas the two neutrons transfer just
one unit of h̄ to 240U. These two compound nuclei fission a
bit differently. Further the densities of states in both cases are
quite large (both systems being very deformed). Because most
of the cross section at subbarrier energies is the two-neutron
transfer one, we conclude that the fissioning system is 240U
with one unit of angular momentum added to the high-spin
states populated.

Switkowsky et al. [4] derived within the WKB approx-
imation, a simple expression for the transfer cross sec-
tion at energies well below the Coulomb barrier for the
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FIG. 3. Transfer coupled-channels calculations from Eq. (22).
See text for details.

reaction A1 + A2 → A′
1 + A′

2:

σT ≈ 1

Eα

exp

(
−4ηα arctg

κ

kα

)
, (20)

where Eα, ηα , and kα refer to the incident channel (α = 0),
and κ is related to the binding energy of the transferred
neutron h̄κ = (2mnB2n)1/2 and is equal to 0.307 fm−1.
Equation (20) was obtained within the DWBA approximation
for the transfer amplitude after employing the WKB form for
the radial Coulomb wave functions, which allows the use of the
stationary point method. The position of the stationary point
in the radial integral supplies the condition for the optimum Q

value, which comes out to be [4]

Qopt =
(

Z′
1Z

′
2

Z1Z2
− 1

)
Eα + Z′

1Z
′
2

Z1Z2

h̄2κ2

2mα

, (21)

if only low angular momenta are considered to contribute. The
value of Q optimal for the system 6He+238U, where the first
term in Eq. (21) is identically zero comes to be 0.335 MeV.
The results given by Eq. (20) are compared with experiment
for the 2n transfer in the Fig. 3 as the dashed-dotted curve.
The cross section, Eq. (20), was normalized to reproduce the
datum at the lower energy where the approximation works
best. It is clear that the transfer data at above barrier energies
are overestimated. This calls for a more detailed consideration
of two-neutron transfer with different Q values at the higher
energies. We turn to this in the following.

In the following, we describe a coupled-channels calcula-
tion that takes into account the fact the optimum Q values
change as the energy is lowered below the barrier. In fact,
within the DWBA calculatiuon of Ref. [4], appropriate at
subbarrier energies, the optimum Q value comes out to be
about 0.335 MeV. At above barrier energies, the optimum Q

value could be much larger as larger values of the angular
momentum are involved. To simplify the discussion we con-
sider four channels: the entrance channel (6He+238U, α = 0),
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the two-neutron transfer channels (4He+240U) with Q =
+0, +6, +9 MeV (α = 1, 2, 3 respectively). For the transfer
form factor we take F (r) = F0 exp(−κr) with F0 = 6 MeV
and κ is related to the two-neutron separation energy. The
coupled-channel system is given by

− h̄2

2µ0

[
d2

dr2
− l(l + 1)

r2

]
u0(r)

− [E0 − U0(r)]u0(r) =
∑
α �=0

F (r)uα(r)

(22)

− h̄2

2µα

[
d2

dr2
− l(l + 1)

r2

]
uα(r)

− [Eα − Uα(r)]uα(r) = F (r)u0(r).

The optical potencials Ui(r) are taken to be all equal to U (r)
of the Eq. (2).

We ignore the change in angular momentum in the
centrifugal barriers, as the calculation of 〈l〉 show. Because
the two transferred neutrons populate different, orthogonal,
states in 240U, the transfer cross section is the incoherent sum
of the three contributions. The result is shown in Fig. 3, which

clearly accounts well for the data. We have verified that the
transfer coupling (with positive Q values) has a very minor
effect on the fusion cross section, supplying a less than 5%
reduction; part of the 40% reduction used to normalize the
fusion calculation of Fig. 1.

In conclusion, we have considered several mechanisms
to explain the large 2n-transfer cross section at subbarrier
energies in the system 6He+238U. It seems that a feasible
mechanism is the incoherent contributions of two or more
processes with quite different Q values. Large two-neutron
transfer cross section in the system 6He+209Bi at energies
near the Coulomb barrier has also been recently reported [14].
The mechanism may very well be similar to that reported in
the present Brief Report. Certainly, further work is required
to elucidate the phenomenon, in particular the role of elastic
breakup [14].
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