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Precision measurements of 2H(d, p)3H and 2H(d,n)3He total cross sections
at Big Bang nucleosynthesis energies
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Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density
of the Universe �b with a precision of about 4%. With �b tightly constrained, comparisons of Big Bang
nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to
test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the
limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized.
To this end, we made new precise measurements of the 2H(d,p)3H and 2H(d,n)3He total cross sections at lab
energies from 110 to 650 keV. A complete fit was performed in energy and angle to both angular distribution
and normalization data for both reactions simultaneously. By including parameters for experimental variables
in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by
computational methods. With uncertainties around 2% ± 1% scale error, these new measurements significantly
improve on the existing data set. At relevant temperatures, by using the data of the present work, both reaction
rates are found to be about 7% higher than those in the widely used NACRE (nuclear astrophysics compilation
of reaction rates) database. These data will thus lead not only to reduced uncertainties, but also to modifications
in the BBN abundance predictions.
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I. INTRODUCTION

The standard Big Bang model explains remarkably well
many features of the Universe that are otherwise difficult
to reconcile. The standard Big Bang nucleosynthesis (BBN)
model consists of a small network of nuclear reactions
occuring at energies easily obtained in the lab. The outcome of
Standard BBN is determined almost entirely by the nuclear
reaction rates and the baryon-to-photon ratio, η, of the
Universe, which is directly related to the baryon density
�b (�bh

2 = 3.66 × 107η, where h is the Hubble constant
in units of 100 km s−1 Mpc−1[1]). With detailed network
calculations and knowledge of the nuclear cross sections, all
of the primordial abundances can be precisely calculated as a
function of η. Knowledge of any one abundance or a separate
determination of η thus allows all other primordial abundances
to be inferred from the Standard BBN model. Knowledge of
any two of these observables produces a check of the model
itself.

In the past, quantitative understanding of BBN has been
limited by uncertainties in the observed primordial abundances
and the value of η. Until recently η was treated as a free
parameter. As observations have improved, the value of η

has become a well-determined input and is instead used,
along with the nuclear reaction rates, to predict the primordial
abundances. Regardless of which values are assumed and
which are predicted, the uncertainties of the cross sections
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themselves are becoming a significant factor in precision tests
of BBN models. Improved analyses depend on having accurate
and precise knowledge of the nuclear reaction rates, their
uncertainties, and the correlations in those uncertainties.

A. Primordial deuterium observations

Recent measurements of absorption lines in high redshift,
metal-poor, quasi-stellar-object (QSO)-backlit gas clouds have
constrained the primordial deuterium abundance D to the
impressive interval of D/H = 2.78+.44

−.38 × 10−5 [2], expressed
relative to the hydrogen abundance H. The measurement and
analysis procedure is well described in the review article
of Tytler et al. [3]. Currently systematic scatter limits the
precision of the deuterium abundance observations [2], but as
more data arrive and the systematics become better understood
this could quickly change.

Measurements of primordial deuterium abundances [4,5],
along with recent measurements of η from WMAP data [6,7],
bring the nuclear reaction rates increasingly closer to being
the limiting factors in testing the consistency of the Standard
BBN model.

B. Cosmology enters the lab

The value of η determined from the WMAP results is
in good agreement with primordial deuterium abundance
measurements of Kirkman et al. [2]. However, limited amounts
of data and the systematic uncertainties in abundance measure-
ments and in reaction rates have limited the level of precision
at which the BBN models can be tested to around 10% for
most observables.
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FIG. 1. (Color) Prominant data sets for 2H(d,n)3He cross sections
at BBN energies.

With the uncertainties of previously existing data, the
2H(d,p)3H and 2H(d,n)3He reaction cross sections at energies
in the range of a few hundred kilo-electron-volts make large
contributions to the uncertainties in deuterium abundances as
predicted by network calculations [8–11]. Nollett and Burles
[8] provide sensitivity functions estimating contributions
to the deuterium and 7Li abundances of several reactions
as a function of energy. The most relevant energy range
of both the 2H(d,n)3He and 2H(d,p)3H reactions extends
from roughly Ed = 100 keV up to about Ed = 700 keV.
Prior to our measurements, high-precision data for these
reactions were very limited in this range, as shown in
Fig. 1. The 2H(d,p)3H reaction data is qualitatively very
similar. From Ed = 325keV to the top of the BBN energy
range there were very few data points, all having large
uncertainties. Even at lower energies of significance to BBN,
the uncertainties of previously existing data were around
the 10% level or only slightly better. For the energy range
above 325 keV, one of the more complete data sets was that
of Ganeev et al. [12]. These data are not included in the
NACRE data compilation [13], considered the most prominent
collection of experimental rates for reactions of astrophysical
significance.

To aid in tightening the BBN constraints, we measured total
cross sections for both of these deuterium-burning reactions
at lab energies ranging from about 112 to 646 keV. By
carefully establishing experimental procedures to maximally
cancel the dependencies of yields on experimental parameters,
we have obtained about 2% statistical uncertainties plus or
minus a 1% systematic scale uncertainty. Furthermore, our
χ2 analysis techniques have allowed optimal use of the
data and provided correlations in the uncertainties of the
two reactions across the range of energies. The new data
form a significant improvement of the inputs to the BBN
calculations and facilitate an emerging era of high-precision
BBN.

II. EXPERIMENTS

To determine the integrated cross sections for the
2H(d,p)3H and 2H(d,n)3He reactions, relative angular dis-
tributions of the differential cross sections dσ/dω were mea-
sured, henceforth denoted simply σ(θ ), or σ(E, θ ), where E
and θ represent the energy and the reaction angle respectively.
We normalized these distributions by measuring absolute
differential cross sections at selected fixed angles. This general
procedure was performed for eight energies, Ed = 120, 180,
240, 320, 390, 480, 560, and 650 keV. These are approximate
nominal energies and are the values used here to refer to the
various data sets. The determination of the exact energies will
be discussed in Sec. II C. Generally data for both reactions
were obtained simultaneously.

All data were taken using the TUNL Low-Energy Beam
Facility (LEBF) and the High-Voltage Target Chamber [14].
The LEBF is composed of the Atomic Beam Polarized Ion
Source [15] and Mini-Tandem accelerator [16]. The combined
acceleration potentials of the source, Mini-Tandem and HV
chamber provide deuteron and proton beam energies up to
approximately 680 keV. All targets used were carbon-based,
self-supporting transmission targets.

A. Normalization technique

For the present measurements, the central technique used
to determine the absolute cross sections was to compare them
with those of a reference reaction. We used p-d elastic scatter-
ing for which multiple absolute measurements of differential
cross sections exist at energies near the range of interest for
our measurements [17–19]. The data of Brune et al. [18]
were taken with the explicit purpose of normalizing relative
differential cross-section data taken with the same equipment
as the present work. All of these measurements agree, to
within about 1%, with theoretical few-body calculations with
no free parameters [17,20]. We used the calculated values as
the cross-section reference for our measurements.

In order to compare yields for the d-d interactions and p-d
interactions under similar conditions, we alternated between
a deuteron beam and a proton beam incident on the same
self-supporting, deuterated carbon targets. The targets were
produced by plasma deposition of fully deuterated methane
gas and were typically about 30 µg/cm2 thick, with roughly
equal numbers of carbon and deuterium atoms.

The ratio of cross sections for the two observed interactions
is given by

σd (Ed, θ )

σp(Ep, θ )
= nptp��p

ndtd��d

Nd

Np

, (1)

where n is the incident number of beam particles, N is the
detected number of particles, and t is the areal density of target
nuclei. The subscripts p and d refer to measurements with
proton and deuteron beams, respectively. By using the same
experimental setup and target for both beams, the solid angles
and target thicknesses were made to cancel.

One of the larger obstacles in a direct cross-section mea-
surement is measuring the time-integrated beam flux incident
on the target. For the energies of the present experiment,
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the determination of the number of incident beam particles by
charge collection and integration is made difficult by angular
straggling and charge exchange in the target.

In order to determine the ratio of proton beam particles to
deuteron beam particles, a thin layer of gold, approximately
10 or 20 Å thick (1 Å of gold is equivalent to 1.7 ×
1015atoms/cm2), was evaporated onto one surface of the target.
The gold layer was then oriented on the upstream side of the
target, facing the incident beam. A backangle detector was
used to monitor Rutherford elastic backscattering from gold
for both proton and deuteron beams.

The ratio of the number of incident beam particles for the
two beams is given by

np

nd
= Np

Nd

σAu(d,d)(Ed,θ )

σAu(p,p)(Ep, θ )
, (2)

where σAu(d,d)(Ed,θ ) and σAu(p,p)(Ep, θ ) are, respectively, the
differential cross sections for proton and deuteron scattering
from gold at the same lab angle.

When beam is incident on the amorphous deuterium targets,
deuterium is depleted from them, albeit slowly. If a target is
depleted in a spatially nonuniform manner, then two beams
striking slightly different areas at different times may not
interact with a target of the same thickness. High-intensity
beam currents also tend to produce macroscopic defects in
targets, such as rips and holes, especially at these energies,
where energy loss in the target is large. Depletion and stability
problems seem to depend not only on the total number of
particles that pass through the target, but also on the rate at
which they pass.

A constant or slowly varying target thickness must be
maintained between proton and deuteron runs. Since the
reactions of interest have cross sections of the order of
millibarns/steradian, as opposed to barns/steradian, for elastic
scattering, a much larger integrated beam flux was required
in order to acquire sufficient reaction data. Such high beam
fluxes would produce prohibitively large target variations.

To avoid this problem, we first normalized d-d elastic-
scattering yields to the p-d yields by using small beam
currents, below 10 nA. At these currents target depletion
was almost imperceptible, no more than 1%/h, and many
targets were structurally stable for several hours. Data were
taken later with higher beam currents, around 50–100 nA,
and the ratio of d-d elastic-scattering yields to 2H(d,p)3H
and to 2H(d,n)3He reaction yields was obtained. Since the
elastically scattered deuterons and the reaction products were
measured simultaneously in this last step, they passed through
the same target thicknesses. This final step adds negligibly
to the overall systematic error of the measurement. To
further ameliorate the depletion problem, the beam-switching
technique was employed several times over short intervals, and
small-entrance collimators were used to define the incident
beam trajectory precisely.

To change beam types rapidly, we injected a mixture
of deuterium and hydrogen gas into the ECR ionizer of
the Polarized Ion Source [15]. With this dual-beam source
configuration, by changing only the inflection-magnet current,
we could easily put over 100 nA of either beam on target.

FIG. 2. (Color online) Schematic of the experimental setup. The
entire scattering chamber can be raised to a potential of ±200 kV to
accelerate or decelerate the beam.

B. Experimental setups and procedures

The HV chamber that was used for these measurements
is described in Ref. [14]. The chamber’s basic features are
illustrated in Fig. 2. Two independently rotating plates are
installed, one on the top of the chamber and one on the bottom,
which can be used to mount detectors on the left and right side
of the chamber, respectively. The fixed monitor detectors are
placed above and below the reaction plane, having a view of
the target that was not obstructed by the rotating detectors.
The beam enters the chamber through an acceleration tube,
allowing for an acceleration through a 200 kV potential. It
then passes through vertical and horizontal entrance slits which
define the beam position.

1. High-energy normalization setup

For the highest four beam energies, 390, 480, 560, and
650 keV, we used the procedure described in Sec. II A
to normalize the differential cross sections. Seven high-
resolution, ion-implanted silicon detectors were positioned
in the chamber to observe elastic scattering from deuterium.
All detectors had either 300 or 500 µm depletion depths
and 1.50 cm2 active areas. Four were placed on the rotating
detector tracks and set at 35.0◦ and 48.0◦ on both the left
and the right sides. Two more were mounted as out-of-plane
monitors at 27.5◦. One detector was placed on the top rotating
plate at 125.0◦ left for the purpose of monitoring Rutherford
backscattering from gold as explained in Sec. II A. The
rotating detectors were placed approximately 18 cm from
the target, with collimators directly in front of them, with
openings 0.46 cm wide and 0.95 cm tall. The out-of-plane and
backangle monitor detectors were mounted at approximately
30 cm and 10 cm from the target, respectively. The out-of-plane
monitors were given collimators 0.64 cm wide by 0.95 cm
tall, and the backangle monitor was equipped with a circular
collimator of 1.27 cm diameter. Cylindrical aluminum tubes
were placed in front of all detector collimators to help reduce
possible background scattering from various sources, such
as the entrance slits. Small permanent magnets were placed

045801-3



LEONARD, KARWOWSKI, BRUNE, FISHER, AND LUDWIG PHYSICAL REVIEW C 73, 045801 (2006)

350 400 450 500

Energy (keV)

0

100

200

300

C
ou

nt
s

12
C(p,p)

2
H(p,p)

2
H(p,d)

1
H(p,p)

FIG. 3. Spectrum from proton elastic scatterring from a deuter-
ated target at θlab = 27◦, Ep = 560 keV.

around the tubes to reduce the effects of electrons released from
the target. Systematic cancellations inherent in the procedure
removed the need for precise knowledge of collimator sizes
and radii. An aluminum plate serving as a Faraday cup was
placed at the back of the chamber to integrate the beam
current. Current integration was used for beam adjustment
and diagnostic purposes only.

The two pairs of detectors on the rotating plates were used to
observe p-d elastic-scattering yields during proton beam runs.
A spectrum is shown in Fig. 3. The out-of-plane monitors
were used to measure d-d elastic-scattering yields during the
interleaved deuteron runs. The in-plane detectors were again
used for observing reaction products (see Fig. 4) during the
reaction runs while simultaneously measuring d-d elastic-
scattering yields in the out-of-plane monitors. Using different
detectors for the two simultaneous deuteron-beam measure-
ments provided more flexibility for the choice of angles used
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FIG. 4. Spectrum of d + d reaction products at θlab = 35◦, Ed =
480 keV.

and facilitated differing signal gain requirements for the
elastic-scattering and reaction products. Solid-angle cancella-
tions required that all d-d elastic yields be measured in the same
dedicated detectors and that the reaction yields be measured
in the same detectors as the p-d elastic scattering yields.

Measurements of the d-d scattering yields were compli-
cated by the presence of hydrogen contamination in the
targets. Within the available increments, the angle of 27.5◦
was experimentally determined to produce the best spectral
separation of the d-d scattering peak from both the 1H(d,p) and
12C(d,d) peaks. At Elab = 390 keV, the lowest energy where
the beam-switching normalization was performed, adequate
spectral separation of the d-d scattering peak from the 1H(d,p)
peak could not be achieved. Instead the yield from the
well-separated 1H(d,d) scattering peak was used to determine
the 1H(d,p) yield, which could then be subtracted from total
yield of the unresolved 2H(d,d) and 1H(d,p) peaks. If the
ratio of hydrogen to deuterium were constant in every target,
the 1H(d,p) yield would introduce no error, since it would still
provide a consistent, proportional measure of the amount of
deuterium in the target. Typically the 1H(d,p) yield was less
than 10% of the 2H(d,d) yield. The ratio of the two varied
by about 30% from target to target, thus producing about
a 3% error. Only a rough correction was needed to reduce
this to a negligible effect. In order to measure the ratio of the
1H(d,d) yield to 1H(d,p) yield, monitor spectra were collected
at several energies for deuteron scattering from a hydrogenated
carbon target.

2. Low-energy normalizations

It was not possible to normalize data at the lowest energies,
120, 180, 240, and 320 keV, by using the method described
in Secs. II A and II B1. At these energies it was not possible
to resolve all needed elastic peaks with sufficient precision.
We instead normalized reactions at these energies directly to
reactions at 480 keV by using the differential cross sections
already obtained for 480 keV from the previous method.

For this normalization four detectors on each side of the
chamber were placed at 60◦, 44◦, 28◦, and 13◦. As before,
one detector was placed at 164◦ on the top rotating plate to
monitor backscattering from an upstream gold target layer. All
detectors were placed approximately 11 cm from the target and
collimated with 1.27 cm diameter circular collimators.

At these low bombarding energies, amorphous deuterated
carbon targets usually became very fragile and were replaced
with deuterated parapolyphenol (DPP, chemical formula
C6D4) targets [21]. We constructed the targets by evaporating
an approximately 5 µg/cm2-thick layer of DPP onto a
5 µg/cm2 carbon foil. As in the high-energy normalizations,
a roughly 3 µg/cm2-thick Au layer was evaporated onto the
DPP surface. Again the gold layer faced upstream so that the
beam first passed through the gold, then the DPP, and then
the remaining carbon backing.

The actual normalization procedure was fairly straight-
forward. We bombarded the target with a deuteron beam at
480 keV and observed ratios of reaction yields to Au
backscattering yields. We then changed the beam energy
to the energy of interest while using the same target.
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The procedure was repeated several times. Taking the ratios
of the two resulting sets of normalized reaction yields and
dividing out the two Rutherford cross sections provided the
ratios of differential cross sections at 480 keV to the cross
sections at each of the lower energies.

3. Angular distributions

The normalization procedures described above were col-
lectively the most challenging part of the cross-section mea-
surements, but they determined the differential cross section
at only a few fixed angles. To measure the relative angular
distribution of differential cross sections, the chamber was
set up with six detectors placed on the rotating tracks, three
on each side, with 13◦ separation between each detector.
Two pairs of out-of-plane monitor detectors were placed at
approximately 10◦ and 40◦. Detectors were placed roughly
18 cm from the target with circular collimators of 1.27 cm
in diameter. Beam currents of 50 to 100 nA were used.
Amorphous carbon targets were used at the highest energies for
their high deuterium content. At lower energies carbon-backed
DPP targets were used for their superior durability. With this
arrangement, data at all angles could be normalized to data
from the fixed monitor detectors, thus dividing out all beam
current and target thickness information and leaving only a
relative angular distribution of σ(θ ).

The elastic-scattering rate from carbon present in the target
was much higher than the rate of d + d reactions. With the high
Q values of the reactions, 4.03 and 3.27 MeV for 2H(d,p)3H
and 2H(d,n)3He, respectively, it was possible to separate
the reaction peaks from the lower-energy elastic-scattering
peaks for most reaction angles and beam energies. To avoid
overloading the data acquisition system, Mylar stopping foils
from 1 to 6 µm thick, depending on the angle and energy, were
placed in front of the detectors.

4. Detector electronics

As described in Ref. [14], the High-Voltage Chamber ac-
commodated many silicon surface-barrier detectors in various
movable configurations. For many parts of the experiment the
chamber was electrically isolated from ground and brought
to a high negative potential of as much as 200 kV. This
required that all energy signals be sent from the chamber
via analog fiber-optic transmitters as described in Ref. [22].
Energy signals from the fiber-optic receivers were then routed
into six Northern ADC’s. Pulses of known rate were sent
through the same electronics in order to measure the deadtime.

C. Energetics

To achieve the desired uncertainties in the cross sections,
reaction and scattering energies must be known very well. The
incident beam energy was determined by the potentials on
the ion source, on the Mini Tandem, and on the High-Voltage
Chamber. The energy calibration of the LEBF system was
previously determined by a procedure described elsewhere
[14]. Small corrections were made for energy losses in the
Mini Tandem carbon stripping foil and for the potential on
the cesium in the charge exchange canal in the ion source.
The uncertainty in the incident beam energy was less than

1 keV. Energy losses in the targets must also be well known
in order to determine precisely the reaction and scattering
energies. In particular the elastic-scattering cross sections
used to determine the normalizations are very sensitive to
energy, especially at the lowest energies. For these low-energy
normalizations a three-layer target was used. The deuteron
beam first passed through a thin layer of gold, then a layer
of DPP, and finally passed through a carbon backing. As
explained in previous sections, elastic-scattering yields were
measured from the gold and the carbon, and reactions were
measured from the deuterium in the DPP layer. Since energy
was lost continuously throughout the thickness of the target,
the reaction energy was less than the gold scattering energy,
which was less than the incident beam energy. Both interaction
energies need to be known.

By rotating the multilayer targets by 180◦ and observing
shifts in the energies of elastically backscattered beam par-
ticles, as well as by monitoring relative scattering yields of
various targets, it was possible to measure and continuously
monitor target thicknesses and energy losses. The energy
losses, due primarily to the carbon content of the targets,
did not change significantly over time. Final values of
incident beam energies and total energy losses in the gold
and deuterated layers are given in Table I. The high-energy
normalizations were performed on two-layer targets of gold
and a deuterated amorphous carbon. The energy losses in
these targets are shown in Table II. The effect of the energy
uncertainty is discussed in Sec. III E3.

III. DATA ANALYSIS

The goals in analyzing the data were to make full use of
all the interconnected data sets constraining various physical
and experimental parameters without double counting any
statistics and to understand the correlations in the uncertainties
in the final results. By using a χ2 analysis to fit all the data
to a model constructed from the relevant parameters, it was
possible to maximize the amount of information used while
appropriately handling and quantifying correlated information
and uncertainties.

Before performing the global fit of the complete data set,
some initial analysis was performed on the data from each
storage sequence, referred to as a run. The energy spectra
were first analyzed to determine the yields in all peaks of
interest. When required, fits were made to Gaussian peaks
summed with linear or quadratic backgrounds. Data were then
adjusted for deadtime corrections, monitor normalizations,
and cross-section normalizations as needed. In this way a
preliminary conventional analysis could be performed, and
parameters that changed with each run, primarily including
target layer thicknesses and the number of incident beam
particles, could be removed from the data sets.

A. High-energy normalizations

As explained in Sec. II A, the highest-energy differential
cross sections were normalized to the known p-d elastic-
scattering cross sections. Here we outline the procedure needed
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TABLE I. Energy corrections for low-energy normalizations. The final interaction energy is
calculated by using the total energy loss in gold and half of the DPP energy loss. The values shown
here for 480 keV correspond to the target used to normalize the 120 keV data to the 480 keV data.

Nominal Incident deuteron Total loss in Total loss in Central deuterium-
energy (keV) energy (keV) gold (keV) DPP (keV) layer energy (keV)

480 477.0 0.5 7.1 473.0
320 317.3 0.2 5.1 314.6
240 237.2 0.5 7.9 232.8
180 177.3 0.5 8.1 172.8
120 116.8 0.4 8.5 112.2

to obtain absolute reaction cross section from the p-d cross
sections.

First we construct the specific yield equations for all
reactions and run types required for the calculation. For
simplicity we will assume that each yield was observed in
only one detector and one data run. The detector used to
measure p-d elastic-scattering yields will be referred to as
detector A. The d-d elastic-scattering yield was observed in
detector B in a beam-switching run. These two runs used the
same target, which we will call target 1, having a deuterium
target thickness td1 and a gold target thickness tg1. Finally d-d
elastic scattering was measured in detector B simultaneously
with the d-d reactions in detector A. These measurements
were made by using a different target, target 2. For all three
measurements, elastic scattering on gold was measured in
detector C. The superscript p indicates a proton-beam run, d
a deuteron beam-switching run, and finally r denotes reaction
runs with deuteron beam. These label the yields, the beam
energies, and the integrated beam flux on target. Subscripts
indicate reactions where needed. The yields of interest are as
follows:

N
p
2H(p,p) = nptd1��Aσ2H(p,p)(E

p, θA), (3)

N
p

Au(p,p) = nptg1��CσAu(p,p)(E
p, θC), (4)

Nd
2H(d,d) = ndtd1��Bσ2H(d,d)(E

d,θB), (5)

Nd
Au(d,d) = ndtg1��CσAu(d,d)(E

d,θC), (6)

Nr
2H(d,p) = nr td2��Aσ2H(d,p)(E

r, θA), (7)

Nr
2H(d,d) = nr tg2��Bσ2H(d,d)(E

r, θB). (8)

The solution for the 2H(d,p) differential cross section is
given by the following:

σ2H(d,p)(E
r, θA) = σ2H(p,p)(E

p, θ )
Nr

2H(d,p)

Nr
2H(d,d)

Nd
2H(d,d)

Nd
Au(d,d)

× N
p

Au(p,p)

N
p
2H(p,p)

σAu(d,d)(Ed,θC)

σAu(p,p)(Ep, θC)
. (9)

To analyze the data one run at a time, we break this solution
into the normalization factors α corresponding to the three
different run types:

αp =
N

p
2H(p,p)

N
p

Au(p,p)

σAu(p,p)(Ep, θC)

σ2H(p,p)(Ep, θA)
, (10)

αd =
Nd

2H(d,d)

Nd
Au(d,d)

σAu(d,d)(E
d,θC), (11)

αr =
Nr

2H(d,p)

Nr
2H(d,d)

. (12)

Now we have simply

σ2H(d,p)(E
r, θA) = αrαd

αp
. (13)

By substituting the yields with the systematic parameters
on which they depend, these factors can also be written in the
following way:

αp = ��A

��C

td1

tg1
, (14)

TABLE II. Energy corrections for high-energy normalizations. Each row describes deuteron beam
energies of the data being normalized and the proton energy used to normalize it. Proton beams having
two different energies were used on the same target to normalize the 560 keV deuteron data. Variations
in energy losses between rows come from varying stopping powers and variations in target thicknesses.

Nominal Incident deuteron Central deuteron Incident proton Central proton
deuteron energy beam energy beam energy beam energy beam energy
(keV) (keV) (keV) (keV) (keV)

650 653.2 646.1 653.6 649.0
560 564.4 557.3 653.6 649.4
560 564.8 560.2
480 477.0 470.2 564.8 560.8
390 387.4 379.2 564.8 560.4
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αd = ��B

��C

td1

tg1
σ2H(d,d)(E

r, θB ), (15)

αr = ��A

��B

σ2H(d,p)(Er, θA)

σ2H(d,d)(Er, θB )
, (16)

which makes evident the solid-angle and target thickness
cancellations in Eq. (13).

To calculate αp, differential cross-section values were
needed for p-d elastic scattering. Theoretical calculations were
provided by Kievsky et al. [20,23] for several selected energies
in the range of interest for the present work. Two-dimensional
polynomial interpolations were used to obtain values for the
precise angles and energies required. The error associated with
the interpolation is negligible.

All cross sections for scattering on gold used in our analysis
were calculated from the Rutherford scattering formula with
electron-screening corrections obtained from Ref. [24]. At the
lower energies the screening corrections were about 1% of the
the values.

The error due to target thickness variation can be seen by
plotting the values of αp and αd as a function of run number.
Run numbers were incremented consecutively as beams were
switched between proton and deuteron beams. The results for
the 650 keV normalization are shown in Fig. 5. The two factors,
having different physical meanings, are shown in relative units.
The relative stabilities of the two measurements is apparent.

B. Angular distributions

Deadtime-corrected yields for all rotating detectors were
normalized by dividing them by appropriate combination
monitor-detector yields. The resulting normalized data were
sensitive only to the differential cross sections of the reactions
and an overall normalization factor. The relative solid-angle
normalizations of the rotating detectors could be deter-
mined from cross-calibration data taken for that purpose, but
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FIG. 5. (Color online) Relative yields measured in beam-
switching normalization runs: αp and αd are the normalized 2H(p, p)
and 2H(d,d) yields as defined in Eqs. (10) and (11).
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FIG. 6. (Color online) Normalized angular distribution of
2H(d,p)3H differential cross section at Ed = 650 keV. The data
points shown are the weighted means of all data runs at the same
angle. The curve is a fit of even-order Legendre polynomials up
to P4.

ultimately these normalizations were left as free parameters as
discussed in Sec. III D. With four monitor detectors there was
sufficient redundancy to use an automated algorithm to reject
monitors that were blocked or partially blocked in a particular
chamber geometry. Angle and solid-angle differences between
the four monitors required the relative normalizations of the
monitor yields to be determined for every energy. The full
data set of all reaction runs at each energy was used for this
determination. Iterations were made by alternating between
the relative normalization procedure and the monitor rejection
algorithm.

Figure 6 shows the resulting angular distribution for the
2H(d,p)3H reaction at Ed = 650 keV with a fit to even-order
Legendre polynomials of center-of-mass angle.

C. Low-energy normalizations

Once normalized angular distributions were derived at
Ed = 480 keV, the energy cross-normalization data could be
used to normalize the low-energy angular distributions at fixed
angles. Again, for simplicity, we will consider just one reaction
detector R. Only the 2H(d,p)3H and 2H(d,n)3He reaction
peaks were usable for the cross normalizations. The reaction
yields in R were normalized only to the elastic-scattering yields
on gold in the Rutherford-scattering monitor, again labeled
detector C, and to the appropriate Rutherford cross section.
The normalized yield αx is defined as

αx =
Nd

2H(d,p)3H

Nd
Au(d,d)

σAu(d,d)(E
d,θC) . (17)

This ratio can also be written as

αx = ��R

��C

td

tg
σ2H(d,p)3H (Ed,θB), (18)

with the same notation as in previous sections.
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If this ratio is determined for data taken at two deuteron
energies, 480 keV and, for example, 120 keV, by using the
same target, then we find

αx(Ed = 120 keV)

αx(Ed = 480 keV)
= σddp(Ed = 120 keV, θ )

σddp(Ed = 480 keV, θ )
. (19)

Low-energy 2H(d,3He)n reaction cross sections can then be
determined by relating the 2H(d,3He)n and 2H(d,p)3H yields
in the plentiful angular distribution data sets.

D. Integrated cross-section global analysis

The framework described in Sec. III is sufficient for
determining total cross-section results for both reactions at
all observed energies. However, in the previous sections the
situation was oversimplified by considering that each data type
was observed by using one detector and considering only one
reaction at a time. In this algebraic framework and without
these simplifications it is very difficult to fully utilize all the
data from all detectors in the normalization process while
accounting for the correlations involved.

To list one example, p-d elastic-scattering data and the
normalization reaction data exist for two detector sets at two
different angles. For solid angles to vanish in the formalism of
Sec. III, the same detector set must be used in the analysis of
the reaction data as for the proton elastic-scattering data. Thus
data from each detector set must be treated as an independent
measurement. This actually produces complications. The fit
to the angular distribution data does not directly produce
discrete values as a function of angle; it produces Legendre
coefficients and errors in those Legendre coefficients. The
values derived for the differential cross sections at particular
angles have uncertainties that are highly correlated through the
Legendre parametrization. Such correlations in the analysis
inputs ultimately complicate the calculation of the uncertainty
of a single result.

We were also interested in calculating multiple related
results, cross sections for different reactions and different
energies. The results themselves have uncertainties that are
correlated with each other. This complicates the use of these
values in future calculations such as the deuterium abun-
dance prediction of a BBN network calculation. In the present
case strong correlations in energy exist because the low-energy
data were normalized directly to high-energy data. Strong
correlations between cross-section uncertainties for the two
different reactions exist because these different reaction yields
were normalized to the same data. The uncertainty correlations
in the cross sections must be quantified.

We have addressed these correlation issues by avoiding
an algebraic analysis as much as reasonably possible. We
performed a χ2 fit of the energy-dependent differential cross
sections. These were fitted to all the normalization and angular
distribution data for both reactions at all energies, all in a single
and simultaneous fit. This procedure determined uncertainties
for all parameters by using all available data that might directly
or indirectly affect their values. It also allowed the correlations
in the uncertainties in those parameters to be measured by
using the usual parameter variation techniques of χ2 fitting.

To perform this fit we produced a realistic parametrization
to describe all segments of the experiment. The normalized
data values that were input into the fit were the α’s of
Eqs. (10)–(12) and (17). The fit parameters represented the
unknown values in the physical representations given in
Eqs. (14)–(16) and (18). The fit thus included a parametrization
of the energy-dependent differential cross sections along with
all needed systematic parameters specific to the given data
types. Actually, many of these variables that canceled out
of the algebraic analysis, such as target thicknesses, were
individually undetermined. In most cases the appropriate fit
parameters were carefully chosen to represent well-determined
products and ratios of these variables. We will define here only
the parameters of interest. The 2H(d,n)3He and 2H(d,p)3H
differential cross sections can be described in the center-of-
mass frame in terms of even Legendre polynomials Pn(θ )
with coefficients an,ik for the nth Legendre polynomial, the
ith energy and the kth reaction. To improve the minimization
behavior, we defined the parameters bn,ik such that

bn,ik = an,ik

a0,ik

. (20)

The differential cross sections are then parametrized as

σk(Ei, θc.m.) = a0,ikP0(θc.m.)

+
M∑

m=1

b2m,ika0,ikP2m(θc.m.), (21)

where 2M is the highest order of Legendre polynomial used.
The integrated cross sections are then given by

σk(Ei) = 4πa0,ik. (22)

We also performed a fit to a parametrization that is
continuous in energy. This has many advantages, but also
some complications. We will not present the full results or
description of that fit here; it is described in detail in Ref. [25].

E. Error analysis

The uncertainties for the normalized data input into the fits
were calculated by first-order propagation of the uncertainties
in the peak sums. Correlations arising from shared monitor
normalization counts were not taken into account because the
monitor yields generally contributed a relatively small amount
to the overall statistical uncertainties. The final uncertainties
and correlations in the cross-section results are determined
directly from the error matrix. We will explain this here in
more detail and will discuss procedures applied to quantify
data scatter and certain systematic errors.

1. Error matrix

The total cross section at each energy corresponds directly
to one of the fit parameters. The 1σ uncertainty ς in the
cross section is simply the uncertainty in the corresponding
parameter multiplied by a factor of 4π :

ς (σk(Ei)) = 4πς (a0,ik), (23)
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where ς (a0,ik) is given by the square root of the diagonal
element of the covariant error matrix corresponding to the
parameter a0,ik .

2. Quantifying scatter

If, for some fit, the χ2 per degree of freedom, χ2
ν , is not 1,

then the error matrix has little meaning. Some amount of
unaccounted-for scatter is expected in the data for various
reasons, the largest coming from fluctuations in the target
thicknesses during the beam-switching procedure. In the end,
χ2

ν for the entire fit is just over 2.
We implemented a procedure to address this issue by

quantifying the scatter in the data and adding an appropriate
amount of uncertainty to the data. This was done by iteratively
adding in quadrature enough uncertainty to points in each
of the data sets in order to make χ2 per datum equal to 1
for that data set. By adding a constant fractional error rather
than multiplying the uncertainties, we were able to make
better use of the full data set. This is a result of not over
deemphasizing points having uncertainties that were already
large compared with the missing uncertainty. For a single
parameter measurement, in the case where the fraction of the
uncertainty which was initially quantified approaches zero, this
additive method reduces to the familiar technique of measuring
the standard error in the mean.

3. Angle and energy uncertainties

The effects of detector-angle and energy uncertainties were
studied by perturbing the input angle and energy values of all
data in various ways and then reproducing the entire analysis
for each set of perturbations. This is similar in principle to the
uncertainty analysis performed by the fitting software, but for
technical reasons these parameters could not easily be fully
parametrized within our analysis framework.

The detector angles were calibrated and set with an
uncertainty of 0.1◦. Fractional uncertainties arising from angle
determinations were found to be on the scale of 2 × 10−3 or
less and were neglected. Uncertainties arising from energy
determinations are larger, as much as 1% or 2% at the lowest
energies, and fall to a small fraction of a percent at the highest
energies.

In order to consolidate these uncertainties into the error
matrix, the effect of the energy perturbations on the differential
cross section parameters was itself parametrized and then
fed back into the final fit. The fit was then reminimized.
Free parameters and constraint terms were included to allow
the energies to vary somewhat in the fit. This approach did
not allow the fit to explicitly explore the effects of these
perturbations on subtleties such as changes in center-of-
mass angles of detectors. We emphasize explicitly because
such subtleties were in fact accounted for when originally
parametrizing the effects of the perturbations. For this reason,
all freedom in the final results arising from such effects was
still quantified and reflected in the error matrix. The increase
in the uncertainties calculated by this fitting procedure was in
excellent agreement with quadrature addition of the tabulated

energy-related uncertainties to the original uncertainties in
the fit.

4. Peak-fitting uncertainties

Some ambiguity existed in the fits of the Rutherford
backscattering spectra for deuterons scattering from gold at
the lowest energies. It was generally unnecessary to account
for correlations arising from uncertainties in monitor detector
yields. However, because of the systematic nature of this
normalization peak and the nonnegligible uncertainty in the fit,
this rationale became invalid. We added extra normalization
parameters for these data in the global fit. Corresponding
constraint terms were added to the χ2 sum, constraining these
parameters to be near one. The uncertainties assigned to the
constraint terms were 3% for the 120 keV normalization
parameter and to 1% for all other energies at or below
320 keV.

IV. RESULTS, IMPLICATIONS, AND CONCLUSIONS

Here we present our data and address the effect these
data will have on Big-Bang nucleosynthesis calculations.
The cross-section results obtained from the parametrization
described in Eq. (21) are given in Table III. The coefficients
of the Legendre expansions of the differential cross sections
are given in Table IV. The errors shown are 1σ equivalents,
which include statistical and background uncertainties, energy
uncertainties discussed in Sec. III E 3, fitting uncertainties
described in Sec. III E 4, and which account for scatter in the
data sets used to derive the total cross sections as explained
in Sec. III E 2. The uncertainties are generally around the
2% level except at the lowest energies, where peak fitting
and energy uncertainties become somewhat larger. An overall
scale error of 1% is estimated, arising from uncertainties in
the p-d elastic-scattering cross section to which these data
were normalized. This normalization error is not included
in the uncertainties. Finally, the error matrix for the total
cross-section parameters is given in Table V. The complete
error matrix for the Legendre coefficients is too large to present

TABLE III. Integrated cross-section results for discrete fit. The
corresponding S-factor error matrix is given in Table V. The 1σ

uncertainties include statistical uncertainties from all parts of the
present work as well as fitting uncertainties discussed in Sec. III E.

Ed (keV) σ2H(d,p)3H (mb) σ2H(d,n)3He (mb)

646.1 74.55 ± 1.07 84.34 ± 1.59
557.3 68.02 ± 0.96 80.22 ± 1.18
470.2 58.47 ± 0.80 69.55 ± 1.04
379.2 53.09 ± 0.94 62.60 ± 1.12
314.6 45.77 ± 1.06 56.01 ± 1.33
232.8 37.65 ± 0.82 43.13 ± 0.96
172.8 29.55 ± 0.88 33.03 ± 1.01
112.2 19.77 ± 0.85 21.07 ± 0.92
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TABLE IV. Legendre coefficients for discrete fit of 2H(d,p)3H and 2H(d,n)3He data. The 1σ

uncertainties include statistical uncertainties from all parts of the present work as well as fitting and
energy uncertainties discussed in Sec. III E. The coefficients are normalized to the P0 coefficients.

Ed (keV) 2H(d,p)3H 2H(d,n)3He

b2 b4 b2 b4

646.1 0.786 ± 0.004 0.192 ± 0.005 0.865 ± 0.032 0.011 ± 0.030
557.3 0.737 ± 0.004 0.199 ± 0.006 0.856 ± 0.011 0.156 ± 0.013
470.2 0.665 ± 0.007 0.075 ± 0.010 0.798 ± 0.018 0.048 ± 0.025
379.2 0.629 ± 0.007 0.094 ± 0.008 0.830 ± 0.016 0.112 ± 0.019
314.6 0.536 ± 0.005 0.079 ± 0.010 0.721 ± 0.008 0.029 ± 0.016
232.8 0.472 ± 0.005 0.013 ± 0.010 0.663 ± 0.007 0.011 ± 0.011
172.8 0.463 ± 0.006 0.046 ± 0.007 0.697 ± 0.017 0.059 ± 0.022
112.2 0.358 ± 0.012 0.024 ± 0.008 0.578 ± 0.010 0.016 ± 0.008

here and is not relevant to our primary goal of providing BBN
inputs.

The cross sections of Table III are plotted in Fig. 7,
along with the continuous parameterization mentioned in
Sec. III D and with the recent cross-section compilation of
Cyburt [26]. Some scatter within the uncertainties is de-
tectable, which is expected, since our statistical and systematic

errors are of comparable magnitudes. The continuous parame-
trization appears to be systematically somewhat higher than
the results of the discrete fit. This is not surprising, since
cross sections for the lowest four energies are all normalized
directly to the differential cross sections at 480 keV. These
data thus inherit all of the uncertainty of the 480 keV points
but in a systematic manner. The continuous fit is then free to

TABLE V. Error matrix for discrete fit. The elements shown are for the zero-order Legendre coefficients, the a0’s. The two reactions
2H(d,p)3H and 2H(d,n)3He are labeled p and n, respectively, and by their lab energies (keV).

p (E = 646.1) p (E = 557.3) p (E = 470.2) p (E = 379.2) p (E = 314.6) p (E = 232.8) p (E = 172.8) p (E = 112.2)

p (E = 646.1) 0.72455 × 10−2 0.14698 × 10−3 0.17429 × 10−3 0.23506 × 10−3 0.26413 × 10−3 0.31480 × 10−3 0.37331 × 10−3 0.39490 × 10−3

p (E = 557.3) 0.14698 × 10−3 0.58695 × 10−2 0.20697 × 10−3 0.26821 × 10−3 0.31688 × 10−3 0.37043 × 10−3 0.43710 × 10−3 0.47199 × 10−3

p (E = 470.2) 0.17429 × 10−3 0.20697 × 10−3 0.40429 × 10−2 0.36346 × 10−3 0.34075 × 10−2 0.29271 × 10−2 0.24840 × 10−2 0.19097 × 10−2

p (E = 379.2) 0.23506 × 10−3 0.26821 × 10−3 0.36346 × 10−3 0.56466 × 10−2 0.55288 × 10−3 0.64357 × 10−3 0.75711 × 10−3 0.82970 × 10−3

p (E = 314.6) 0.26413 × 10−3 0.31688 × 10−3 0.34075 × 10−2 0.55288 × 10−3 0.70794 × 10−2 0.27062 × 10−2 0.23987 × 10−2 0.19782 × 10−2

p (E = 232.8) 0.31480 × 10−3 0.37043 × 10−3 0.29271 × 10−2 0.64357 × 10−3 0.27062 × 10−2 0.42573 × 10−2 0.22736 × 10−2 0.19649 × 10−2

p (E = 172.8) 0.37331 × 10−3 0.43710 × 10−3 0.24840 × 10−2 0.75711 × 10−3 0.23987 × 10−2 0.22736 × 10−2 0.49179 × 10−2 0.19986 × 10−2

p (E = 112.2) 0.39490 × 10−3 0.47199 × 10−3 0.19097 × 10−2 0.82970 × 10−3 0.19782 × 10−2 0.19649 × 10−2 0.19986 × 10−2 0.46104 × 10−2

n (E = 646.1) 0.79321 × 10−2 0.17280 × 10−3 0.19870 × 10−3 0.26475 × 10−3 0.30188 × 10−3 0.35790 × 10−3 0.42390 × 10−3 0.45124 × 10−3

n (E = 557.3) 0.17579 × 10−3 0.68319 × 10−2 0.24401 × 10−3 0.31657 × 10−3 0.37347 × 10−3 0.43684 × 10−3 0.51555 × 10−3 0.55638 × 10−3

n (E = 470.2) 0.20782 × 10−3 0.24633 × 10−3 0.45101 × 10−2 0.43104 × 10−3 0.37825 × 10−2 0.32794 × 10−2 0.28069 × 10−2 0.21721 × 10−2

n (E = 379.2) 0.27698 × 10−3 0.31625 × 10−3 0.42712 × 10−3 0.62301 × 10−2 0.65042 × 10−3 0.75900 × 10−3 0.89207 × 10−3 0.97730 × 10−3

n (E = 314.6) 0.32327 × 10−3 0.38773 × 10−3 0.41751 × 10−2 0.68081 × 10−3 0.85966 × 10−2 0.33147 × 10−2 0.29375 × 10−2 0.24227 × 10−2

n (E = 232.8) 0.36063 × 10−3 0.42425 × 10−3 0.33590 × 10−2 0.74001 × 10−3 0.31022 × 10−2 0.48744 × 10−2 0.26070 × 10−2 0.22529 × 10−2

n (E = 172.8) 0.41759 × 10−3 0.48870 × 10−3 0.27770 × 10−2 0.84616 × 10−3 0.26819 × 10−2 0.25418 × 10−2 0.54984 × 10−2 0.22346 × 10−2

n (E = 112.2) 0.42060 × 10−3 0.50305 × 10−3 0.20296 × 10−2 0.88470 × 10−3 0.21051 × 10−2 0.20917 × 10−2 0.21272 × 10−2 0.49029 × 10−2

n (E = 646.1) n (E = 557.3) n (E = 470.2) n (E = 379.2) n (E = 314.6) n (E = 232.8) n (E = 172.8) n (E = 112.2)
p (E = 646.1) 0.79321 × 10−2 0.17579 × 10−3 0.20782 × 10−3 0.27698 × 10−3 0.32327 × 10−3 0.36063 × 10−3 0.41759 × 10−3 0.42060 × 10−3

p (E = 557.3) 0.17280 × 10−3 0.68319 × 10−2 0.24633 × 10−3 0.31625 × 10−3 0.38773 × 10−3 0.42425 × 10−3 0.48870 × 10−3 0.50305 × 10−3

p (E = 470.2) 0.19870 × 10−3 0.24401 × 10−3 0.45101 × 10−2 0.42712 × 10−3 0.41751 × 10−2 0.33590 × 10−2 0.27770 × 10−2 0.20296 × 10−2

p (E = 379.2) 0.26475 × 10−3 0.31657 × 10−3 0.43104 × 10−3 0.62301 × 10−2 0.68081 × 10−3 0.74001 × 10−3 0.84616 × 10−3 0.88470 × 10−3

p (E = 314.6) 0.30188 × 10−3 0.37347 × 10−3 0.37825 × 10−2 0.65042 × 10−3 0.85966 × 10−2 0.31022 × 10−2 0.26819 × 10−2 0.21051 × 10−2

p (E = 232.8) 0.35790 × 10−3 0.43684 × 10−3 0.32794 × 10−2 0.75900 × 10−3 0.33147 × 10−2 0.48744 × 10−2 0.25418 × 10−2 0.20917 × 10−2

p (E = 172.8) 0.42390 × 10−3 0.51555 × 10−3 0.28069 × 10−2 0.89207 × 10−3 0.29375 × 10−2 0.26070 × 10−2 0.54984 × 10−2 0.21272 × 10−2

p (E = 112.2) 0.45124 × 10−3 0.55638 × 10−3 0.21721 × 10−2 0.97730 × 10−3 0.24227 × 10−2 0.22529 × 10−2 0.22346 × 10−2 0.49029 × 10−2

n (E = 646.1) 0.16053 × 10−1 0.21150 × 10−3 0.23679 × 10−3 0.31202 × 10−3 0.36945 × 10−3 0.40998 × 10−3 0.47410 × 10−3 0.48070 × 10−3

n (E = 557.3) 0.21150 × 10−3 0.87689 × 10−2 0.29043 × 10−3 0.37325 × 10−3 0.45698 × 10−3 0.50031 × 10−3 0.57641 × 10−3 0.59298 × 10−3

n (E = 470.2) 0.23679 × 10−3 0.29043 × 10−3 0.68830 × 10−2 0.50724 × 10−3 0.46313 × 10−2 0.37600 × 10−2 0.31381 × 10−2 0.23088 × 10−2

n (E = 379.2) 0.31202 × 10−3 0.37325 × 10−3 0.50724 × 10−3 0.79473 × 10−2 0.80062 × 10−3 0.86980 × 10−3 0.99700 × 10−3 0.10421 × 10−2

n (E = 314.6) 0.36945 × 10−3 0.45698 × 10−3 0.46313 × 10−2 0.80062 × 10−3 0.11213 × 10−1 0.38031 × 10−2 0.32844 × 10−2 0.25781 × 10−2

n (E = 232.8) 0.40998 × 10−3 0.50031 × 10−3 0.37600 × 10−2 0.86980 × 10−3 0.38031 × 10−2 0.58079 × 10−2 0.29145 × 10−2 0.23981 × 10−2

n (E = 172.8) 0.47410 × 10−3 0.57641 × 10−3 0.31381 × 10−2 0.99700 × 10−3 0.32844 × 10−2 0.29145 × 10−2 0.64815 × 10−2 0.23776 × 10−2

n (E = 112.2) 0.48070 × 10−3 0.59298 × 10−3 0.23088 × 10−2 0.10421 × 10−2 0.25781 × 10−2 0.23981 × 10−2 0.23776 × 10−2 0.53203 × 10−2
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FIG. 7. (Color online) Integrated cross-section results for 2H(d,p)3H and 2H(d,n)3He. The points are the results from the discrete
parametrization of Eq. (21), and the curves are the results of the continuous parametrization. The error bars are 1σ uncertainties, including
statistical uncertainties as well as fitting and energy uncertainties. Details are discussed in Sec. III E.

systematically renormalize these points within constraints.
This systematic uncertainty is quantified in the error matrix
of the discrete fit.

The Cyburt compilation agrees well with the present data
except at the high-energy end, the 2H(d,p)3H reaction cross
sections. At the lowest energy we can compare directly to the
high-precision data of Brown and Jarmie [27], which falls
11% and 8% below the present work for 2H(d,p)3H and
2H(d,n)3He, respectively, corresponding to discrepancies of
2.1 σ and 1.6 σ , respectively, when systematic and statistical
uncertainties of both experiments are included. The data of
Greife et al. [28], having uncertainties of only about 2.8%,
agree well with our results at higher energies, up to 256 keV,
for both reactions.

There have been several published compilations and anal-
yses of BBN data and network calculations and we cannot
review or even acknowledge all of the major efforts here. Most,
including Refs. [6, 29–31], have focused a significant amount
of attention on the consistency of cosmological observables,
including primordial abundances and CMBR observations.
Many, including some that have now acquired benchmark
status, have used Monte Carlo techniques to analyze the
relationship between the uncertainties in the reaction data
to the uncertainties in the astrophysical constraints [8,32,33].
The work of the latter produced estimates of energy regions
having the highest sensitivities to cross-section data, estimates
that inspired the present work. Finally, there are even some
works that have used traditional first-order error propagation
to understand the effects of the data on network predictions.
For example, Fiorentini et al. [34] achieved impressively good
agreement with the computationally expensive techniques
used elsewhere and have the advantage of producing simple
functional understandings of various uncertainty relationships
via tabulated derivatives.

The NACRE compilation [13] has become widely accepted
as a standard in adopted values for reaction-rates of nuclear
reactions of astrophysical significance. NACRE does not
address network calculations, since it is intended as a broad

resource for general astrophysical use. It has, however, become
the data source of choice for several BBN analyses [29,35,36].

The NACRE reaction-rate values cannot be compared
directly with the cross-section data of the present work. The
reaction rate is an integral of the total cross section weighted
by a Maxwellian distribution and taken over all energies. To
calculate the reaction-rate integral for this comparison, we used
the cross-section results from the continuous parametrization
of the present work. For energies given in mega-elctron
volts and cross sections in barns, the reaction rate Na 〈σν〉
(cm3/mol−1/s−1) is given by

Na 〈σν〉 = 3.731 × 1010µ−1/2T
−3/2

9

∫ ∞

0
σE e

−11.604 E
T9 dE,

(24)

where µ is the reduced mass in atomic mass units and T9 is
the temperature in units of 109 K.

For the integral to converge at temperatures relevant to
BBN, T9 < 2, it can be cut off at Ec.m. of about 2.5 MeV but
not much lower. Thus, to calculate reaction rates accurately, we
must include data at energies higher than those of the present
work, although data at these energies contribute relatively little
to the integral at the relevant temperatures. For this purpose
and to make a fair judgment of how the new data compare
with the NACRE compilation, we have used the same data at
high energies as those used in the NACRE compilation, the
data of Schulte et al. [37]. We have included this data up to
Ec.m. = 2.75 MeV.

These data were included in the continuous parametrization
by using the total cross sections to appropriately constrain
the zero-order Legendre coefficients at the high energies. The
data of Ref. [37] have scatter that is significantly larger than
their quoted statistical errors. To prevent this data set from
unduly constraining the fit, we have multiplied their statistical
uncertainties by 5, leaving the smallest uncertainties in these
data still below 1% of the value. This multiplication is a coarse
procedure but suffices for the present purpose. The results
of these fits are shown in Figs. 8 and 9. The 2H(d,n)3He
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FIG. 8. (Color online) Integrated cross-section result for
2H(d,p)3H for fit of continuous parametrization including integrated
cross-section data of Schulte et al. [37] The statistical uncertainties
of Ref. [37] were multiplied by 5 in the figure and the fit.

reaction curve does not follow the Schulte data impressively
well. This is probably due to a limitation of the parametrization
in representing changes in curvature over these large energy
regions. It is not a significant problem for the purpose of
constraining the tail of the reaction-rate integral.

The NACRE compilation gives coefficients for a quadratic
cross-section function that was used in calculating the rates
for the 2H(d,n)3He and 2H(d,p)3H reactions at low energies.
NACRE does not specify exactly what is meant by low
energies. We have used these cross-section functions for
energies below the present work in order to complete the
integrals. As was the case for the high-energy data, this
low-energy data contributes only a small amount to the integral
for temperatures significant to BBN.

FIG. 9. (Color online) Integrated cross-section result for
2H(d,n)3He for fit of continuous parametrization including integrated
cross-section data of Schulte et al. [37] The statistical uncertainties
of Ref. [37] were multiplied by 5 in the figure and the fit.
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FIG. 10. (Color online) Comparison of 2H(d,p)3H reaction rates
of present work with the NACRE rate compilation. The results of
the present work use the low-energy cross-section fit of NACRE in
the rate integral for Ec.m. < 0.05 MeV. Data of Ref. [37] are used to
constrain the cross-section fit of the present work at energies above
Ec.m. = 0.5 MeV.

Using these total cross-section curves, we then calculated
the reaction rates by computing the right-hand side of Eq. (24)
with a high-energy cutoff on the integral at Ec.m. = 2.5 MeV.
The results are compared with the NACRE reaction rates
in Figs. 10 and 11. Judging by plots of abundances as a
function of temperature for network calculations of Nollett and
Burles [8], all significant standard BBN occurs at temperatures
near T9 = 1. At this temperature the rates derived by using
the present work are about 7% higher than the NACRE rates
for both 2H(d,n)3He and 2H(d,p)3H. These discrepancies are
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FIG. 11. (Color online) Comparison of 2H(d,n)3He reaction rates
of present work with NACRE rate compilation. The results of the
present work use the low-energy cross-section fit of NACRE in the
rate integral for Ec.m. < 0.05 MeV. Data of Ref. [37] are used to
constrain the cross-section fit of the present work at energies above
Ec.m. = 0.5 MeV.
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TABLE VI. Logarithmic derivatives of abundances Y with respect
to reaction rates R calculated from Ref. [34].

Abundance Ratio ∂ ln Yi

∂ ln R2H(d,p)

∂ ln Yi

∂ ln R2H(d,n)

D/H −0.46 −0.53
3He/H −0.26 0.18
4He mass fraction 0.01 0.01
7Li/H 0.06 0.69

systematic, remaining at similar levels for a large range of
temperatures. Our derived 2H(d,p)3H rate is well beyond the
NACRE quoted upper bounds, and for 2H(d,n)3He our value
is marginally within the NACRE bounds.

It is important to emphasize that there is nothing inherently
controversial about disagreement between the present work
and NACRE or any other compilation. The NACRE curves are
derived from a limited set of data and in fact include no data
between Ed = 325 keV and Ed = 2.0 MeV. Furthermore, the
data of Krauss et al. [38] were the only data used in the NACRE
compilation in the energy range of 250–325 keV, and although
these are respectable data, they have total uncertainties of about
8% (see Fig. 1). The NACRE compilation incorporates all data
in these plots with the exception of the Ganeev data. Our good
agreement with Cyburt [26] is likely due to his inclusion of the
Ganeev data set, which, although it has large uncertainties, also
agrees well with our data and covers the energy range with the
least data available. There was indeed a previous shortage of
data, and our results will greatly contribute to the cross-section
information available in this energy region.

Many recent compilations such as that of Descouvemont
et al. [39] used in the analysis of Coc et al. [36], as well as the
compilation described by Serpico et al. [40], have a focus on
BBN applications and strive to improve on the extrapolation
techniques of the NACRE compilation in the BBN energy
regions. However, these compilations suffer from a lack of
data in the same energy region as NACRE. In spite of this,
Serpico et al. quote unusually low uncertainties at the levels
of 1.3% and 1% for the 2H(d,n)3He and 2H(d,p)3H reaction
rates, respectively. They do, however, acknowledge the severe
lack of data and “strongly recommend a new experimental
campaign,” which we have now furthered.

Using the logarithmic derivatives tabulated in Ref. [34],
we can estimate the differences in primordial abundances
calculated by using our new data versus those using the
NACRE compilation. These derivatives of abundances with
respect to reaction rates are given in tables of coefficients
of polynomial expansions in the baryon-to-photon ratio η.
For our estimates we use a value of η of 6.14 × 1010 from
Ref. [6], which was derived directly from an analysis of recent
WMAP data performed in Ref. [7]. The values of the logarith-
mic derivatives calculated for η = 6.14 × 1010 are given in
Table VI.

It is immediately evident that a roughly 7% change in the
cross sections will have essentially no effect on the primordial
abundance of 3He. The relative signs of the derivatives for
the two reactions have important significance. Although the

derivatives shown for the 3He abundance are of significant
magnitude, the changes in the abundance induced by the
changes in the two reactions nearly cancel, and the net effect
is small. However, because the two D/H derivatives have
the same sign, as do the reaction rate changes inferred from
the present work, the total change estimated in the deuterium
abundance is roughly −7%. The change calculated for 7Li/H
is +5% and is almost entirely attributable to the changes in the
2H(d,n)3He reaction rates.

The lithium abundance observations are currently in severe
disagreement with the Standard BBN results [2]. This 5%
increase in the predicted lithium abundance makes an unre-
solved problem slightly worse. Currently the 7Li abundances
predicted by using CMBR values of η are at least a factor
of 2 higher than the observed abundances [29]. The 5%
change is small compared with the uncertainties plaguing
this comparison, but it certainly does not improve the hopes
of finding agreement between Standard BBN and observed
7Li abundances. We look at this not as a failure, but as an
opportunity to explore possibilities of nonstandard Big Bang
models and thus new physics.

The current observational value of the primordial deuterium
abundance, D/H = 2.78+0.44

−0.38 × 10−5 [2], obtained from QSO
absorption spectra, is in good agreement with predictions of
BBN using η from the CMBR data, D/H = 2.56+0.35

−0.24 × 10−5

[29] or D/H = 2.55+0.21
−0.20 × 10−5 [26]. However, as more

data have arrived, the statistical uncertainty estimates in the
abundance observations have not held up; the uncertainty is
now dominated by scatter in the data. The change that we
predict in the D/H value derived from BBN + CMBR will
strain the current agreement slightly, but the results should still
be well within the current mutual uncertainties. The reduced
uncertainties of the 2H(d,n)3He and 2H(d,p)3H cross sections
from the present work, future improvements in precision of
the 2H(p, γ ) cross-section measurements, and more QSO
observations may soon provide significantly more stringent
tests of this comparison, again yielding insight into the validity
of the details of the Standard BBN model.

Although other aspects of the BBN picture are still limiting
the comparisons of theory and experiment to around the level
of 10% or worse, the new data of the present work will
pave the way for future developments in precision cosmology.
As other measurements are improved, BBN predictions will
become sensitive to many details of the model, including
possible inhomogeneities and neutrino properties. The new
data should put to rest concerns and claims that the d-d
reaction rates may be inaccurate and should ultimately result in
significant modifications to the reaction rates used for current
astrophysical applications, including BBN. The present data
verify the limited, not always trusted, and often overlooked
data sets that previously existed in this region of energy [12],
and with roughly 2% to 3% uncertainties this work represents
a significant improvement in precision, which, along with
improvements in other cross sections, will translate directly
into reductions in the uncertainties of BBN predictions. These
data will truly help to usher in the “new era” [6] of precision
cosmology.
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