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The NN̄ interaction in a constituent quark model: Baryonium states and protonium level shifts
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We derive a NN̄ interaction from a constituent quark model constrained by the NN sector to investigate
the possible baryonium resonant state X(1835) recently suggested as a possible interpretation of the near-
threshold enhancement found in J/ψ → γpp̄ by the BES Collaboration. The interaction does not show bound
or quasibound states but a 3P0 resonance in the I = 0 isospin channel. We analyze the shift of the antiprotonium
hydrogen energy levels, finding that pp̄-nn̄ mixing can explain the abnormally big value of the 2 3P0 energy
shift.
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I. INTRODUCTION

The recent observation of a near-threshold narrow en-
hancement in the pp̄ invariant mass spectrum from radiative
J/ψ → γpp̄ decay by the BES Collaboration [1] has renewed
interest in the NN̄ interaction and its possible baryonium
bound states. If this enhancement is fitted with an S-wave
Breit-Wigner resonance function the resulting peak mass
is M = 1859 ± 6 MeV, which is below the pp̄ threshold,
whereas a P -wave fit gives a peak mass very close to the
threshold at M = 1876 ± 0.9 MeV. The photon polar angle
distribution is consistent with 1 + cos2 θ , which suggests that
the total angular momentum is very likely to be J = 0. So
this structure may have quantum numbers J PC = 0−+ or
J PC = 0++, which, in principle, do not correspond to any
known meson resonance. However, no similar signal was
observed by BES in the π0pp̄ channel, which suggests that
the enhancement is due to an isoscalar resonance.

The simplest interpretation of the experimental J/ψ →
γpp̄ is a baryonium bound state [2], although the result is
currently being interpreted in several ways [3–6].

The study of the possible nucleon-antinucleon bound states
has a very long history (see Ref. [7] and references therein).
Usually, the real part of the NN̄ interaction is derived by
G-parity transformation of the NN potentials [7]. However,
this recipe cannot be straightforwardly applied to the short-
range part because in most of the NN potentials this part of
the interaction is described phenomenologically [7], ignoring
quark degrees of freedom, which should be relevant at this
scale.

Naturally, the NN̄ potential obtained in that way is not the
whole story. The derivation of the annihilation part is still a
major challenge. Attempts have been made to construct the
annihilation potential in coupled-channel models in terms of
quark rearrangement or baryon exchanges [7], but the best
results are still obtained by resorting to phenomenological
treatments. Perhaps the simplest possibility is adding ad hoc
an imaginary part to the meson exchange model [8]. Although,
as showed by Myhrer and Thomas [9], part of the bound-
state spectrum produced by the real part may be washed out
when annihilation is taken into account, most of the meson-
exchange-based potentials, like the Paris or Bonn potentials,
predict more than one quasibound state mainly in S waves.

A different approach is the one that relies on the quark
structure of hadrons. In quark-based NN interactions part of the
short-range repulsion comes from the antisymmetry between
quarks. This fact has important consequences on the NN̄

potentials as compared, for example, with the conventional
one-boson exchange models. In the meson-exchange picture
the central force is provided basically by the σ and the ω.
They have opposite sign for the NN system but add coherently
in the NN̄ . Moreover, the spin-orbit force coming from
these two exchanges adds in NN and cancels in NN̄ . The
ω-exchange contribution is replaced in quark-based models
by the antisymmetry, which is not present in NN̄ . Therefore
quark-based NN̄ potentials may look different from the
conventional ones. Furthermore, the NN one-pion-exchange
tensor interaction is attenuated also by antisymetrization
and not by ρ exchanges. This fact, which has observable
consequences at the NN level [10], may also significantly
change the whole NN̄ interaction. Therefore it would be
desirable to have NN̄ potentials derived from quark degrees
of freedom to check whether baryonium bound states appear.

Among the different quark approaches, the constituent
quark model developed in Ref. [11] may be indicated for this
purpose. It has been shown that this model is successful in
describing deuteron properties, NN phase shifts, and hadron
phenomenology [11,12].

We will apply this model to study two topics in low-energy
antiproton physics: the possible bound states or near-threshold
resonances in pp̄ scattering and the energy level shifts in
protonium. To do that we will use a NN̄ potential derived by
G-parity transformation of the quark-model-based NN inter-
action of Ref. [11]. Annihilation is taken into account by a
complex interaction being the real part generated by one-pion
and one-gluon exchange annihilation and taking the imaginary
part as an energy-independent potential of Gaussian form. In
this way all the parameters of the interaction are constrained
by the NN sector except the two parameters describing the
imaginary potential.

The paper is organized as follows. After this introduction in
Sec. II we explain the basis of our model. Section III is devoted
to the development of the NN̄ interaction. The results for the
NN̄ cross section and phase shits are presented in Sec. IV and
the possible bound states are discussed. Section V is devoted
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to a possible explanation of experimental values of the energy
shifts in protonium. The paper ends with some concluding
remarks.

II. THE MODEL

Constituent quark models are based on the assumption that
the constituent quark mass is generated by the spontaneous
breaking of the original SU(3)L ⊗ SU(3)R symmetry of the
QCD Lagrangian for (almost) massless quarks at some
momentum scale [13].

The picture of the QCD vacuum as a dilute medium of
instantons [14] explains nicely such symmetry breaking, which
is the most important nonperturbative phenomenon for hadron
structure at low energies. Quarks interact with fermionic
zero modes of the individual instantons in the medium and
therefore the light quark propagator gets modified, acquiring a
momentum-dependent mass that drops to zero for momentum
lighter than the inverse of the average instanton size ρ̄.

The momentum-dependent mass acts as a natural cutoff of
the theory. In the domain of momentum k < 1/ρ̄ a simple
Lagrangian invariant under chiral transformations can be
derived as [14]

L = ψ̄(iγ µ∂µ − MUγ5 )ψ, (1)

where Uγ5 = exp(iπaλaγ5/fπ ), πa denotes the pseudoscalar
fields (�π,Ki, η8) with i = 1, . . . , 4, and M is the constituent
quark mass. An expression for the constituent quark mass can
be obtained from the theory, but it also can be parametrized as
M(q2) = mqF (q2) with

F (q2) =
[

�2

�2 + q2

]1/2

, (2)

where � determines the chiral symmetry-breaking scale.
The matrix Uγ5 can be expanded in terms of basic fields as

Uγ5 = 1 + i

fπ

γ5λ
aπa − 1

2f 2
π

πaπa + . . . . (3)

The first term generates the constituent quark mass and the
second one gives rise to the one boson exchange interactions
between quarks. The main contribution of the third term
comes from the correlated two-pion exchanges, which can be
simulated by means of the one-sigma exchange potential [15].

Beyond the chiral symmetry-breaking scale one expects
the dynamics to be governed by QCD perturbative effects.
There are consequences of the one-gluon fluctuations around
the instanton vacuum and we take it into account through the
qqg coupling

Lgqq = i
√

4παsψ̄γµGµ
c λcψ, (4)

where λc are the SU(3) color matrices and G
µ
c is the gluon field.

Since any quark-antiquark exchange between N and N̄ is not
allowed, the NN̄ interaction from one-gluon exchange is very
different from the NN one. As the gluon carries color, it cannot
be exchanged between colorless states and only contributes
through annihilation diagrams. The next non-zero contribution
will be the color singlet part of the two-gluon exchange. This
has been considered in the NN̄ system [16] and has been

FIG. 1. Diagrams that contributes to the microscopic qq̄ interac-
tion.

shown to be important in the η-nucleon systems [17]. There
are two main reasons why we do not include this contribution.
First, owing to our value of αs , the contribution will be reduced
by 50%. Second, as we will see in the following, the one-pion
exchange contribution dominates the dynamics of the NN̄

system.
Finally, one should incorporate another nonperturbative

effect, namely the confinement. Such a term can be physically
interpreted in a picture in which the quark and the antiquark are
linked by a one-dimensional color flux tube. The spontaneous
creation of light-quark pairs may give rise to a breakup of
the color flux tube. This can be translated into a screened
potential [18] in such a way that the potential saturates at the
same interquark distance. This potential necessary to describe
hadron structure does not contribute to the NN̄ interaction but
guarentees that N and N̄ do not collapse under the interaction
just described.

The nonrelativistic reductions of such interactions are given
in [11] and have been used to study the NN system. All the
parameters appearing in the aforementioned potentials are
fixed in the NN sector.

To get the qq̄ interaction we have to perform a G-parity
transformation of the qq potentials. As already explained only
pseudoscalar and scalar boson exchanges are relevant. The
reason is that when one calculates the NN̄ interaction from
the qq̄ interaction there are no exchange diagrams as in the
NN case.

Once the G-parity transformation is performed we get

V PS
qq̄ (�q) = 1

(2π )3

g2
ch

4m2
q

�2
χSB

�2
χSB + q2

(�σi · �q)(�σj · �q)

m2
PS + q2

(�τi · �τj ),

(5)

V S
qq̄(�q) = − g2

ch

(2π )3

�2
χSB

�2
χSB + q2

1

m2
S + q2

, (6)

which are the first two diagrams in Fig. 1.
In the qq̄ system there are also annihilation contributions.

These are the second pair of diagrams in Fig. 1. The real part
of this potential can be derived in our model by annihilation
diagrams of the one-gluon and one-pion exchange. This
interaction in momentum representation can be written as [19]

V
A,PS
qq̄ (�q) = 1

(2π )3

g2
ch

4m2
q − m2

PS

(
1

3
+ 1

2
�λ1 · �λ2

)

×
(

1

2
− 1

2
�σ1 · �σ2

)(
3

2
+ 1

2
�τ1 · �τ2

)
, (7)
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V
A,OGE
qq̄ (�q) = 1

(2π )3
4π

αs

4m2
q

(
4

9
− 1

12
�λ1 · �λ2

)

×
(

3

2
+ 1

2
�σ1 · �σ2

)(
1

2
− 1

2
�τ1 · �τ2

)
, (8)

the first one coming from annihilation through a pseudoscalar
boson and the second one through a gluon.

III. THE N N̄ INTERACTION

Once the microscopic model is fixed we use the resonating
group method to derive the NN̄ interaction in the same way
as we did in the NN case. The wave functions for the baryon
(antibaryon) states are

ψB = φB( �pξ1 , �pξ2 )χBξc[13], (9)

where χB is the spin-isospin wave function, ξc is the color
wave function, and

φB( �pξ1 , �pξ2 ) =
[

2b2

π

] 3
4

e
−b2p2

ξ1

[
3b2

2π

] 3
4

e
− 3b2

4 p2
ξ2 (10)

is the orbital wave function, with b the parameter related to
the size of the baryon (antibaryon) and �pξ1 , �pξ2 the Jacobi
momenta of the baryons.

The N and N̄ wave functions are the same provided that we
relate the spin-isospin part by G-parity.

As already mentioned, only direct diagrams contribute to
the NN̄ potential. These are shown in Fig. 2. For the first
diagram we calculate the interaction as in the NN case but
without exchange diagrams. It is interesting to note that, since
no exchange diagram is present, the interaction is local and
from the orbital part we only get a form factor.

For the NN̄ annihilation potential corresponding to the
second diagram in Fig. 2 we get

V Anh
NN̄

(�q) = VSI e
− q2b2

3 , (11)

where VSI for the pion is

V PS
SI = g2

ch

(2π )3

1

4m2
q − m2

PS

1

108
(243 − 27 �σN · �σN̄

+ 9�τN · �τN̄ − 25�σN · �σN̄ �τN · �τN̄ ) (12)

and that for the gluon is

V OGE
SI = 1

2π2

αs

81

1

4m2
q

(243 + 9 �σN · �σN̄

− 27�τN · �τN̄ − 25�σN · �σN̄ �τN · �τN̄ ). (13)

FIG. 2. Diagrams that contributes to the NN̄ potential.

TABLE I. Quark-model
parameters.

mq (MeV) 313
b(fm) 0.518
αs 0.497
g2

ch 6.66
mS(fm−1) 3.513
mPS(fm−1) 0.70
�χSB(fm−1) 4.29
b′(fm) 0.848
Wi(GeV−2) −0.74

To have a realistic model it is important to include the
annihilation into mesons. Annihilation processes are very
complicated; for a review see [20]. There are microscopic
models at quark level that describe such processes. Usually
these models are highly non-local and energy dependent,
and instead of using one of these, we chose to describe
such processes with an optical potential to simplify the
calculation. This approximation was already used by Bryan
and Phillips [21], Dover and Richard [22], and Kohno and
Weise [23]. They all used a similar parametrization but as
the real part of the NN̄ was different they obtained different
potentials. We chose to use a parametrization similar to the one
used in [24] but we do not allow a spin or isospin dependence,
so

V Anh
qq̄ (�q) = i Wi e− q2b′2

3 , (14)

where Wi gives the strength and b′ the range.
The parameters of the model are presented in Table I. All

but the last two parameters are fixed from the NN sector using
the same set as in [11]. To fix b′ and Wi we use the total
annihilation cross section for the pp̄ system. We calculate this
cross section by solving the Lippmann-Schwinger equation
in each partial wave with the complex potential discussed
previously. The partial waves for the NN̄ system are almost
the same as in the NN case. The only difference is due to the
symmetry requirement in the second case that fixes the isospin
in each partial wave. For the NN̄ system all partial waves can
have isospin 0 or 1. For each total angular momentum J and
isospin I we have the singlet state S = 0 and L = J and the
triplet states S = 1, one of them uncoupled, L = J , and the
other two coupled, L = J − 1, J + 1.

The scattering cross section is given in terms of the
scattering matrix elements in each partial wave. We denote the
singlet matrix element as 0SJI

J , the uncoupled triplet as 3SJI
J ,

the diagonal matrix elements for the coupled triplet as 3SJI
J±1,

and the nondiagonal matrix elements as 3SJI
J±1,J∓1. With this

notation the annihilation cross section is given by

σ I
A = π

4p2

∑
J

(2J + 1)
[(

1 − ∣∣0
SJI

J

∣∣2) + (
1 − ∣∣3

SJI
J

∣∣2)
+ (

2 − ∣∣3
SJI

J+1

∣∣2 − ∣∣3
SJI

J−1

∣∣2 − 2
∣∣3

SJI
J+1,J−1

∣∣2)]
(15)

in each isospin channel I. Of course the second line is not
present for J = 0 since only the singlet and uncoupled triplet
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FIG. 3. pp̄ annihilation cross section. Experimental data are from
Ref. [22].

states are possible. The pp̄ cross section is

σ
pp̄

A = 1
2

(
σ 0

A + σ 1
A

)
, (16)

since pp̄ is a linear combination of isospin 0 and 1 states.
The imaginary part of the potential dominates this annihi-

lation cross section and we use this cross section to fix the two
parameters of Eq. (14). With these two parameters we are able
to fit the annihilation data in the laboratory momentum range
between 100 and 600 MeV as shown in Fig. 3.

IV. RESULTS: CROSS SECTIONS AND BOUND STATES

Once the annihilation cross section is fitted, we calculate
the elastic cross section by

σ I
e = π

4p2

∑
J

(2J + 1)
[∣∣1 − 0SJI

J

∣∣2 + ∣∣1 − 3SJI
J

∣∣2

+ ∣∣1 − 3SJI
J+1

∣∣2 + ∣∣1 − 3SJI
J−1

∣∣2 + 2
∣∣3

SJI
J+1,J−1

∣∣2]
(17)

in each isospin channel I. In the pp̄ channel the sum of the
elastic and charge exchange reaction cross sections is

σpp̄
e + σpp̄

ce = 1
2

(
σ 0

e + σ 1
e

)
. (18)

Finally, the total cross section is

σT = σe + σce + σA. (19)

Use of this expression brings the total pp̄ cross section into
good agreement with the experimental data, as can be seen in
Fig. 4. This indicates that the real part, which is completely
given by the model, should be realistic.

We check the isospin dependence of our NN̄ potential by
studying the pn̄ reaction. Notice that we do not include any
isospin dependence in the annihilation potential, so all the
isospin dependence comes from the real part of the potential
and is fixed from the NN sector. As pn̄ is an isospin 1
state, σ

pn̄

A = σ 1
A, σ

pn̄
e = σ 1

e , and there is no charge exchange
reaction. As can be seen in Figs. 5 and 6 the results, given
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FIG. 4. pp̄ total cross section. Experimental data are from
Refs. [26–29].

by the solid line, are in agreement with the data for the total
and annihilation cross sections, although in both cases there
are big uncertainties. The dashed line shows the result for
the model [24] that uses an isospin-dependent annihilation
potential. Both lines show almost the same agreement with the
data. In fact, in the plab range between 105 and 550 MeV, the
χ2/datum for the total annihilation cross section is 1.09 for
our model and 1.26 for the isospin-dependent model, and for
the total cross section it is 1.51 for our model and 2.18 for the
isospin-dependent model. Notice that these values in our case
are not minimized and we only give them as a measure of the
agreement with the data.

So we do not find any reason to include an isospin
dependence in our optical potential. This fact is consistent
with the assumption that the optical potential represents an
average effect of numerous annihilation channels, which one
would expect to be spin and isospin independent.
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FIG. 5. pn̄ total cross section. The solid line corresponds to
this work and the dashed line to [24] in which an isospin-
dependent annihilation potential is used. Experimental data are from
Refs. [30,31].
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FIG. 6. pn̄ annihilation cross section. Lines are the same as in
Fig. 5. Experimental data are from Refs. [30,31].

Now we are in the position to study possible NN̄ bound
states. In the NN sector our model only gives one bound
state, which correspond to the deuteron [11]. Now, as we
have an imaginary part for the potential, the bound states
are transformed into resonances. We solve the Schrödinger
equation by allowing complex values for the eigenenergies
and so get the mass and width of the states.

If we do not include the imaginary potential, the real part
of the potential predicts two bound states. One has quantum
numbers J PC = 1−−, which is a 3S1-3D1 partial wave in I = 0
and the other is J PC = 0++, which is a 3P0 state also with
I = 0. Both states are very close to threshold, being the binding
energy 1.30 MeV for the first one and 1.32 MeV for the second
one. We find the strongest interactions in S waves with I = 0,
which is much bigger than for I = 1, and for the 3P0 wave for
I = 0, which is also much bigger than for I = 1.

When we include the annihilation potential the 1−− state is
washed out and the 0++ state is transformed in a near-threshold
resonance with a mass 18.5 MeV above threshold and a width
of 33.6 MeV. In Table II we give the energy eigenvalues of the
state for values of Wi from 0 to the realistic −0.74 GeV−2. The
mass goes above the NN̄ threshold for values between −0.14
and −0.24.

TABLE II. Real and imaginary parts of the
3P0 I = 0 self-energy as a function of the optical
potential strength parameter Wi .

Wi (GeV−2) Re[E] (MeV) Im[E] (MeV)

−0.00 −1.3 0.0
−0.14 −0.6 −3.2
−0.24 0.8 −5.5
−0.34 2.8 −7.8
−0.44 5.6 −10.2
−0.54 9.0 −12.4
−0.64 13.3 −14.7
−0.74 18.5 −16.8

To see the relative size of the different contributions we
switch off the gluon contribution. In this case we still find a
resonance with a mass 14.0 MeV above threshold and a width
of 80.8 MeV. By removing only the one-pion exchange the
resonance disappears.

Our results do not support the hypothesis that the near-
threshold enhancement in the pp̄ invariant mass spectrum of
the radiative decays J/ψ → γpp̄ is due to the presence of a
baryonium bound state in the S wave or P wave and therefore
other explanations should be considered. These results are
consistent with the fact that despite the efforts done at LEAR
and other facilities to find indications of NN̄ bound states none
have been found until now. The only experimental indication
of some structure in the NN̄ observables is the abnormally
large value of the protonium P level in the 3P0 state [32].

V. PROTONIUM ENERGY SHIFTS

The study of antiprotonic atoms offers a chance to test
nucleon-antinucleon scattering amplitudes just at threshold.
The essential features of antiprotonic atoms can be understood
in terms of the electromagnetic interaction, and the energy
levels En are described by the Bohr formula being a function
of the principal quantum number n and proportional to the
reduced mass µ. However, the protonium atomic levels are
shifted and widened by the strong interaction; that is, the
full energy Enl is shifted from the electromagnetic level εnl

by a complex level shift �Enl = Enl − εnl = δEnl − i�nl/2.
Protonium spectroscopy was actively pursued at LEAR be-
tween 1983 and 1996 and determinations were made of the
energy shifts and broadenings for the 1s and 2p levels [33,34].
One of the most interesting outcomes of this experiments is
that the 3P0 protonium level shift δE(3P0) = −139 ± 28 meV
is much bigger than any other. This result suggests the
existence of a near-threshold NN̄ resonance that enhances
the scattering amplitude. The energy shifts in hadronic atoms
can be determined with the improved Trueman formula,
deduced through an analytic continuation of the scattering
amplitude [7,35], by using the scattering length (S wave) or
the scattering volume (P waves)

δEnl = −En

4

n

al

a2l+1
B

αnl

(
1 − al

a2l+1
B

βnl + . . .

)
, (20)

where aB = h̄/αµc is the Bohr radius of the system, al is the
scattering length (volume), and αnl and βnl are defined as

αnl =
l∏

s=1

(
1

s2
− 1

n2

)
, αn0 = 1, (21)

βn0 = 2

[
log n + 1

n
− �(n)

]
, βn1 = αn1βn0 − 4

n3
, (22)

with � being the digamma function.
An alternative approach is to use perturbation theory,

which for weak potentials reproduces the former result [36].
However, it is important to note here that this is not the case
for protonium S waves. For these particular waves the strong
interaction is big enough compared to the Coulombic one
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TABLE III. pp̄ energy shifts calculated from the improved Trueman formula (�E) and coupled contribution from the Holstein formula
(�Ec) and from perturbation theory. In the perturbative calculation �Epp̄ includes only corrections from pp̄ states.

State al (fm2l+1) �E �Ec �Epp̄ �Eexp

1 1S0 0.61 − i1.01 557.3 − i820.9 2.3 + i6.5 −587.5 − i2263.4 440 ± 75 − i(600 ± 125)a eV
2 1S0 67.7 − i106.3 0.1 + i0.4 −73.4 − i28.3

2 1P1 −1.14 − i0.51 −27.9 − i12.4 −27.0 − i10.4 meV

2 3P0 −2.75 − i3.87 −67.3 − i94.7 −71.8 − i10.4 −140 ± 28 − i(60 ± 12) b meV

2 3P1 1.49 − i0.44 36.5 − i10.9 40.1 − i10.4 meV

aReference [33].
bReference [34].

in its range so that perturbation theory does not work. For
P waves the centrifugal barrier contributes to soften the strong
interaction, preventing the shorter range contributions, and
perturbation theory becomes useful.

We use the improved Trueman formula to calculate the
energy shifts and half-width for the pp̄ L = 0 and L = 1
partial waves. The results are shown in Table III. We also
include the results of the perturbative calculation for the
P waves, which are compatible with the those calculated
with the Trueman formula. One can see from this table that
the experimental results are well reproduced except for the
3P0 energy shift, which is underestimated by a factor of 2.
These predictions coincide basically with those obtained with
other potentials [32]. The obtained result for the 3P0 energy
shifts is telling us that our one-channel model is too simple.
In particular our one-pion exchange piece of the interaction
couples the pp̄ and nn̄ channels and this coupling may have
significant influence in the theoretical predictions.

The Trueman formula is not valid for the coupled-channel
case but we will use the generalization for the S wave given in
Ref. [36]. This gives an additional contribution of

�Ec = En

4

naB

ik1a
′2

1 + ik1al

(23)

with a′ = 1
2 (a1 − a0) the scattering length for the transition

amplitude.
For P waves we use coupled-channel perturbation theory.

We start from the coupled equations

Hpp̄|pp̄〉 + Vnn̄→pp̄|nn̄〉 = E|pp̄〉, (24)

Hnn̄|nn̄〉 + Vpp̄→nn̄|pp̄〉 = E|nn̄〉, (25)

with

Hpp̄ = p2

2µ
+ V em

pp̄ + Vpp̄, (26)

Hnn̄ = p2

2µ
+ Vnn̄, (27)

Vpp̄ = Vnn̄ = 1
2 (V1 + V0) , (28)

Vpp̄→nn̄ = Vpp̄→nn̄ = 1
2 (V1 − V0), (29)

where V em
pp̄ is the electromagnetic interaction and V1 (V0) is

the strong potential in isospin channel 1 (0). From Eq. (25) we
get

|nn̄〉 = 1

E − Hnn̄

Vpp̄→nn̄|pp̄〉; (30)

inserting it in Eq. (24) we get(
p2

2µ
+ V em

pp̄ + Vpp̄ + Vnn̄→pp̄

1

E − Hnn̄

Vpp̄→nn̄

)
× |pp̄〉 = E|pp̄〉. (31)

So we consider as a perturbation the effective pp̄ potential

V eff
pp̄ = Vpp̄ + Vnn̄→pp̄

1

E − Hnn̄

Vpp̄→nn̄. (32)

The unperturbed wave function is the Coulomb wave function
|ψnl

pp̄〉, so the first energy correction is given by

�Enl = 〈
ψnl

pp̄

∣∣V eff
pp̄

∣∣ψnl
pp̄

〉 = �Epp̄ + �Enn̄, (33)

TABLE IV. pp̄ energy shifts calculated from perturbation theory. �Epp̄ includes only corrections from pp̄ states whereas �Enn̄ includes
corrections from the coupling to nn̄ states. �Ef = �Epp̄ + �Enn̄ is the full result. The last column shows the full result removing the gluon
�E

g

f and the pion �Eπ
f contributions.

State �Epp̄ �Enn̄ �Ef �E
g

f �Eπ
f

2 1P1 −27.0 − i10.4 −1.5 − i0.07 −28.5 − i10.4 −29.2 − i10.4 −5.9 − i10.4 meV
2 3P0 −71.8 − i10.4 −40.4 − i15.7 −112.2 − i26.0 −113.6 − i30.8 −5.34 − i10.4 meV
2 3P1 40.1 − i10.4 −10.5 − i1.8 29.6 − 12.1 28.6 − i12.2 −5.34 − i10.4 meV

045214-6



THE NN̄ INTERACTION IN A CONSTITUENT QUARK . . . PHYSICAL REVIEW C 73, 045214 (2006)

with

�Epp̄ = 〈
ψnl

pp̄

∣∣Vpp̄

∣∣ψnl
pp̄

〉
, (34)

�Enn̄ = 〈
ψnl

pp̄

∣∣Vnn̄→pp̄

1

En − Hnn̄

Vpp̄→nn̄

∣∣ψnl
pp̄

〉
. (35)

Results are shown in Table IV. As we can see the coupling
with the nn̄ channel has little effect on the energy shift except
for the 3P0 partial wave. The observed enhancement in this
wave is due to the resonance being located close to the NN̄

threshold in this channel.
The last two columns of Table IV show the energy shift

without the gluon and pion contribution, respectively. One can
see that the main contribution is the one given by the pion.

VI. CONCLUSIONS

We have investigated the possible existence of bound states
in the NN̄ system and its possible influence in the protonium
level shifts. We have built a NN̄ potential derived from the
Salamanca quark-model-based NN potential supplemented by
a phenomenological spin- and isospin-independent imaginary
part of Gaussian form.

There are three important outcomes of our calculation. First,
our model is able to reproduce the isospin dependence of
the NN̄ cross section without using any additional isospin
dependence but the one coming from the real part of the
interaction. This part is given by the G-parity transform of the
qq interaction and the annihilation diagrams of Fig. 1. Second,
our potential does not show any NN̄ bound state, only a near-
threshold resonance appearing in the 3P0 partial wave, as seems
to be required the by phenomenology. Finally, we are able to
reproduce the energy level shifts in protonium. In particular we
showed that in our model the large 3P0 protonium energy shift
can be justified as a combined effect of the pp̄ and nn̄ coupled
channel and the pp̄ resonance found at threshold in the I = 0
channel.

The discussion of the influence of the pp̄ final-state
interaction in the observed enhancement in J/ψ decay will
be addressed in a forthcoming paper [37].
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