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Analyzing η′ photoproduction data on the proton at energies of 1.5–2.3 GeV
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The recent high-precision data for the reaction γp → pη′ at photon energies in the range 1.5–2.3 GeV obtained
by the CLAS Collaboration at the Jefferson Laboratory have been analyzed within an extended version of the
photoproduction model developed previously by the authors based on a relativistic meson-exchange model of
hadronic interactions [Phys. Rev. C 69, 065212 (2004)]. The η′ photoproduction can be described quite well
over the entire energy range of available data by considering S11, P11, P13, and D13 resonances, in addition to the
t-channel mesonic currents. The observed angular distribution is due to the interference between the t-channel and
the nucleon s- and u-channel resonance contributions. The j = 3/2 resonances are required to reproduce some of
the details of the measured angular distribution. For the resonances considered, our analysis yields mass values
compatible with those advocated by the Particle Data Group. We emphasize, however, that cross-section data
alone are unable to pin down the resonance parameters and it is shown that the beam and/or target asymmetries
impose more stringent constraints on these parameter values. It is found that the nucleonic current is relatively
small and that the NNη′ coupling constant is not expected to be much larger than 2.
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I. INTRODUCTION

One of the primary interests in investigating the η′ photopro-
duction reaction is that it may be suited to extract information
on nucleon resonances, N∗, in the less-explored higher
N∗ mass region. Current knowledge of most of the nucleon
resonances is mainly due to the study of πN scattering and/or
pion photoproduction off the nucleon. Since the η′ meson is
much heavier than a pion, η′ meson-production processes near
threshold necessarily sample a much higher resonance-mass
region than the corresponding pion production processes.
They are well suited, therefore, for investigating high-mass
resonances in low partial-wave states. Furthermore, reaction
processes such as η′ photoproduction provide opportunities to
study those resonances that couple only weakly to pions, in
particular, those referred to as “missing resonances,” which are
predicted by quark models, but not found in more traditional
pion-production reactions [1].

Another special interest in η′ photoproduction is the possi-
bility to impose a more stringent constraint on its yet poorly
known coupling strength to the nucleon. This has attracted
much attention in connection with the so-called “nucleon-spin
crisis” in polarized deep inelastic lepton scattering [2]. In the
zero-squared-momentum limit, the NNη′ coupling constant
gNNη′ (q2 = 0) is related to the flavor-singlet axial charge GA

through the flavor singlet Goldberger–Treiman relation [3] (see
also Refs. [4–6])

2mN GA(0) = FgNNη′(0) + F 2

2NF

m2
η′ gNNG(0), (1)

where F is a renormalization-group invariant decay constant
defined in Ref. [3],1NF is the number of flavors, and mN

1In the OZI limit, F = √
2NF Fπ , where Fπ is the pion decay

constant.

and mη′ are the nucleon and η′ masses, respectively; gNNG

describes the coupling of the nucleon to the gluons arising from
contributions violating the Okubo-Zweig-Iizuka (OZI) rule
[7]. The EMC Collaboration [2] has measured an unexpectedly
small value of GA(0) ≈ 0.20 ± 0.35; a more recent analysis
of the SMC Collaboration [8] yields a comparable value of
GA(0) ≈ 0.16 ± 0.10. The first term on the right-hand side
of the above equation corresponds to the quark contribution
to the “spin” of the proton, and the second term to the gluon
contribution [5,9]. Therefore, once gNNη′ (0) is known, Eq. (1)
may be used to extract the coupling gNNG(0). Unfortunately,
however, there is no direct experimental measurement of
gNNη′ (0) so far. Reaction processes where the η′ meson is
produced directly off a nucleon may thus offer a unique
opportunity to extract this coupling constant. Here it should
be emphasized that, as has been pointed out in Ref. [10],
hadronic model calculations such as the present one cannot
determine the NNη′ coupling constant in a model-independent
way. At best, we get an estimate for the range of its value at
the on-shell kinematic point, i.e., at q2 = m2

η′ . Assuming the
usual behavior of hadronic form factors for off-shell mesons
that generally decrease for q2 < m2, we expect then that an
eventually small upper limit of gNNη′ (q2 = m2

η′) would lead to
an even smaller value of gNNη′ (0), which is needed in Eq. (1)
to extract gNNG(0).

The major purpose of the present work is to perform
an analysis of the γp → pη′ reaction within an extended
version of the relativistic meson-exchange model of hadronic
interactions as reported in Ref. [10]. This analysis is motivated
by the new high-precision cross-section data obtained by the
CLAS Collaboration [11] at the Jefferson Laboratory (JLab).
The new data supersede the previous SAPHIR data [12]
analyzed in Ref. [10] both in absolute normalization and
angular shape. Also, the new CLAS data are much more
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accurate and, as such, may reveal features that were not seen
in the analysis of the SAPHIR data.

The present article is organized as follows. In Sec. II the
extension of our model [10] for γp → pη′ is given. The results
of the corresponding model calculations are presented in
Sec. III. Section IV contains a summary with our conclusions.
Some technical details of the present model are given in the
appendix.

II. FORMALISM

The dynamical content of the present η′ photoproduction
calculation is summarized by the graphs of Fig. 1 where
we employ form factors at the vertices to account for the
hadronic structure. The gauge invariance of this production
current is ensured by a phenomenological contact current,
according to the prescription of Refs. [13–15]. This contact
term provides a rough phenomenological description of the
final-state interaction that is not treated explicitly here. The
basic details of the present approach are the same as in our
previous article [10] and we do not repeat them here. There
are, however, a few improvements and those are discussed
here.

A. Spin-3/2 resonances

The present fits also require the inclusion of spin-3/2
resonances, denoted generically by N∗. The Lagrangian for
the hadronic NN∗η′ interaction is given by

L(±)
NN∗η′ = gNN∗η′

mη′
N̄∗µ�µν(z)�(±)N∂ν η′ + H. c., (2)

where N∗µ,N , and η′ are the resonance, nucleon, and meson
fields, respectively, and

�(+) = γ5 and �(−) = 1 (3)

FIG. 1. Diagrams contributing to γp → η′p. Time proceeds from
right to left. The intermediate baryon states are denoted N for
the nucleon and R for the S11, P11, P13, and D13 resonances. The
intermediate mesons in the t-channel are ρ and ω. The external
legs are labeled by the four-momenta of the respective particles
and the labels s, u, and t of the hadronic vertices correspond to
the off-shell Mandelstam variables of the respective intermediate
particles. The three diagrams in the lower part of the diagram
are transverse individually; the three diagrams in the upper part
are made gauge invariant by an appropriate choice for the contact
current depicted in the top-right diagram. The nucleonic current (nuc)
referred to in the text corresponds to the top line of diagrams; the
meson-exchange current (mec) and resonance current contributions
correspond, respectively, to the leftmost diagram and the two
diagrams on the right of the bottom line of diagrams.

pertain to positive- and negative-parity resonances, respec-
tively. For the coupling tensor, �µν = gµν − (z + 1

2 )γµγν , we
take z = − 1

2 for the off-shell parameter for simplicity.2 The
Lagrangian for the electromagnetic transition current reads

L(±)
NN∗γ = −ie

g1NN∗γ

mN∗
N̄∗β�βµ�(±)γνNFµν

− e
g2NN∗γ

2m2
N∗

(
∂νN̄

∗β�βµ�(±)N
)
Fµν + H. c., (4)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-
strength tensor (with Aµ being the vector potential).

B. Energy-dependent resonance widths

For the present application, we have adapted our formalism
to accommodate energy-dependent resonance widths with the
appropriate threshold behavior.

For a spin-1/2 resonance propagator, we use the ansatz

S1/2(p) = 1

p/ − mR + i
2�

= p/ + mR

p2 − m2
R + i

2 (p/ + mR)�
, (5)

where mR is the mass of the resonance with four-momentum
p. � is the width function whose functional behavior is given
below.

For spin-3/2, the resonant propagator reads in a schematic
matrix notation

S3/2(p) =
[

(p/ − mR)g − i
�

2
�

]−1

�. (6)

All indices are suppressed here, i.e., g is the metric tensor and
� is the Rarita–Schwinger tensor written in full detail as

�
µν
βα = −gµνδβα + 1

3
γ

µ
βεγ

ν
εα + 2pµpν

3m2
R

δβα + γ
µ
βαpν − pµγ ν

βα

3mR

,

(7)
where β, α, and ε enumerate the four indices of the γ -matrix
components (summation over ε is implied). The inversion
in Eq. (6) is to be understood on the full 16-dimensional
space of the four Lorentz indices and the four components
of the gamma matrices. The motivation for the ansatz (6) and
the technical details how to perform this inversion is given in
the appendix.

In both cases, we write the width � as a function of W = √
s

according to

�(W ) = �R


 N∑

i=1

βi�̂i(W ) +
Nγ∑
j=1

γj �̂γj
(W )


 , (8)

where the sums over i and j respectively account for decays of
the resonance into N two- or three-hadron channels and into

2We have also explored how the fits changed upon varying the
off-shell parameter z in Eqs. (2) and (4), because spin-3/2 resonances
also play a relevant role in reproducing the data quantitatively, as
discussed in Sec. III. However, variation of this parameter produced
χ 2/N improvements of less than 5%. We feel justified, therefore, to
keep this parameter at z = − 1

2 for simplicity.
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Nγ radiative decay channels. The total static resonance width
is denoted by �R and the numerical factors βi and γj (with
0 � βi, γj � 1) describe the branching ratios into the various
decay channels, i.e.,

N∑
i=1

βi +
Nγ∑
j=1

γj = 1. (9)

Similar to Refs. [16–19], we parameterize the width functions
�̂i and �̂γj

(which are both normalized to unity at W = mR)
to provide the correct respective threshold behaviors.

For the decay of the resonance into two hadronic fragments
with masses mi1 and mi2, the hadronic width functions �̂i are
taken as

�̂i(W ) =
(

qi

qiR

)2L+1 (
λ2

i + q2
iR

λ2
i + q2

i

)L

Di(W ) (10)

for W > mi1 + mi2, and zero otherwise. L denotes the partial
wave in which the resonance is found and the momentum qi is
the magnitude of the center-of-momentum three-momentum
of the two fragments, i.e.,

qi(W ) =
√

[W 2 − (mi1 + mi2)2][W 2 − (mi1 − mi2)2]

2W
(11)

and qiR = qi(mR). For the decay of the resonance into one
baryon and two mesons (for example, Nππ ), we use

�̂i(W ) =
(

qi

qiR

)2L+4 (
λ2

i + q2
iR

λ2
i + q2

i

)L+2

Di(W ), (12)

where mi2 in Eq. (11) needs to be replaced by the sum of the
two meson masses for this case, and mi1 is the baryon mass.
In principle, the factor

Di(W ) =
(mR

W

)ni

, with ni � 0, (13)

allows for a modification of the asymptotic behavior of
�̂i(W ), however, we use ni = 0 throughout for simplicity.
The parameter λi is an inverse range parameter; since we
found very little sensitivity to varying this parameter (within
reasonable ranges), we kept it fixed at λi = 1 fm−1 for all
channels.

The width function �̂γj
for the decay into a hadron with

mass mj and a photon with three-momentum magnitude kj is
taken as

�̂γj
(W ) =

(
kj

kjR

)2L+2
(

λ2
γj

+ k2
jR

λ2
γj

+ k2
j

)L+1

Dγj
(W ), (14)

where

kj (W ) = W 2 − m2
j

2W
(15)

for W > mj , and zero otherwise, and kjR = kj (mR). As in the
hadronic case, the asymptotic damping function is given by

Dγj
(W ) =

(mR

W

)rj

, with rj � 0. (16)

Again, for simplicity, we employ rj = 0 throughout. In
practice, for the present case, the photon decay channels are
negligibly small and play no role for the total width. The

corresponding branching ratio γNγ for the Nγ channel is
needed only to extract the value of the Nη′ branching ratio
βNη′ (see below).

III. RESULTS AND DISCUSSION

Before we discuss the details of our results, some general
remarks are in order. The basic strategy of our model approach
is to start with the nucleon plus meson-exchange currents
and add the resonances one by one as needed in the fitting
procedure until one achieves a reasonable fit of the new η′
photoproduction data obtained by the CLAS Collaboration
[11]. We allow for both spin-1/2 and -3/2 resonances in our
model. Our quantitative criterion for a reasonable fit was to
discard all fits with a χ2 per data point of χ2/N > 1.3, which
is supported by the fact that fits with χ2/N much larger than
1.3 are noticeably of inferior fit quality even for the naked
eye. Under this criterion, we found that one needs at least four
resonances to obtain a reasonable fit in the present approach.
We find, in particular, that, in addition to spin-1/2 resonances,
spin-3/2 resonances are necessary to achieve acceptable fits. In
this respect, we emphasize that the SAPHIR data [12] analyzed
in Ref. [10] have rather large error bars. Although not entirely
incompatible with the new high-precision CLAS data [11],
they clearly are less constraining than the CLAS data, which
may explain why there was no need for spin-3/2 resonances in
our previous work.

As we have pointed out in Ref. [10], the cross-section
data alone are unable to pin down the model parameters and,
therefore, one finds different sets of parameters that fit the data
equally well. Note that this is not due to the uncertainties in
the data, but simply because, intrinsically, the cross sections
do not impose enough stringent constraints on the fit. In
particular, for each resonance, the resulting fitted mass value
depends to a certain extent on its starting value in the fitting
procedure. The starting (resonance) mass values we consider
here generally are around those advocated by the Particle Data
Group (PDG) [20].

In the present work, in the case of those resonances that can
be identified with known PDG resonances, we have taken into
account only the corresponding dominant branching ratios βi

from the PDG for hadronic decays when this information is
available (and we ignored the fact that some of the quoted
branching ratios are subject to large uncertainties). If no
information is available, we consider only the Nπ partial
decay, with the corresponding branching ratio βNπ as a free fit
parameter. Apart from these branching ratios, we also consider
the Nη′ branching ratio βNη′ which is calculated from the
product of the coupling constants gNN∗η′gNN∗γ in conjunction
with the assumed branching ratio γNγ for the radiative decay.
In the following tables, therefore, βNη′ is not an independent
fit parameter, but rather a parameter extracted from the fitted
values of the product gNN∗η′gNN∗γ .

One might expect that the way in which the energy
dependence is implemented in the resonance width in the
present work [cf. Eqs. (12)–(14)] may introduce a considerable
uncertainty in the final results. However, we find that the
cross sections are not very sensitive to our assumptions in
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this respect. In fact, we also reran some of the cross-section
fits discussed below using step functions for the widths that
switch on the full partial widths at the corresponding thresholds
without any smooth energy dependence and we found that
the parameter sets obtained in this way were fairly close to
the ones reported here. For spin observables, however, this
insensitivity does not hold true. In particular, the beam and
target asymmetries are rather sensitive to how the energy
dependence of the width is treated and one must be careful
then when confronting model predictions with the data when
the latter should become available.

We now turn to the discussion of the details of our analysis.
We emphasize that the results shown here do not necessarily
have the lowest χ2. Rather, they are sample fit results that
illustrate the different dynamical features one may obtain
considering only the currently available data in the analysis
within the fit-quality criteria mentioned above.

A. Differential cross sections

For the purpose of easy comparison, Fig. 2 provides
a summarizing overview of all fit results presented in the
following. The details of the fits are given in Tables I–V and
the corresponding Figs. 3–7. All five fits were obtained using
the energy-dependent width functions of Sec. II B. They all
have comparable overall χ2 from each other and describe the
data quite well. We see that most of the differences among
them are at forward and backward angles where there are
no data. Therefore, measurements of the cross sections at
more forward and backward angles than presently available
would disentangle some of the results in Fig. 2. Despite
the fact that the overall quality of the fits is comparable to
each other, the resulting parameter values are quite different.
In particular, the fit set in Table I contains the minimum
number of resonances (four) required to meet the present
fit-quality criterium mentioned in the beginning of this section.
In contrast to the analysis of the SAPHIR data [10], the
inclusion of the spin-3/2 resonaces is important to reproduce
the data quantitatively. As mentioned before, although we
cannot identify the resonances uniquely in the present analysis,
Table I reveals that one of the resulting resonances, P11(2104),
is consistent with that quoted by the PDG [20] as a one-star
resonance. In the fit set of Table II, we have included an
additional D13 resonance. Here, all the resonances but one
are above the η′ production threshold energy and that two of
the resulting spin-3/2 resonances, P13(1900) and D13(2084),
are consistent with those seen and quoted by the PDG [20] as
two-star resonances. Also, in this particular set of parameters,
the resulting NNη′ coupling constant is very small. The fit
set of Table III includes three S11 and three P11 resonances,
instead of one each as in Table II, keeping the number of
spin-3/2 resonances unchanged compared to the fit set of
Table II. Here, two of the S11, one of the P11, and one
of the D13 resonances end up well below the production
threshold, whereas one P11 resonance mass is close to 2.4
GeV. With the exception of the latter resonance, all the
resulting resonance masses are consistent with those quoted
by the PDG [20] as four-star [S11(1535), S11(1650)], three-star
[P11(1710),D13(1720)], two-star [P13(1900),D13(2080)], and

0.0
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FIG. 2. (Color online) Differential cross section for γp → pη′

according to the mechanisms shown in Fig. 1 as a function of the η′

emission angle θη′ in the center-of-momentum frame of the system.
As indicated in the legend, the curves correspond to the fit results
of Tables I (dash-double-dotted), II (dotted lines), III (dashed), IV
(solid), and V (dash-dotted). The numbers (T γ, W ) in parentheses
are the incident photon energy Tγ and the corresponding s-channel
energy W = √

s, respectively, in GeV. The data are from Ref. [11].

one-star [S11(2090), P11(2100)] resonances. Here, the NNη′
coupling constant is gNNη′ ≈ 1.3. In the fit result of Table IV,
we have omitted the P13 resonance and considered two S11,
three P11, and two D13 resonances. Again, three of the
resulting resonances, S11(1538), P11(1710), and D13(2090),
are consistent with known resonances. The NNη′ coupling
constant is practically zero, in line with the small value
obtained for the fit result of Table II. We have also considered
all the known spin-1/2 and -3/2 resonances [20] (including
those with only one star) in our fit.3 The resulting parameter
values are displayed in Table V. Here the resonance masses
are fixed at the respective (centroid) values given in Ref. [20].
The resulting resonance widths are all consistent with those
quoted in Ref. [20]. The P11(1440) resonance has practically
no influence on the observables considered here and, therefore,

3There are also established spin-5/2, -7/2, and -9/2 resonances [20]
in the energy region covered by the JLab data, but they have been
omitted in the present analysis.
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TABLE I. Model parameters fitted to the γp → η′p. (See text,
and also Ref. [10], for explanations of parameters.) Values in bold
are not fitted. The branching ratios γNγ are assumptions made to
extract βNη′ (for the total width, however, the γNγ values are too
small to be relevant). The starting values for fitting all resonance
masses were chosen here within the energy range covered by the data
set. χ 2/N = 1.19.

Nucleonic current
gNNη′ 0.43
λ 0.0
�N (MeV) 1200

Mesonic current
gη′ργ 1.25
gη′ωγ 0.44
�v (MeV) 1275

N∗ = S11 current
mN∗ (MeV) 1958
gNN∗γ gNN∗η′ 0.25
λ 1.00
�N∗ (MeV) 1200
�N∗ (MeV) 139
γNγ 0.002
βNπ 0.50
βNη′ 0.50

N∗ = P11 current
mN∗ (MeV) 2104
gNN∗γ gNN∗η′ 0.80
λ 1.00
�N∗ (MeV) 1200
�N∗ (MeV) 136
γNγ 0.002
βNπ 0.36
βNη′ 0.64

N∗ = P13 current
mN∗ (MeV) 1885
g1NN∗γ gNN∗η′ 0.01
g2NN∗γ gNN∗η′ 0.17
�N∗ (MeV) 1200
�N∗ (MeV) 59
βNπ 0.6
βNω 0.4

N∗ = D13 current
mN∗ (MeV) 1823
g1NN∗γ gNN∗η′ 0.47
g2NN∗γ gNN∗η′ −0.65
�N∗ (MeV) 450
γNγ 0.002
βNπ 1.00

it has been omitted in the fit set shown. For the NNη′ coupling
constant, we obtained gNNη′ = 1.9.

All these parameter sets illustrate the fact that cross sections
do not impose enough constraints to the fit to extract definitive
information on the resonances. Spin observables, however, do
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FIG. 3. (Color online) Differential cross sections and the dynam-
ical content of the present model corresponding to the fit result of
Table I. The dash-dotted curves correspond to the mesonic current
contribution; the dashed curves to the S11 resonance current and the
dotted curves to the P11 resonance. The dot-double-dashed curves
correspond to the P13 resonance current, whereas the dash-double-
dotted curves show the D13 resonance contribution. The solid curves
correspond to the total current. The nucleonic current contribution
(long-dashed curves) is very small and cannot be seen on the present
scale.

impose more stringent constraints and help distinguish among
these parameter sets, as we show later.

Although the parameter sets in Tables I–V yield comparable
fits to the cross section, the corresponding dynamical contents
are quite different from each other. Let us discuss, therefore,
some of the different features present in the results correspond-
ing to the various parameter sets. Figure 3 shows some details
of the dynamical content of our model corresponding to the fit
results given in Table I. Here, both the S11 and P13 resonances
have the largest contribution at low energies; the former dies
out as the energy increases, whereas the latter contribution
persists to higher energies. The angular shape of the P13

resonance current contribution is concave with a maximum
at θη′ ≈ 90◦. The P11 resonance contributes mostly around
Tγ = 1.879 GeV. Its angular shape is rather flat (note that it
includes both the s- and u-channel contributions). However,
its interference with other contributions, such as that due to
the S11 resonance, leads to a distinctive angular dependence.
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TABLE II. Same as Table. I. An additional D13 resonance was
included here to see whether this would improve the fit quality.
χ 2/N = 1.04.

Nucleonic current
gNNη′ 0.25
λ 0.0
�N (MeV) 1200

Mesonic current
gη′ργ 1.25
gη′ωγ 0.44
�v (MeV) 1308

N∗ = S11 current
mN∗ (MeV) 1925
gNN∗γ gNN∗η′ 0.08
λ 0.58
�N∗ (MeV) 1200
�N∗ (MeV) 40
γNγ 0.002
βNπ 0.56
βNη′ 0.44

N∗ = P11 current
mN∗ (MeV) 1991
gNN∗γ gNN∗η′ 1.69
λ 0.09
�N∗ (MeV) 1200
�N∗ (MeV) 158
γNγ 0.002
βNπ 0.42
βNη′ 0.58

N∗ = P13 current
mN∗ (MeV) 1907
g1NN∗γ gNN∗η′ −0.06
g2NN∗γ gNN∗η′ −0.09
�N∗ (MeV) 1200
�N∗ (MeV) 123
γNγ 0.002
βNπ 0.60
βNω 0.4
βNη′ 0.00

N∗ = D13 current
mN∗ (MeV) 1825 2084
g1NN∗γ gNN∗η′ −1.17 −0.21
g2NN∗γ gNN∗η′ 0.53 0.19
�N∗ (MeV) 1200 1200
�N∗ (MeV) 55 108
γNγ 0.002 0.002
βNπ 1.00 0.54
βNη′ 0.00 0.46

Although the D13 resonance current is relatively small in this
particular fit set, it plays an important role in reproducing the
data through its interference with other currents. The mesonic
current contribution plays a crucial role in reproducing the
observed forward-peaked angular distribution, especially at
higher energies. This is a general feature observed in many
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FIG. 4. (Color online) Same as in Fig. 3 for the fit result of
Table II. The nucleonic current contribution (long-dashed curves)
is very small and cannot be seen on the present scale.

reactions at high energies where the t-channel mechanism
(either Regge trajectories or meson exchanges) accounts for
the small-t behavior of the cross section. However, the present
result shows also a competing mechanism due to resonances
and that the observed forward-peaked angular distribution is
a result of significant interference effects. We note that this
feature is not restricted to the particular set of the parameter
values of Table I, but it is also found in other sets that fit
the data (note, in particular, a relatively large S11 resonance
contribution in Fig. 5 and a D13 resonance contribution in
Figs. 4, 5, and 6 at higher energies). Therefore, this feature
prevents us from fixing uniquely the mesonic current from the
cross-section data at forward angles and higher energies. The
nucleonic current contribution is very small here; however, as
mentioned in the beginning of this section, the cross-section
data alone do not impose stringent constraints on the fit so that
it is possible to reproduce the data equally well with a much
larger coupling constant, as can be seen in Tables III and V.
We will come back to this issue later (Sec. III C).

Figure 4 shows the dynamical content of our model
corresponding to the fit results given in Table II. Here,
the S11 resonance contribution is considerable only at
the lowest energy measurement and already at Tγ =
1.627 GeV, it becomes very small and it is practically
negligible for higher energies. Both the P11 and P13 resonance
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TABLE III. Same as Table II. More resonances were added here
to see whether this would further improve the fit. χ 2/N = 1.04.

Nucleonic current
gNNη′ 1.33
λ 0.0
�N (MeV) 1200

Mesonic current
gη′ργ 1.25
gη′ωγ 0.44
�v (MeV) 1515

N∗ = S11 current
mN∗ (MeV) 1539 1670 2025
gNN∗γ gNN∗η′ −6.48 1.10 0.03
λ 0.78 0.93 0.07
�N∗ (MeV) 1200 1200 1200
�N∗ (MeV) 138 79 79
γNγ 0.001
βNπ 0.5 0.9 0.96
βNη 0.5 0.1
βNη′ 0.04

N∗ = P11 current
mN∗ (MeV) 1718 2099 2406
gNN∗γ gNN∗η′ 1.45 −0.90 −0.27
λ 1.00 0.78 0.71
�N∗ (MeV) 1200 1200 1200
�N∗ (MeV) 89 172 82
γNγ 0.002 0.002
βNπ 0.15 0.51 0.00
βNππ 0.85
βNη′ 0.49 1.00

N∗ = P13 current
mN∗ (MeV) 1943
g1NN∗γ gNN∗η′ 0.06
g2NN∗γ gNN∗η′ −0.13
�N∗ (MeV) 1200
�N∗ (MeV) 109
γNγ 0.002
βNπ 0.59
βNω 0.4
βNη′ 0.01

N∗ = D13 current
mN∗ (MeV) 1782 2085
g1NN∗γ gNN∗η′ −0.17 −0.01
g2NN∗γ gNN∗η′ −0.24 0.10
�N∗ (MeV) 1200 1200
�N∗ (MeV) 152 141
γNγ 0.001
βNπ 0.1 0.97
βNππ 0.9
βNη′ 0.03

contributions exhibit similar features to those observed in
Fig. 2, with both contributions reaching its maximum around
Tγ = 1.677 GeV. The D13 resonance contribution is large
over the energy region considered, except at lower energies.
Above Tγ ≈ 1.677 GeV, it is the largest contribution. Its
angular shape changes drastically with energy, starting with
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FIG. 5. (Color online) Same as in Fig. 3 for the fit result of
Table III.

a small negative curvature in the lower energy region and
ending with a roughly convex shape in the higher energy
region. Note that this energy dependence of the angular shape
is due to an interference between the two D13 resonances
with different masses. Although somewhat larger, the mesonic
current contribution is essentially the same as that in Fig. 3. As
has been pointed out above, there is a considerable interference
effects between the mesonic and the (D13) resonance currents
at higher energies. The nucleonic current is practically zero in
Fig. 4 since, as mentioned above, the resulting NNη′ coupling
constant is very small.

In the fit result of Table III shown in Fig. 5, the S11

resonance contribution is very strong especially in the lower
energy region and is quite appreciable even at higher energies.
The P11 resonance contribution basically shows the same
feature as in the fit sets discussed above. The P13 resonance
contribution exhibits a convex angular shape, just opposite to
the concave shape shown in Figs. 3 and 4. This difference
is due to the relative sign difference between the coupling
constants g1NN∗η′ and g2NN∗η′ as compared to the results shown
in Figs. 3 and 4. The D13 resonance contribution is largest
around Tγ = 1.829 GeV. The shape of the angular distribution
is quite different from the other fit discussed above. Together
with the P13 resonance, it describes some of the details of the
observed angular distribution around Tγ = 1.779 GeV. The
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TABLE IV. Same as Table I. No P13 resonance was allowed here.
χ 2/N = 1.10.

Nucleonic current
gNNη′ 0.002
λ 0.0
�N (MeV) 1200

Mesonic current
gη′ργ 1.25
gη′ωγ 0.44
�v (MeV) 1428

N∗ = S11 current
mN∗ (MeV) 1542 1848
gNN∗γ gNN∗η′ −10.33 2.12
λ 1.00 1.00
�N∗ (MeV) 1200 1200
�N∗ (MeV) 233 164
βNπ 0.5 1.00
βNη 0.5

N∗ = P11 current
mN∗ (MeV) 1710 1996
gNN∗γ gNN∗η′ 4.34 −1.37
λ 1.00 0.13
�N∗ (MeV) 1200 1200
�N∗ (MeV) 39 118
γNγ 0.002
βNπ 0.15 0.26
βNππ 0.85
βNη′ 0.74

N∗ = D13 current
mN∗ (MeV) 1756 2087
g1NN∗γ gNN∗η′ −0.67 −0.08
g2NN∗γ gNN∗η′ 0.02 0.15
�N∗ (MeV) 1200 1200
�N∗ (MeV) 48 134
γNγ 0.002
βNπ 1.00 0.88
βNη′ 0.12

mesonic current is much larger in this fit than in the other
fits. In particular, it largely overestimates the measured cross
section in the higher energy region. Its destructive interference
with the other currents brings down the total contribution in
agreement with the data. Once more, this shows that one has
to be cautious in trying to fix the t-channel contribution using
the cross-section data at forward angles and higher energies.
The nucleonic current gives an appreciable contribution in this
fit, especially at higher energies and backward angles because
of the u-channel. The corresponding NNη′ coupling constant
is gNNη′ = 1.33.

Figure 6 shows the dynamical content of the fit result of
Table IV. The S11 resonance contribution is largest at the lowest
energy, but it decreases quickly as the energy increases. The
P11 resonance contribution is largest around Tγ = 1.627 GeV,
with more pronounced angular distribution than in the other fit
results. The D13 resonance contribution has a concave angular
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FIG. 6. (Color online) Same as in Fig. 3 for the fit result of
Table IV. The nucleonic current contribution (long-dashed curves)
is negligible and cannot be seen on the present scale.

shape in the lower energy region and is largest at around Tγ =
1.829 GeV. For higher energies the angular shape changes
and gives the largest contribution for forward angles apart
from the mesonic current, the latter providing again the bulk
of the observed rise of the cross section at forward angles.
The P13 resonance is not included in this fit set. We note
that, unlike in Fig. 4, some of the details of the observed
angular distribution around Tγ = 1.779 GeV is not well
reproduced, indicating the importance of both the P13 and D13

resonances. The nucleonic current contribution is practically
zero.

The dynamical content of the fit result given in Table V
is shown in Fig. 7. Overall, except for the lower energies,
the mesonic current yields the largest contribution. The S11

and P13 resonance contributions are important in the low-
energy region, whereas the P11, P13, and D13 resonances
are important in the higher-energy region. The nucleonic
current is nonnegligible only for backward angles at higher
energies. Here, one major difference from the other fit results
is the rather pronounced bending downward of the cross
section (solid curves) for forward angles at lower energies.
Measurements of the cross sections for more forward angles
would tell us whether such a behavior would indeed be
necessary.
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TABLE V. Same as Table I. All resonance masses are kept at
their PDG values. χ 2/N = 1.01.

Nucleonic current
gNNη′ 1.91
λ 0.0
�N (MeV) 1200

Mesonic current
gη′ργ 1.25
gη′ωγ 0.44
�v (MeV) 1447

N∗ = S11 current
mN∗ (MeV) 1535 1650 2090
gNN∗γ gNN∗η′ −2.59 4.00 −0.07
λ 0.23 0.66 1.00
�N∗ (MeV) 1200 1200 1200
�N∗ (MeV) 101 197 62
γNγ 0.001
βNπ 0.5 0.9 0.04
βNη 0.5 0.1
βNη′ 0.96

N∗ = P11 current
mN∗ (MeV) 1710 2100
gNN∗γ gNN∗η′ −3.87 −0.39
λ 0.27 0.14
�N∗ (MeV) 1200 1200
�N∗ (MeV) 249 75
γNγ 0.002
βNπ 0.15 0.50
βNππ 0.85
βNη′ 0.50

N∗ = P13 current
mN∗ (MeV) 1720 1900
g1NN∗γ gNN∗η′ −0.44 0.04
g2NN∗γ gNN∗η′ 1.49 −0.54
�N∗ (MeV) 1200 1200
�N∗ (MeV) 107 316
βNπ 0.2 0.6
βNρ 0.8
βNω 0.4

N∗ = D13 current
mN∗ (MeV) 1520 1700 2080
g1NN∗γ gNN∗η′ −1.00 −0.92 −0.07
g2NN∗γ gNN∗η′ 0.46 0.95 0.08
�N∗ (MeV) 1200 1200 1200
�N∗ (MeV) 135 49 102
γNγ 0.001
βNπ 0.55 0.10 0.87
βNππ 0.45 0.90
βNη′ 0.13

B. Total cross sections

Figure 8 shows the predictions for the total cross sections
obtained by integrating the corresponding differential cross
sections shown in Figs. 3–7. Although these predictions may
suffer from considerable uncertainties because of differences
in the corresponding differential cross sections, especially
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FIG. 7. (Color online) Same as in Fig. 3 for the fit result of
Table V.

at lower energies, they exhibit a common feature, i.e., the
total cross sections (solid curves) seems to show a bump
structure around W = 2.09 GeV that is caused mainly by
the P11 and/or D13 resonance depending on the fit set. Note
that the PDG quotes a two-star D13(2080) and a one-star
P11(2100) resonance which are practically at this bump
position. There is also a one-star resonance, S11(2090), that
is just at the bump and, therefore, might have contributed to
its structure. However, the angular distribution does not favor
this possibility. The total cross section also seems to exhibit a
bump structure at a lower energy of around W = 1.96 GeV
because of the S11, P11, and/or P13 resonance depending on
the fit set. The latter two resonances can also contribute to the
broadening of this bump depending on the fit set, as can be
seen in Fig. 8. A rather sharp rise of the cross section from the
threshold is caused by the S11 resonance, except in the top two
panels, where the P13 resonance also contributes to this rise.
The structures exhibited by the total cross section, in particular
the bump around W = 2090 GeV, are unlikely to be artifacts
of the present predictions and, consequently, we would expect
them to show up in the actual total cross-section data when
they are measured.

C. N Nη′ coupling constant

As we have seen in this section, unfortunately the present
analysis cannot determine the NNη′ coupling constant,
because the available cross-section data can be reproduced
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FIG. 8. (Color online) Total cross section for γp → pη′ as a
function of the total energy of the system, W = √

s. The panels
from top to bottom correspond to the fit results of Tables I–V, as
indicated. The overall total cross sections (solid lines) are broken
down according to their dynamical contributions, with line styles
defined in Fig. 3. The two dashed vertical lines are placed to guide
the eye through the two bump positions in all panels.

equally well with different sets of parameters in which this
coupling constant varies considerably. However, an upper limit
of its value can still be estimated. One of the reasons why
gNNη′ cannot be extracted uniquely from the cross-section
data is that the resonance currents, especially the one due to
the D13 resonance, can give rise to the observed enhancement
of the backward-angle cross section as shown in Figs. 4
and 6. Also, the P11 resonance current alone can lead to a
feature of the cross section similar to that due to the nucleonic
current, i.e., the enhancement of the backward-angle cross
section at higher energies through the u-channel contribution.
The resonance currents can also interfere destructively with
the nucleonic current in which case one obtains a larger
NNη′ coupling constant. In fact, in a very extreme case,
we have obtained a fit value as large as gNNη′ = 3.0. It is
obvious, therefore, that a more unambiguous extraction of this
coupling constant requires going to an energy region where
the resonance contributions are small. Figure 9 illustrates this
point; here we show the fit result considering the data with
energies at Tγ = 2.129 GeV and above only and assuming a
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FIG. 9. (Color online) Fit result with no resonances. gNNη′ = 2.10
and �v = 1264 MeV. See the legend to Fig. 3.

scenario in which no resonance currents contribute at these
energies. The resulting fit parameters are gNNη′ = 2.10 for the
NNη′ coupling constant and �v = 1264 MeV for the cutoff
parameter in the form factor at the η′vγ vertex. In Fig. 9 we
see that the nucleonic and mesonic currents interfere with each
other. However, the interference pattern is such that it does not
cause any problem in fixing both the nucleonic and mesonic
current contributions to a large extent. In any case, judging
from the overall results of our entire analysis, including
the resonances, we would not expect gNNη′ to be much
larger than 2.

D. Meson exchanges versus Regge trajectory

It is well known that t-channel processes at high ener-
gies (above ∼3–5 GeV) may also be described by Regge
trajectories. However, how far down in energy one can
go with this description before an explicit inclusion of
ordinary meson exchange is required is still an open issue.
We would expect a smooth transition from a description
in terms of meson exchanges to one in terms of Regge
trajectory as one goes up higher in energy. The issue of meson
exchanges versus Regge trajectory is particularly relevant in
the present context, for the extracted resonance parameters can
depend on these two alternatives for modeling the t-channel
contribution [10].

In their analysis of the SAPHIR data [12], Chiang
et al. [21] advocate the use of Regge trajectories, whereas
other authors [22] have employed vector-meson exchanges.
In our previous analysis of these data, we found [10] that they
can be reproduced equally well using either meson exchanges
(with form factors at the vη′γ vertices) or a Regge trajectory
for the t-channel contribution. It is interesting to see whether
the same is true for the new CLAS data [11]. We have repeated
the calculation with the Regge trajectory following Ref. [10].
In particular, we replace the t-channel meson exchange
propagators by the corresponding Regge trajectories keeping
everything else unchanged, except that the form factor at
the vη′γ vertex is set to unity. All the free parameters of the
model are refitted again. We found that the fit quality using the
Regge trajectory is, at best, comparable to that obtained using
the ordinary meson exchanges for the t-channel. For example,
the χ2 corresponding to the fit set of Table II is χ2/N = 1.17
compared to χ2/N = 1.04 obtained with explicit meson
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FIG. 10. (Color online) Photon beam and
target nucleon asymmetries �B (top panel) and
�T (bottom), respectively, for γp → pη′ as a
function of the η′ emission angle θη′ in the
center-of-momentum system. See the legend to
Fig. 2 for the meaning of the different curves.

exchanges; for the fit set of Table V, the Regge-trajectory
result is χ2/N = 1.08, as compared to χ2/N = 1.01 using
meson exchanges. Similar results are obtained for other fit sets
considered in Sec. IIIA. In general, we point out that changes
in the resulting parameter values from meson exchanges to
Regge trajectories can be significant, as discussed in Ref. [10],
but at this stage this is in line with our general findings
that cross sections are not constraining enough. A detailed
analysis of meson exchanges versus Regge trajectories within
a phenomenological approach like the present one requires
data that impose more stringent constraints on the model
parameters.

E. Spin observables

We now turn our attention to spin observables. As we have
shown in Fig. 2, cross sections do not impose very severe

constraints on the model parameter values. We expect spin
observables to be more sensitive in this respect. The predictions
for the beam and target asymmetries corresponding to the
fit results of Tables I–V are shown in Fig. 10. As we can
see, unlike the cross sections (see Fig. 2, the predictions
vary considerably between the different parameter sets. For
energies where the beam asymmetry is less sensitive to the
parameter sets, the target asymmetry is quite sensitive and
vice versa. Therefore, overall, a combined analysis of these
spin observables will impose much more stringent constraints
on the fit and should help determine better the model
parameters.

IV. SUMMARY

We have analyzed the new CLAS [11] data of the γp →
pη′ reaction within an approach based on a relativistic
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meson-exchange model of hadronic interactions. The present
model is an extension of the one reported in Ref. [10] and
it includes the nucleonic and the mesonic as well as the
nucleon-resonance currents. The latter includes both spin-1/2
and -3/2 resonance contributions in contrast to our previous
work [10], where only spin-1/2 resonances were considered. In
addition, we employ energy-dependent resonance widths in the
present work. The resulting reaction amplitude is fully gauge
invariant.

We have shown that the mesonic as well as the spin-1/2
and -3/2 resonance currents are important to describe the
existing data quantitatively. The observed angular distribution
is due to delicate interference effects between the different
currents. In our analysis, most of the resulting resonances may
be identified with known resonances [20]. We emphasize, how-
ever, that one should be cautious with such an identification
of the resonances. As we have seen, the cross-section data
alone do not impose enough constraints for an unambiguous
determination of the resonance parameters. In this connection,
we have shown that the beam and target asymmetries can
help impose more stringent constraints. Furthermore, there
is a possibility that some of the resonances in the present
work are mocking up background contributions, especially
those due to the final-state interaction, which is not taken into
account explicitly in our calculation. Obviously, effects of the
final-state interaction should be investigated in future work
before a conclusive identification of the resonances can be
made.

We have predicted a bump structure in the total cross
section at W ≈ 2.09 GeV (see Fig. 8). If this is confirmed, the
D13(2080) and/or P11(2100) resonance may be responsible for
this bump.

Our study also shows that the nucleonic current should be
relatively small. However, contrary to the expectation in our
earlier work [10], the new high-precision cross-section data
do not allow to pin down this current contribution because of
the possible presence of resonance currents, especially of the
D13 resonance, which can also lead to an enhancement of the
cross section for backward angles at higher energies, a feature
that otherwise arises from the u-channel nucleonic current
contribution. These complications notwithstanding, assuming
that for the very high end of the present data set resonance
contributions can be neglected, we argue in Sec. III C that
the upper limit of gNNη′ can now be lowered to a value of
gNNη′ <∼ 2, whereas our previous analysis [10] had suggested
an upper limit of gNNη′ <∼ 3. Further corroboration of this
finding is needed.

In this respect, it should be noted that the result pertaining
here to the NNη′ coupling constant is, of course, a model-
dependent one. Indeed, what is relevant in our calculations
is the product of gNNη′ and the associated hadronic form
factor which accounts for the off-shellness of the intermediate
nucleon. Moreover, our NNη′ coupling constant is defined
at the on-mass-shell point, i.e., gNNη′ = gNNη′ (q2 = m2

η′ ),
whereas the coupling required in Eq. (1) in connection with the
origin of the nucleon spin is at q2 = 0. Because the η′ meson is
a relatively heavy meson (mη′ ≈ 957 MeV), we would expect
that gNNη′ (q2 = 0) will be considerably smaller than its value

at q2 = m2
η′ because of the presence of the form factor which

usually cuts down the coupling strength. Therefore, we might
well expect that the NNη′ coupling at q2 = 0 to be negligibly
small, consistent with zero.

We have also shown that the mesonic current contribution
cannot be fixed unambiguously from the existing cross-section
data because of the possible presence of the resonance currents,
especially the D13 resonance. A possibility to determine
the t-channel current is to measure the cross sections at
higher energies where the resonance contributions becomes
negligible.

Furthermore, we have found that using a Regge trajectory
in the t-channel instead of explicit meson exchanges yields
overall fit qualities that are, at best, comparable to those
obtained with meson exchanges. This indicates that explicit ρ

and ω exchanges, as employed here, are completely adequate
to describe the t-channel degrees of freedom at the present
energies.

Finally, the results of the present work should provide useful
information for further investigations, both experimentally
and theoretically, of the γN → Nη′ reaction. In particular,
measurements of cross sections at smaller forward and larger
backward angles than are available in the present data set would
already help constrain the model parameters considerably,
as can be seen in Fig. 2. Total cross sections should also
be measured to confirm or dismiss the bump structures,
especially around W = 2.09 GeV, predicted in the present
calculation. In addition, it is expected that measurements
of spin observables—such as beam and target asymmetries
shown in Fig. 10—would impose more stringent limits on the
range of permissible parameters and this would undoubtedly
provide a much improved description of the resonances
and their properties in the energy region covered by the
existing data. From the theoretical side, it is possible that
the nucleon resonances introduced in the present work are
mocking up the background contributions not taken into
account in the calculation. In this connection, it is extremely
interesting to investigate effects of the final-state interaction
that has not been treated explicitly in the present calculation.
Unfortunately, at present no realistic model is available
that can provide the relevant η′N final-state interaction. In
addition, effects of higher-spin resonances that have been
ignored in the present analysis should be investigated in the
future.
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APPENDIX: SPIN-3/2 RESONANCE PROPAGATOR

We employ here the Rarita–Schwinger (RS) choice for the
free Lagrangian of a spin-3/2 particle with mass m,

L = ψ̄µ�µνψν, (A1)
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where

�µν = − i

2
[σµν, (p/ − m)]+, (A2)

with p = i∂ , the anticommutator bracket [a, b]+ = ab + ba,
and σµν = i

2 (γ µγ ν − γ νγ µ). (In the RS choice, the parameter
A that usually appears in L is taken as A = −1 [23].) From

�µλS
λν = Sµλ�

λν = g ν
µ , (A3)

the propagator is then found as

Sµν(p) = (p/ + m)�µν

p2 − m2
= �̃µν(p/ + m)

p2 − m2
, (A4)

where �µν is the RS tensor of Eq. (7) (with m = mR) and

�̃µν = −gµν + 1

3
γ µγ ν + 2pµpν

3m2
− γ µpν − pµγ ν

3m
, (A5)

which differs from Eq. (7) by the sign of the last term.
When seeking an ansatz for describing a spin-3/2 resonance,

we note first that there are, of course, infinitely many ways to
achieve a pole description whose on-shell behavior on the
real axis corresponds to replacing the mass of the elementary
propagator by

m → mR − i
�R

2
, (A6)

where mR is the resonance mass and �R the associated width.
In constructing a resonant propagator, we are guided by the
following motivation. As in the spin-1/2 case of Eq. (5), we
want to describe the spin in terms of the elementary operators,
i.e., we want to preserve the numerator structure of Eq. (A4)
and the symmetry between the RS tensors � and �̃. In a
schematic matrix notation, we therefore make the ansatz

S = X−1(p/ + m)� = �̃(p/ + m)X̃−1, (A7)

putting, in analogy to the denominator of the spin-1/2 case (5),

X = (
p2 − m2

R

)
g + iA(p/ + mR), (A8a)

X̃ = (
p2 − m2

R

)
g + i(p/ + mR)Ã, (A8b)

with the operators A and Ã to be determined such that the
second equality in Eq. (A7) holds true, i.e.,

X−1(p/ + m)� = �̃(p/ + m)X̃−1. (A9)

Multiplying this equation by � from both sides, one immedi-
ately finds the condition

(p/ + mR)Ã� = �A(p/ + mR). (A10)

In view of Eq. (A3) and the fact that on-shell, at p2 = m2
R and

acting on a spin-3/2 eigenstate, the propagator must provide
the width information, we find that the ansatz

Ãµν = −�µν �

2
and Aµν = −�̃µν �

2
, (A11)

satisfies all constraints. � here may be any conveniently chosen
width function that goes to the static width �R at the resonance
mass mR . We thus have

S(p) =
[

(p/ − mR)g − i
�

2
�

]−1

� (A12a)
or

S(p) = �̃

[
(p/ − mR)g − i

�̃

2
�

]−1

. (A12b)

By construction, both forms are completely equivalent, similar
to the equivalence of both forms for the elementary propagator
[Eq. (A4)].

The inversion here is to be performed on the full 16-
dimensional space of Lorentz indices and component indices.
There are various equivalent ways to do this; we have done it
by introducing indices

i = 4µ + β and j = 4ν + α, (A13)

where µ, ν = 0, 1, 2, 3 are the Lorentz indices and β, α =
1, 2, 3, 4 are the component indices, and defining 16 × 16
numerator and denominator matrices by

Nij = �
µλ
βαgλν

= −δµνδβα + 2pµpν

3m2
R

δβα

+
(

1

3
γ

µ
βεγ

λ
εα + γ

µ
βαpλ − pµγ λ

βα

3mR

)
gλν (A14)

and

Dij = pλγ
λ
βαδµν − mRδµνδβα − iNij

�

2
, (A15)

respectively. Numerically inverting the denominator matrix D,
we then calculate the spin-3/2 propagator as

S
µν
βα = (D−1N )ikg

ρν, (A16)

where k = 4ρ + α and summation over ρ is implied,
as usual.
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