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Moments of nuclear and nucleon structure functions at low Q? and the momentum sum rule
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New nuclear structure function data from Jefferson Lab covering the higher-x and lower-Q? regime make it
possible to extract the higher-order > moments for iron and deuterium at low four-momentum transfer squared
Q2. These moments allow for an experimental investigation of the nuclear momentum sum rule and a direct
comparison of the nonsinglet nucleon moment with lattice QCD results.
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I. INTRODUCTION

Nuclear effects in lepton-nucleus scattering have been
extensively studied, both experimentally and theoretically,
over the past few decades. For recent reviews, see Refs. [1,2].
The body of available data provides clearcut evidence that
the nucleus is not well described as simply a collection of
moving, quasi-free nucleons. For example, the study of nuclear
structure functions led to the discovery of the “EMC effect”
(EMC indicates the European Muon Collaboration), for which
it was found that the quark distribution inside the nucleus
differs from that of a collection of nucleons with only Fermi
smearing. The availability of experimental information on
the Q2 dependence of the moments of the nuclear structure
function FzA(x, 0?) has stimulated theoretical analyses of
meson exchange contributions and off-shell effects in nuclei,
sometimes showing sizable deviations from predictions of
simple convolution models [3-6]. In this paper, A is the
mass number, Q2 is the four-momentum transfer squared in
the lepton-nucleon inclusive scattering process, and x is the
Bjorken scaling variable, with 0 < x < 1 for the proton and
0 <x < My/M, ~ A for anucleus.

Previous nuclear structure function moment analyses relied
on moment data extracted from several experiments carried
out at CERN [7,8] and SLAC [9,10] by use of 3Fe and
’H targets. The experimental values of Cornwall-Norton
moments, M,(A, 0?), require precision measurements of
structure functions covering large intervals of x, 02, and A,
since

A
M,(A, Q%) = / dx F(x, Q%) x"2. )
0

Here, n is an integer defining the order of the moments. We
note that the n =2 moment can be related to the familiar
momentum sum rule, which must be less than unity for the
nucleon. Asymptotically, QCD predicts the fraction of the
nucleon momentum carried by the quarkstobe (1 + 16/3 f)~',
where fis the number of quark flavors [11].

Until recently, the set of experimental data at large x was
rather poor, and thus the evaluation of the moments was
correspondingly imprecise, especially for large n. Typically,
data were obtained in the deep inelastic-scattering regime at
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moderate to small values of x and larger values of Q2. One
can see immediately from Eq. (1) that, as n increases, larger
x data will increasingly dominate the moments. The large-x
region dominates even the n = 2 moment at lower Q7 values,
at which the large elastic contribution dominates. Moreover,
nuclear structure effects are expected to show up most clearly
at large values of x [12].

Recently, data have become available from new exper-
iments at Jefferson Lab that cover higher x and lower
Q? [13-16], complementing the previous data set. These new
data make it possible to accurately extract the moderate- and
lower-Q? moments and moments to higher orders. We report
here results from a new extraction of the F5 structure function
moments for iron and deuterium and compare with proton
data.

II. EXPERIMENT

Sample spectra used for the extraction of the moments are
shown in Fig. 1 for deuterium at Q> = 4.5 and iron at 5 GeV>.
As noted above, the calculation of the moment of a structure
function requires data covering the whole range in x from
0 to ~A at a fixed Q?. The structure function data used in
this analysis were obtained in experiments at SLAC [17,18],
CERN [8,19], Fermilab [20,21], and JLab [13-16]. The Q2
values for which the best coverage in x was available were
selected. In some cases, the data were obtained not at exactly
the same Q2 value. In these cases, a small range in Q2, varying
from 0.01 GeV? atlow Q? t0 0.5 GeV? athigh Q2 was utilized.
The variations of the structure function over such ranges were
smaller than 2%.

As illustrated in Fig. 1, the data sets still do not cover the full
range in x; some extrapolations were necessary. Between data
sets, two methods were utilized, a spline fit and a simple linear
extrapolation. Moments obtained in such cases agreed within
2%. To extrapolate to x — 0 a parametrization from the New
Muon Collaboration [22] was used for Q2 >2 GeV? and a
constant value was used for lower-Q? data. The contribution to
the moments from the extrapolation to x = 0 is always below
1% for the n = 2 moment and decreases for higher moments,
yielding a negligible contribution to the final uncertainty. The
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FIG. 1. (Color online) Example structure function data for deu-
terium (top) and iron (bottom) at Q? = 4.5 and 5 GeV?, respectively.

extrapolation to x — A, while negligible for n = 2, becomes
important for the higher moments. The data used in this region
were obtained at SLAC and JLab, and the coverage in x is
sufficient for most Q and n values. One makes the extrapo-
lation to x = A by including an additional point with F, = 0
at x = A and by using the same interpolation as described
above. The uncertainty is taken as the difference between this
extracted moment and the moment obtained if one truncates
the integral at the largest x value for which data are available.
The uncertainty in the moments that is due to the extrapolation
tox = Aislessthan 1% forn = 2, around 3% forn = 4, up to
6% for n = 6, and up to 20% for n = 8. The highest-x quasi-
elastic and elastic contributions, important for low 0?2, were
calculated according to [23,24] and added to the moments.

In the near future, the extrapolation to x — A can be
improved with new data coming from Jefferson Lab experi-
ments [25-31]. These experiments have already acquired data,
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and results will become available over the next few years.
These newer data will allow for separations of the longitudinal
and transverse components, for moments to be obtained over
an expanded range in Q2, and for several additional nuclei,
including 3He and “He.

III. RESULTS

Tables I and II show the Cornwall-Norton moments
for deuterium and iron. The uncertainties include published
experimental uncertainties on the structure functions, the
uncertainties that are due to the finite Q2 range of the data and
interpolation procedures, extrapolations to low and high x, and
the uncertainties in estimating nuclear elastic and quasi-elastic
contributions. The combined uncertainties are typically 5%,
except for low Q2 values for which the uncertainty in the
quasi elastic become very large, especially for n = 2. At low
Q?, the higher moments become increasingly dominated by
the nuclear elastic contribution, which is known to better than
5%. For the iron n = 6 and n = 8 moments, the intermediate
Q? values have large contributions from the poorly known
quasi-elastic contributions at extremely large x values, and so
these moments are not included.

After this analysis was completed, additional data on the
deuteron structure function from CLAS measurements became
available [32]. While the broad kinematical coverage of this
data would reduce the need for interpolation, the interpolation
yields a relatively small contribution to the uncertainty, and
the experimental uncertainty for the CLAS data is larger than
for the data used here, so the overall uncertainty would not be
significantly affected. While inclusion of these data and a more
detailed analysis could yield somewhat smaller uncertainties
for the deuterium moments, the examination of the nuclear
dependence would still be limited by the quality of the data on
heavier targets.

There are indications that two-photon-exchange corrections
to the electron-nucleon elastic cross section might have an
impact on the extracted moments [33]. These corrections
appear to be <6% for elastic e- p scattering (<3% for e-n [34]),
peaking at large scattering angles. For the data included in
this analysis, we expect that the two-photon exchange will
contribute at most 2% to the moments, typically much less.

TABLE I. Moments of the F; structure function per nucleon for the deuteron.

0% (GeV?) n=2 n=4 n==6 n=38

0.05 0.481 =+ 0.481 0.807 & 0.400 2.3618 £0.2362  8.5266 =+ 0.8527
0.10 0.407 + 0.204 0.479 £ 0.120 1.0533 £0.0105  3.3723 +0.3372
0.20 0.320 + 0.080 0.284 + 0.034 0.3946 £ 0.0395  0.7653 & 0.0765
0.45 0.296 =+ 0.021 0.193 +0.019 0.2163 £ 0.0216  0.2968 & 0.0359
0.80 0.220 + 0.011 0.092 =+ 0.005 0.0844 £ 0.0060  0.0961 & 0.0103
1.50 0.180 = 0.009 0.040 = 0.003 0.0261 £ 0.0020  0.0235 & 0.0033
2.40 0.169 =+ 0.008 0.028 £ 0.001 0.0165 +0.0010  0.0156 = 0.0008
3.20 0.162 = 0.008 0.021 =+ 0.001 0.0091 £ 0.0005  0.0065 == 0.0003
4.50 0.165 = 0.008 0.016 = 0.001 0.0056 £ 0.0003  0.0039 = 0.0002
5.00 0.161 = 0.008 0.017 + 0.001 0.0052 £ 0.0003  0.0030 == 0.0002
7.00 0.163 = 0.008 0.016 =+ 0.001 0.0038 £ 0.0002  0.0015 = 0.0001
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TABLE II. Moments of the F, structure function per nucleon for iron.
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0% (GeV?) n=2 n=4 n==6 n=38

0.05 0.203 & 0.203 204 + 10 (6.4 £0.32) x 10° (2.0+£0.1) x 10°
0.10 0.207 £ 0.100 5.74 + 0.289 (1.77 £ 0.09) x 10* (5.6 £ 0.28) x 107
0.25 0.277 + 0.069 0.273 £+ 0.137 2763 + 1.242 6600 + 330

0.40 0.265 + 0.027 0.273 & 0.041 - -

1.00 0.209 + 0.010 0.095 £ 0.005 0.276 + 0.044 -

1.90 0.166 + 0.008 0.034 % 0.002 0.0270 £ 0.0015 0.0447 £ 0.0058
2.90 0.174 £ 0.009 0.018 =+ 0.001 0.0114 + 0.0010 0.0146 £ 0.0063
5.00 0.158 + 0.008 0.015 £ 0.001 0.0050 =+ 0.0004 0.0032 £ 0.0006
6.00 0.164 + 0.008 0.016 =+ 0.001 0.0038 + 0.0002 0.0020 =+ 0.0004

This is small compared with the experimental uncertainties,
and these effects should partially cancel when different nuclei
are compared.

The lowest moment displays very little Q> dependence
down to 1 GeV2. The asymptotic behavior of the n =2
moment is ultimately governed by the energy-momentum
tensor in the operator product expansion OPE and so has no
Q? dependence, as in the quark-parton model [11]. In the OPE,
higher twist effects (interactions between the struck quark and
other quarks in the electron-nucleon scattering process) are
expected to manifest a 1/Q? dependence in the moment and
should therefore become particularly apparent at lower values
of Q2. This is observed only for Q2 <1 GeV?, while the
data display the quark-parton model behavior over most of
the Q7 range. This is particularly surprising given that the
n = 2 moment at low-to-moderate Q2 values has substantial
contributions from the resonance regime. This unusually weak
Q? dependence is yet another manifestation of quark-hadron
duality [35].

The higher-n moments, on the other hand, do display an
increased Q? dependence. These data may therefore be used
for precision higher twist extractions. However, the higher-n
moments are increasingly dominated by the high x, including
the elastic and quasi-elastic regimes, for which the x and Q>
dependences are less well understood in terms of the OPE.

If nuclear effects are small, the moments for iron can also
be constructed by the addition of the proton and neutron
contributions, extracted from proton [36] and deuteron data.
To investigate how well this simplified approach works, the
following simple formula was employed:

Mn(Fe) =Zx Mn(p) +(A - Z) X Mn(n)s (2)

where M,(n) is taken to be M,(d)— M,(p). Here,
M,(p), M,(n), and M,(d) refer to the nth moment of the
proton, neutron, and deuteron, respectively, and Z is the atomic
number of iron. This is equivalent to extracting the iron data
as 28 deuterons with a small neutron excess contribution.
Simple Fermi motion should not yield a significant nuclear
dependence in the M, moment, and off-shell effects have been
studied [5,6] and are also expected to be small for the lowest
moment and of the order of 10% for moments up ton = 5 [5].

This procedure is illustrated in Fig. 2 for the second
moment, M,. The iron data are shown as squares, deuteron
data as filled circles, proton data as stars. The solid curves

describing the deuteron and the proton moments are fits to
the proton and deuteron data (including the low-Q? data,
not shown in the figure), of the form A + B/Q> + C/Q*.
These fits are then used to calculate the neutron moment,
M,(d) — M»(p), and the iron moment as 26 protons and
30 neutrons, as described in Eq. (2). No additional correction
was made for nuclear effects or the nonisoscalarity of the
target. The neutron and iron moments thus calculated are
shown as dashed curves in the figure, while the open circles
show the neutron moments taken directly from the difference
of deuteron and proton moments. For Q% > 4 GeV?, the ratio
of Mj,(Fe)/M,(D), normalized to the number of nucleons,
is 0.99 £ 0.05, consistent with the value 0.96 [37] from a
calculation based on Ref. [5].

The ratios of the measured moments for iron compared with
the moments taken from the deuteron and proton moments are
shown in Fig. 3. It can be seen that these two methods yield
the same results within the uncertainty. Combining all of the
values yields a deviation of (0.9 +2.2)%, or (0.5 £2.9)%
if we consider only Q% > 2.5 GeV?. This result contradicts
interpretations of the EMC effect that predict significant

100 R o e o)
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FIG. 2. (Color online) The second moment of F, for proton
(stars), deuteron (filled circles), and iron (squares) for Q% >
0.1 GeV?. The open circles are the neutron moments taken from
the difference of deuteron and proton. The solid curves are fits to the
deuteron and proton moments, and the dashed curves are the neutron
and iron moments extracted from these fits by use of the procedure
described in the text.
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FIG. 3. (Color online) The ratio of the QCD moments for iron

calculated by use of iron data to the moments constructed by use of
deuterium and proton data shown as a function of Q2.

modification to the the tofal quark momentum distribution in
nuclei. However, it is consistent with other interpretations in
which the total quark momentum is conserved [2,38]. Here, the
data indicate that the integrated iron nucleus can be described
well as simply being composed of free deuterons, with a
minimal correction for neutron excess in 26 p + 30n. It seems
the EMC effect is a redistribution of quark momentum without
any additional momentum added by the nuclear environment
outside of whatever is already present in the deuteron.

One can also connect the nuclear dependence of the
quark distributions to the coordinate space parton distribu-
tions [39,40]. The A dependence of the n = 2 moment is then
related to the A dependence of the light-cone distributions
at short distances. The fact that the data indicate extremely
small nuclear effects is consistent with the result that the A
dependence for distances less than the internucleon spacing is
surprisingly small (<2%) because of cancellation among the
shadowing, antishadowing, and EMC regions [39].

We note further that the redistribution can be quite large,
locally. In the structure functions at fixed (x, Q%) values,
there are drastic differences in the nucleon and in nuclei.
For instance, a resonance structure can be observed in the
A resonance region in deuterium but not at all in iron.
However, the effect of this redistribution is smaller in nuclei,
such that the resonance region structure function nearly
reproduces the deeply inelastic scattering structure function in
nuclei [14,18], and the ratios of the nuclear structure function
in the resonance region reproduce the observed EMC effect
with high precision [41].

West points out the need to reconcile the difference between
the fundamental asymptotic QCD sum rule,

[Grpee o
— —_ = x:’
o \Aa 2 272

based on energy-momentum conservation, and the nominal
observation of the EMC effect that the nuclear structure
function is not simply A times that of a nucleon [11]. The
new data presented here (Fig. 3) indicate agreement with this
sum rule already at the low Q2 values here observed. As a
quantitative example, the integral in Eq. (3) becomes of the
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TABLE III. Moments of the F, structure function for the
difference p — n. Experimental results for Q% ~ 4 GeV? from the
present work are compared with lattice calculations at 4 GeV?.

n This work Detmold Dolgov Gockeler
0>~ 4GeV?  etal [43] et al. [42] et al. [44]

2 0.049(17) 0.059(8) 0.269 0.245

4 0.015(03) 0.008(3) 0.078 0.059

order of 4 x 1073 compared with individual moments of ~0.2
at 0% = 2.9 GeV>.

The moments of the structure function F> can be determined
theoretically on the lattice [42—44]. While contributions from
disconnected diagrams [42] make it more difficult to calculate
the separate proton and neutron moments on the lattice, these
contributions cancel in the nonsinglet combination M, (p) —
M, (n). To compare our results with lattice calculations we
extracted the difference between the proton and neutron
moments for n = 2 and n = 4. We assume that the deuteron
moment is equal to the sum of proton and neutron and
then determine the p — n moment from the proton [36] and
deuteron moments, taking M,(p —n) =2M,(p) — M, (d).
Because the proton and deuteron moments are sometimes
extracted at slightly different Q? values, we combine our
extracted deuteron moments with the nearest proton moments,
scaling the proton to the correct Q° value by using the
Q? dependence of the simple fit shown in Fig. 2. Above
0? =2 GeV?, the extracted values for the M, and M, moments
for p —n are consistent with a constant value, that is, no
Q? dependence. The experimental results shown in Table III
for Q% ~ 4 GeV? come from combining the extracted values
at 0> =3.2 and 4.5 GeV? and are compared with lattice
calculation at Q> = 4 GeV?>. Because the proton and neutron
n =72 moments are comparable in size, there is a large
cancellation in the difference which leads to the large relative
uncertainty.

The n = 2 moment from Detmold et al. [43] is in excellent
agreement with the measured data. For n = 4, the small dis-
crepancy between the lattice calculation and our experimental
result could be due to higher twist effects, which are not
included in the lattice result, although the Q2 dependence of
the moments does not indicate that these are large. In addition,
no nuclear effects were taken into consideration when the
neutron moment was extracted from deuterium data. These
effects seem to be small when averaged over the entire x range
but they might still have some nonnegligible contribution. It
should also be noted that there are still open issues for lattice
calculations, such as chiral extrapolation, volume dependence,
or renormalization. To demonstrate this, we also show the
results of Dolgov et al. [42] and Gockeler et al. [44]. The main
difference between the lattice calculations presented here is the
chiral extrapolations used. In Ref. [42], the lattice results are
extrapolated linearly to the physical limit, while in Ref. [43],
the extrapolation includes the correct chiral behavior from
chiral effective theory.

We note that comparisons between lattice and nominal
data formed from probability-density-function-based fits have
been performed previously [43]. We stress that such fits do
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not adequately account for the large-x regime in which they
are unconstrained by data. Moreover, substantial uncertainties
exist in the down-quark distribution d(x) associated with as-
sumptions utilized in extracting neutron results from deuteron
data, as well as the unknown behavior of d/u as x — 1.

IV. CONCLUSIONS

In conclusion, we utilized inclusive electron-nucleus scat-
tering data to obtain nuclear structure function moments for
iron and deuterium. The new data are particularly important for
moment calculations at low Q2, for which there was a paucity
of previous data. Moreover, at low 0? and higher n, the need
for large-x data increases as this regime comes to dominate the
moments.

Negligible Q2 dependence is observed in the lower-order
moments, indicating agreement with asymptotic predictions
and minimal higher twist effects. This is surprising, given that
the data extend to quite low Q? values.

The n = 2 moment, related to the momentum sum rule,
is presented here for both iron and deuterium. Additionally,
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a neutron momentum was formed by the subtraction of
existing proton data from the deuterium data. The measured
iron moments were found to agree with moments simply
constructed from these neutrons and protons. This observation
has interesting implications for interpretations of the EMC
effect.

Finally, these neutron and proton moment data allow for
comparison with lattice QCD calculations. The extracted
nonsinglet moments provide the first direct comparison with
lattice calculations of the nonsinglet moments, and the results
are in good agreement with the calculation of Ref. [43].
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