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Insight into scalar mesons from their radiative decays
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We estimate the rates for radiative transitions of the lightest scalar mesons f0(980) and a0(980) to the vector
mesons ρ and ω. We argue that measurements of the radiative decays of those scalar mesons can provide important
new information on their structure.
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I. INTRODUCTION

Although studied for many decades, the lightest scalar
mesons, and especially the f0(980) and a0(980), are still the
subject of debate regarding their fundamental structure. For
example, these two mesons could be viewed as natural candi-
dates for the genuine 13P0 qq̄ states predicted by the standard
quark models [1]. However, because of the proximity of these
states to the KK̄ threshold, a significant if not dominant qqq̄q̄

configuration is expected from a phenomenological point of
view. Thus, it was argued (see, e.g., Ref. [2]) that the genuine
qq̄ 3P0 nonet could be somewhere near 1.5 GeV, whereas the
states around 1 GeV are the result of a strong S-wave attraction
between the two quarks and two antiquarks.

In such a scenario the f0(980) and a0(980) mesons could
be realized either in the form of compact qqq̄q̄ states [3,4] or
in the form of loosely bound KK̄ states. To complicate things
further, within the latter picture there are even two possibilites
regarding the nature of those scalar resonances, which are
connected with the question whether there are sufficiently
strong t-channel forces so that KK̄ molecules are formed,
as advocated in Refs. [5–8], or whether the meson-meson
interaction is dominated by s-channel states. In the former
case the f0(980) and a0(980) would be purely composite
particles, whereas in the latter case they would contain both
elementary states and composite-particle components. For a
much more thorough discussion on that issue and an overview
of the extensive literature we refer the reader to the reviews in
Refs. [9–14].

Over the years many experiments have been proposed to
distinguish among those scenarios; thus far, however, the
smoking-gun experiment has not yet been identified. For
example, about a decade ago it was believed that data on
the decays J/� → φππ/φKK would allow resolution of
the puzzle of the scalar mesons [15]. Even earlier Achasov
and Ivanchenko had argued that measurements of the radiative
decays of the φ(1020) to scalar mesons would provide decisive
information on the structure of these long-debated objects [16].
The authors of that work demonstrated that the spectrum of,
e.g., π0π0 in the reaction φ → γ S → γπ0π0 would look
drastically different in the presence or absence of a significant
KK̄ contribution, because of the proximity of both the mass of
the scalar meson S and that of the φ to the KK̄ threshold. And
indeed, the data [17–19] unambiguously show a prominent
KK̄ contribution. Based on large-NC considerations, this

was interpreted then as a proof for a compact four-quark
nature of the scalar mesons [20]. However, it is not clear
a priori how quantitative the large-NC counting rules are
in the scalar sector—for example, the large-NC analysis of
the unitarized chiral perturbation theory amplitudes leads
to large uncertainties for the a0/f0(980) states [21]. After
all, it is well known that, for the scalars, because of the
presence of the nearby strong S-wave KK̄ channel, unitarity
corrections are large, as seen from the corresponding Flatté
distributions [22,23]. Thus, the large-NC picture might be
obliterated. In particular, the admixture of a KK̄ component
in the scalar wave function should be large, as discussed in
Refs. [5,6,24,25].

For obvious reasons, a dominant role of the KK̄ component
in the φ → γ S decays is naturally expected in the scenario
where the scalar mesons are KK̄ molecules. Thus, it might
not be too surprising that explicit calculations utilizing such
molecular models [8,26,27] were able to describe the spectrum
of the radiative φ decays. Indeed, it was shown [28] recently
on rather general grounds that, contrary to earlier claims
[29,30], the available experimental information is completely
consistent with the molecular structure of the scalar mesons.
We thus conclude that the radiative φ decays measure the
molecular component of the scalar mesons. However, other
observables are to be found that allow one to understand how
much compact structure there is in addition.

There is a drawback of the radiative φ decays: beyond the
prominence of the kaon loops, no further model-independent
quantitative conclusion on the scalar mesons is possible
because of the limited phase space available for these decays.
In addition, gauge invariance forces the spectrum, for large
pseudoscalar invariant masses, to behave as ω3, where ω

denotes the photon energy. With the photon energy being just
around 40 MeV, only a small fraction of the spectral functions
of the scalar mesons is visible in these reactions. As discussed
in detail in Ref. [31], this causes uncertainties in the attempts to
define the coupling constants and pole positions of the scalars.

In view of the difficulties outlined above, with the present
article, we draw attention to another class of radiative decays—
namely to the radiative decays of the scalar mesons themselves.
In particular, we want to provide evidence for the following
properties of the reactions S → γV , where S denotes the
scalar mesons a0 or f0 and V stands for the vector meson
ρ or ω:
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(i) Both quark loops and meson loops can be of equal
importance.

(ii) There is significant phase space available for the final
state.

(iii) Because there is a sensitivity to the nonstrange contribu-
tion of the wave functions, a combined analysis of the φ

radiative decays, as well as those of the scalars, should
help to map out the underlying quark structure of the
latter.

Among those the first point is specifically interesting. It
implies that, if the scalar mesons were predominantly qq̄

or qqq̄q̄ states, then quark loops as well as meson loops
should yield sizable contributions to the decay amplitude and,
consequently, they should have a significantly larger decay rate
to vector mesons as compared to KK̄ molecules, where only
meson (KK̄) loops are present.

In this context we also consider the decay S → γ γ and
show that, in this case, there is again a striking difference
in the reaction mechanism in the sense that now the quark
loops dominate, whereas the meson loops are suppressed.
As a consequence, there is a certain pattern or hierarchy in
the studied radiative decay reactions involving scalar mesons
(φ → γ S, S → γV, S → γ γ ) with characteristic differences
for a compact (qq̄ or qqq̄q̄) or molecular structure of those
scalars. This suggests that a combined analysis of such decays,
within a specific scenario of the scalar mesons, is actually a
much more conclusive method to discriminate between these
scenarios than just considering a single decay mode, like
φ → γ S, as has happened in the past.

The article is structured in the following way: In Sec. II, we
provide general expressions for the vertex function involving
a photon, a scalar (S), and a vector (V ) meson and for the
total width of the transition S → γV . In Sec. III, we consider
different decay mechanisms for the scalar mesons, i.e., qq̄

and qqq̄q̄ quark loops and meson loops, and we evaluate the
decay width within the corresponding transition mechanisms.
Section IV is devoted to the decay of the scalar mesons to the
γ γ channel. Our results are analyzed and discussed thoroughly
in Sec. V, The article ends with a brief summary.

II. SOME GENERALITIES

To write down the effective vertex for the SV γ coupling,
one is to respect gauge invariance for the photon. This is most
easily implemented by using the field-strength tensor for the
latter. Therefore, the most general structure of the SV γ vertex
is1

iW = M(p2, q2)[(k · εV ∗)(q · εγ ∗) − (εV ∗ · εγ ∗)(k · q)], (1)

where εV
µ and ε

γ
µ are the polarization vectors of the vector

meson and photon, qµ and kµ are their four-momenta,
respectively, and pµ is the scalar four-momentum. For the
φ radiative decays, the decay amplitude exhibits a strong p2

dependence, because of the proximity of the KK̄ threshold to

1Here the standard normalization of the invariant amplitude is used,
like, e.g., in Ref. [29].

both the φ mass as well as to the nominal mass of the scalar
meson. However, for these decays, we have q2 = m2

φ , and thus
it is not possible to investigate the q2 dependence. However, for
the decays S → γV and the case of kaon loop contributions,
M(p2, q2) shows a significant dependence on both p2 and q2,
because of the proximity of the KK̄ threshold to the mass of
the a0/f0 mesons and because of the finite width of the vector
mesons, especially of the ρ meson.

For stable scalar and vector mesons one could directly
deduce the expression for the total width of the transition
S → γV from Eq. (1), which would be given by

�
(
m2

S

) = m3
S

32π

∣∣M(
m2

S,m
2
V

)∣∣2
[

1 −
(

mV

mS

)2 ]3

, (2)

with mV and mS being the nominal masses of the vector and
scalar mesons. For the calculation of observables, in addition
to the matrix element M, two more ingredients are relevant —
namely the propagator of the scalar meson DS(p2) and that
of the vector meson, DV (q2). The latter modifies the invariant
mass spectrum of the final state (cf. the detailed discussion in
the Appendix).

The finite width of the scalar mesons makes one study the
decay rates as a function of the invariant mass of the decaying
system. Consequently, in the total decay width, DS(m2

S)
appears as a weight factor. For this distribution, one would
need to use parametrizations given in the literature. Note that
using such parametrizations one could run into complications
connected to possible interference effects between the f0(980)
and the broad I = 0 ππ component usually referred to as
“σ” [32]. In what follows we do not consider this possibility
and give estimates for stable vectors and scalars.

As mentioned before, it is the transition matrix element M
that is the quantity of interest, and we investigate it now in
more detail for various scenarios.

III. THE TRANSITION MATRIX ELEMENT M

In this section, we discuss the properties of M in various
models for the scalar mesons and for various mechanisms of
the radiative decay.

A. Contribution of quark loops

The simplest assignment for the a0(980)/f0(980) mesons is
the bound qq̄ 3P0 state [1]. Correspondingly, the radiative
decay proceeds via a quark loop, as displayed in Fig. 1.
If confinement is modeled by a quark-antiquark interaction,
then the ingredients needed to calculate the transition matrix
element are as follows: (i) the meson-quark-antiquark

FIG. 1. Quark loop contribution to the radiative decay.
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vertices, (ii) the dressed propagators of quarks, and (iii) the
dressed photon-quark-quark vertex. If the underlying quark
model provides these ingredients in a self-consistent way, then
the electromagnetic transition vertex is compatible with e.m.
gauge invariance and the SV γ transition amplitude takes the
form of Eq. (1). Reliable calculations of the quark loop con-
tributions can be done in the framework of the nonrelativistic
quark model. The radiative transition 3S1(qq̄) ↔ 3P0(qq̄) is
an E1 transition, and the current in the rest frame of the initial
meson i, in the lowest approximation, is

ji→f =
〈
f

∣∣∣∣eq

pq

mq

∣∣∣∣ i
〉
+ (q ↔ q̄). (3)

The expression for the matrix element M, extracted from
Eq. (3), reads

M = 2
3e〈Q〉rif , (4)

where

Q = 1
2 (Qq − Qq̄) (5)

is the quark charge operator, and the radial part of the dipole
matrix element between the initial and final states reads

rif =
∫

r2drR
†
f (r)rRi(r), (6)

with Ri,f (r) being the radial wave functions for the initial and
the final states, respectively.

Generally, the decay rate for E1 transitions between the 3S1

and 3PJ states is given by (see, e.g., Ref. [33])

� = 4(2J + 1)

27
α〈Q〉2ω3r2

if , (7)

for the 3S1 → 3PJ γ decays, and by

� = 4
9α〈Q〉2ω3r2

if (8)

for the 3PJ → 3S1γ decays. Here ω stands for the photon
energy and the charge factor is readily calculated for a given
flavor of the initial and final states (n denotes u and/or d quark):

〈Q〉2 =




1
36 , for nn̄ → nn̄ with the same isospin,

1
4 , for nn̄ → nn̄ with different isospins,
1
9 , for ss̄ → ss̄.

(9)

One might question the applicability of the nonrelativistic or
the naively relativized quark model to the mentioned decays.
Nevertheless, experimental data can be used to estimate the
needed matrix element. We may use the known radiative decay
rate of the bona fide quarkonium f1(1285) [34], as a genuine
3P1 qq̄ state made of light quarks:

�[f1(1285) → γρ] = 1320 ± 312 keV. (10)

As shown in Ref. [35], nonrelativistic quark models with
standard parameters yield results for the decay f1(1285) → γρ

that are in good agreement with the data. To relate this matrix
element to the ones of interest we assume SU(6) symmetry for
the wave functions which is expected to provide a reasonable
order-of-magnitude estimate for the rates. In this case the
values of the matrix elements rif are to be equal for all members
of the P multiplet.

Then one gets from Eqs. (7)–(10):

�(a0 → γω) = �[f0(nn̄) → γρ] = 125 keV,

�(a0 → γρ) = �[f0(nn̄) → γω] = 14 keV,
(11)

�[f0(ss̄) → γω] = 31 keV × sin2 θ,

�[f0(ss̄) → γρ] = 0,

where sin θ measures the (small) φ − ω mixing.
Although Eqs. (7) and (8) take apparently nonrelativistic

form, relativistic corrections are actually included in these
dipole formulae, provided the masses and the wave functions
of the initial and final mesonic states are taken to be solutions
of a quark-model Hamiltonian with relativistic corrections
taken into account (see Refs. [36,37] for a detailed discussion).
With relativistic corrections to the wave functions taken into
account the values of rij for 3P0 and 3P1 states are not equal
to each other anymore. So the estimates [Eqs. (11)] are to be
considered order of magnitude.

Similarly we obtain for φ decay:

�(φ → γ a0) = 0.37 keV × sin2 θ,

�[φ → γf0(ss̄)] = 0.18 keV, (12)

�[φ → γf0(nn̄)] = 0.04 keV × sin2 θ.

In this context let us mention that the pure ss̄ assignment for f0

seems implausible as it implies an OZI suppression of the ππ

mode in the φ radiative decay, so that some mixing with an nn̄

isoscalar state is needed to reproduce the branching fraction
of the f0(980) to ππ .

We point out that the predictions for the decay width ratios
of rates,

�{[f0(nn̄) → γρ0] : (a0 → γω) : [f0(nn̄) → γω] :

(a0 → γρ0)] = 9 : 9 : 1 : 1, (13)

which are readily deduced from Eq. (11), are based only on
the isospin relations [Eq. (9)] and are, therefore, robust.

B. Contributions of annihilation graphs for qqq̄q̄ scalars

In the diquark-antidiquark model [3,4] both f0 and a0 can
be identified with sns̄n̄ states belonging to a cryptoexotic 3 ⊗ 3
flavor nonet,

f0 = 1
2 ([su][s̄ū] + [sd][s̄d̄]),

(14)
a0(I3 = 0) = 1

2 ([su][s̄ū] − [sd][s̄d̄]).

The radiative decays of the qqq̄q̄ states proceed via
annihilation of a qq̄ pair, as shown at Fig. 2. Thus, in the

FIG. 2. Annihilation contributions to the radiative decay of qqq̄q̄

scalars.
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(a) (b) (c)

FIG. 3. Meson loop contributions to the radiative decay of scalar mesons. Diagram (c) is required to provide the overall gauge invariance
of the amplitude.

transition S → γρ/ω, the ss̄ pair annihilates, so that one has

�(f0 → γρ)

�(f0 → γω)
= 0, (15)

whereas the φ − ω mixing could generate small nonzero values
of the ratio

�(a0 → γω)

�(a0 → γρ)
∼ sin2 θ. (16)

On the contrary, the decay φ → γ S with the four-quark scalars
(15) proceeds via creation of a nn̄ pair (if one neglects the
φ − ω mixing), yielding

�(φ → γ a0)

�(φ → γf0)
= 9. (17)

Note that the experimental value for this ratio is around
1/6 [35].

Equation (14) is compatible with the a0/f0 mass degener-
acy. However, with the sns̄n̄ assignment for f0, a superallowed
decay to ππ is impossible, so that one is forced to assume
a mixing of the isoscalar sns̄n̄ state with a σ -like nnn̄n̄

state (see Ref. [4]). Note that there is no such problem for
the superallowed decay a0 → πη, because the η contains an
admixture of the strange quark pair.

There are no theoretical estimates of the absolute values for
the qqq̄q̄ radiative decay rates. Moreover, because no single
four-quark state is unambiguously identified, there is also no
experimental anchor at our disposal, similar to Eq. (10), which
could allow one to predict absolute values of these rates.

C. Contribution of meson loops

The contribution of meson loops is shown diagrammatically
in Fig. 3, where the diagrams (a) and (b) correspond to the
coupling of the photon to the charge of the intermediate
pseudoscalar meson and the diagram (c) stems from gauging
the decay vertex of the vector meson to two pseudoscalars.
The explicit expressions for the corresponding matrix elements
read

Wa = Wb = −egSgV

∫
d4l

(2π )4

× εγ ∗(p + q − 2l) εV ∗(2l + q)[
(p − l)2 − m2

P

][
(q − l)2 − m2

P

](
l2 − m2

P

) ,

Wc =−2egSgV (εγ ∗ · εV ∗)
∫

d4l

(2π )4

1[
(p − l)2 − m2

P

](
l2 − m2

P

) .

Adding these three we get for the amplitude M introduced in
Eq. (1):

M
(
m2

V ,m2
S

) = egSgV

2π2m2
P

I (a, b), (18)

where a = m2
V /m2

P , b = m2
S/m

2
P , with mP being the mass of

the pseudoscalar; gS and gV are the SP +P − and V P +P −
coupling constants; and I (a, b) is the loop integral function.
An analytical expression for this function can be found, e.g.,
in Refs. [16,29]. The dependence of (a − b)2|I (a, b)|2 on the
mass of the scalar meson is shown in Fig. 4.
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FIG. 4. Dependence of the function (a − b)2|I (a, b)|2 on the mass of the scalar meson (in GeV) for the kaon loop (solid line) and for the
pion loop (dashed line). Here mV = mφ for the left plot (φ decay) and mV = mρ/ω for the right plot (scalar decay).
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What pseudoscalars can be responsible for the transitions
under consideration? The a0 meson is known to couple to πη

and KK̄ , whereas ρ, ω, and φ do not couple to πη. Thus, for
the a0, only the kaon loop is relevant. The f0 meson couples
to ππ and KK̄ , whereas the only vector meson coupling to
ππ is the ρ meson. Therefore, for the f0, the pion loop could
contribute together with the kaon loop. Nevertheless, the loop
integral depends drastically on the relation between the initial
and final meson masses and on the pseudoscalar threshold. For
both cases of the φ → γ a0/f0 and a0/f0 → γρ/ω decays the
contribution from the pion loop is small (see Fig. 4). Thus, in
what follows, only the kaon loop mechanism is considered.

The only input needed to evaluate the kaon loop contribu-
tion to the radiative decays are the effective coupling constants
gS and gV . The decay constant for φ → K+K− is readily
calculated from the φ width,

g2
φKK

4π
≈ 1.77, (19)

and the decay constants for ρ/ω → K+K− can be estimated
from that for the ρ → ππ decay with the help of SU(3)
symmetry considerations, yielding

gV = gρK+K− = gωK+K− = 1

2
gρππ ≈ 2.13,

g2
V

4π
≈ 0.36.

(20)

The last missing ingredient is gS . In Ref. [28]2 the value of

g2
S

4π
= 16mK

√
εmK = 0.6GeV2 (21)

was estimated. To come to this number the mass of 980 MeV
for both scalars was used, which corresponds to a binding
energy of ε = 10 MeV. The quoted estimate is based on
assuming a stable molecule formed by a pointlike interaction
in the KK̄ channel and thus should be viewed as qualitative.
Such a value of gS lies within the range given by various
parametrizations of the a0/f0 propagators existing in the
literature—see the tables in Refs. [22,25].

Within the qq̄ and the four-quark pictures, relations
between the effective couplings of the a0 and f0 to KK̄ can be
derived readily. In the qq̄ picture, the scalar mesons are 3P0

states and, for the flavor-independent strong interaction, one
should have, approximately,

gf0KK =
{

ga0KK, for f0(nn̄)√
2ga0KK, for f0(ss̄),

(22)

though one should keep in mind that effects like the instanton-
induced forces or an admixture of the scalar glueball in the
wave function of the f0 may destroy these equalities.

In the four-quark model, the scalar decays are superallowed
and one has, for the a0 and f0 with the quark content given by
Eq. (14), the relation

gf0KK = ga0KK, (23)

2The value given in Ref. [28] should be decreased by a factor of 2
because only the charged kaons contribute to the loop mechanism of
relevance here.

which may be distorted by the aforementioned mixing of the
isoscalar sns̄n̄ with the σ -like state.

However, estimates for the absolute values of the scalar
coupling constants gS involve calculations of strong decays
of quark-antiquark, four-quark, or molecular states, which
are very model dependent. One might consider to rely on
experimental data for determining the absolute values of
gS . However, the coupling constants extracted from data are
afflicted with large uncertainties, i.e., they exhibit variations
up to a factor of 2 ÷ 3 — see the tables in Refs. [22,25]. This is
because of the scaling property of the Flatté distributions near
the KK̄ threshold, as discussed in detail in Ref. [22]. In the
following we use the value of Eq. (21) for the scalar coupling.

With the given values for the couplings one obtains, in the
kaon loop model, the values

�(φ → γ S) = 0.6 keV, (24)

and

�(a0/f0 → γρ/ω) = 3.4 keV. (25)

One should keep in mind that the results in Eqs. (24)
and (25) are obtained by assuming the scalar vertex to be
pointlike. The procedure that allows one to include the effects
of finite-range scalar meson form factors in a gauge-invariant
way is well known [8,29,30]. As shown in detail in Ref. [28],
these corrections are small in the case of the φ → γ a0/f0

decay. The reason for this is the following: the φ as well as
the a0/f0 are close to the KK̄ threshold, and the loop integral
is saturated by nonrelativistic values of the loop momentum,
|
k| � mK , where mK is the kaon mass. The range of the
scalar formfactor is defined by the range of the force and,
in the absence of pion exchange between kaons in the scalar
sector, the latter is obviously larger than the kaon mass. On
the contrary, the mass of the ρ/ω is significantly smaller than
2mK , and the typical values of the momentum in the loop
integral are not that small. Thus, for the decays S → γρ/ω,
one expects corrections because of the finite range of the scalar
form factor, which would reduce the pointlike result.

IV. COMMENT ON THE γ γ DECAYS
OF SCALAR MESONS

The transition a0/f0 → γ γ , closely related to the class of
the reactions S → γV , probes the matrix element M(p2, q2) in
a kinematical regime quite different from the decays discussed
above.

The γ γ decay can proceed via the quark loop mechanism.
Nonrelativistic quark model estimates give [38]

�γγ (3P0) = 15

4
�γγ (3P2) = 432α2〈Q2〉2 |R′(0)|2

M4
0

, (26)

where R(r) is the radial part of the wave function and M0 is
the mass of the P-wave quark-antiquark state, which, in the
leading nonrelativistic approximation, is supposed to be the
same for all the members of the P-wave multiplet.
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The calculation of the squared charge factors 〈Q2〉2 yields
for the isospin ratios

�{(a0 → γ γ ) : [f0(nn̄) → γ γ ] :

[f0(ss̄) → γ γ ]} = 9 : 25 : 2. (27)

Therefore, one can try to estimate the decay width for the
scalar f0(980) from the width of the tensor f2(1270), which is
known to be a good nn̄ state. The PDG [34] quotes

�[f2(1270) → γ γ ] = 2.61 ± 0.30 keV, (28)

that gives3

�[f0(980) → γ γ ] = 15

4

[
M(f0)

M(f2)

]3

�[f2(1270) → γ γ ]

= 4.5 keV. (29)

Similar results were obtained in other computations of
�[f0(980) → γ γ ] based on the qq̄ model of the scalar mesons
[39,40].

In the qqq̄q̄ picture, the predictions appear to be of the
order of 0.3 keV for both the f0 and the a0 [41].

The γ γ decay can also proceed via the kaon loop mecha-
nism (see, e.g., Ref. [42]), with the matrix element given by
Eq. (18) with m2

V = 0. For a pointlike scalar with the mass of
980 MeV and g2

S/4π = 0.6 GeV2 one obtains

�(S → γ γ ) ≈ 0.24 keV. (30)

In line with the reasoning of the previous section, this value
comes out as our prediction for the γ γ decay of a molecule.
However, in the kinematical regime of the S → γ γ transition,
the momenta in the kaon loop are in the order of the kaon mass
and, as in the case of the S → γV transitions, one expects
corrections because of the finite range of the form factor at the
scalar vertex. Indeed an explicit calculation within a molecular
model of the scalar mesons [43] yields results for the decay
widths (0.20 keV for the f0 and 0.78 keV for the a0) that differ
from our predictions, but are still in remarkable qualitative
agreement with them given the simplicity of our approach.

The result of Eq. (30) as well as the applied technique
is very different from those in Refs. [39,44], where the γ γ

width of scalar molecules was also calculated. The authors
obtain �[f0(KK̄) → γ γ ] = 0.6 keV [39] and 6 keV [44]. In
these references, similarly to the positronium γ γ decay, the
transition matrix element is taken proportional to the value of
the KK̄ wave function at the origin. Not only is this quantity
model dependent (as reflected in the order of magnitude
variation of the calculated widths), but also we suppose that
the validity of such an approach is highly questionable for
the considered decays: The range of the KK̄ → γ γ transition
operator is of the same order as that of the wave function.

The experimental values for the γ γ widths of scalars are
[34]

�γγ [f0(980)] = 0.39+0.10
−0.13 keV,

(31)
�γγ [(a0(980)} = 0.30 ± 0.10 keV.

3Although the final state contains two photons and, therefore, the
matrix element scales as ω2, the phase space brings the factor of
ω/M2, with M = 2ω being the physical quarkonium mass in its rest
frame. Therefore, the relation � ∝ ω3 holds.

The estimates based on the nonrelativistic quark loop (29) are
in clear disagreement with these data. Although relativistic
corrections to the formula (26) evaluated in Ref. [45] reduce
the ratio �γγ (3P0)/�γγ (3P2) by a factor of 2, this result is still
much larger than the experimental values (31). However, the
kaon loop mechanism estimate (30) is certainly compatible
with them. Moreover, as shown recently in Ref. [46], the
new data [47] for the reaction γ γ → π+π− in the vicinity
of the f0(980) resonance can be described with the kaon loop
mechanism using the weight factor DS(m2

S) which reproduces
the S-wave ππ -scattering data.

Concluding, one can say that the existing data on the γ γ

widths of scalars seem to favor a molecular structure of the
f0/a0 mesons. However, one has to admit that, at present, no
reliable estimation of the theoretical uncertainty involved in
the value quoted in Eq. (30) can be given.

V. DISCUSSION

The results of the previous sections are summarized in
Fig. 5, where, for the sake of transparency, the relative
contributions of the quark loop and kaon loop mechanisms
are displayed for various kinematical regimes probed by the
radiative decays involving scalar mesons.

The message disclosed by this figure is quite clear: the
closer the mass of the vector meson is to the KK̄ threshold,
the larger the contribution of the kaon loop mechanism to the
decay amplitude. Now recall that the quark loop mechanism is
of relevance only if the scalars indeed carry a significant quark
component, whereas the kaon loop mechanism contributes in
both cases, i.e., in the qq̄ (or qqq̄q̄) as well as in the KK̄

molecule scenario. Thus, to discriminate between these two
scenarios, it is most promising to study those decays where
the quark loop mechanism, if present, is significant.

The data on φ radiative decays yield [34]:

Br(φ → γ a0) � 7.6 × 10−5, �(φ → γ a0) � 0.3 keV,

Br(φ → γf0) � 4.4 × 10−4, �(φ → γf0) � 1.9 keV,

(32)

indicating that the kaon loop mechanism indeed dominates the
radiative transition φ → γ S. This can be understood from

FIG. 5. Illustration of various kinematical regimes probed by the
decays involving scalars.
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TABLE I. Radiative S → γρ/ω transition in various models.

Decay mechanism Process Radiative width in keV

Quark loop a0 → γρ 14
a0 → γω 125

f0(nn̄) → γρ 125
f0(nn̄) → γω 14

KK̄ loop a0/f0 → γρ/ω 3

the proximity of both the mass of the φ and the mass of
the scalar mesons to the KK̄ threshold. The question that
remains to be addressed is, however, how much room is there
for an additional quark component. We argue that we can get
a handle on this quark component of the scalar structure when
looking at the decays S → γρ/ω, for there the kinematical
situation is quite different. As seen from the estimates given
by Eqs. (12) and (25), in those decays the quark loop and
kaon loop mechanisms should yield contributions of the same
order. Accordingly, for scalar mesons with a qq̄ structure,
where both mechanisms contribute, the radiative transition
widths should be significantly larger than for KK̄ molecules,
where only the kaon loop mechanism can occur. Thus, the
radiative decays a0/f0 → γρ/ω appear to be a much more
decisive testing ground for discriminating between models for
the scalar mesons than the radiative φ decays.

The estimates of the radiative decay widths of scalar
mesons in various models are collected in Table I. The
numbers demonstrate that the qq̄ component of the scalar
mesons implies characteristic ratios for the radiative decays
into isovector or isoscalar vector mesons, namely �(a0 →
γρ)/�(a0 → γω) ≈ 1/10 and �(f0 → γρ)/�(f0 → γω) ≈
10. This is in strong contrast to the corresponding ratios for the
meson loop contributions (driven by the kaon loops), where all
transitions are predicted to be of the same order of magnitude
so that those ratios should be in the order of 1.

The latter point means that the scalar radiative transition is a
filtering reaction. The quark loop mechanism “senses” the qq̄

flavor, with the ratios of rates for different isospin content given
by Eq. (13). Thus, one is able to measure the qq̄ content of a
specific scalar meson produced in a specific reaction simply
by measuring the ratio of decay rates (f0 → γρ)/(f0 → γω)
or (a0 → γω)/(a0 → γρ).

Another advantage of the radiative scalar decays is related
to the fact that the phase space available for the final state is
not small, in contrast to the radiative decays of the φ meson.
Thus, simultaneous studies of data on φ radiative decays
and scalar radiative decays could be useful in establishing
such fundamental characteristics of the scalar mesons as
their pole positions and coupling constants. Indeed, the kaon
loop mechanism is dominant in the φ radiative decay. The
transition matrix element in the kaon loop mechanism exhibits
a rather peculiar dependence on the masses of the initial and
final mesons. The photon emitted in the φ radiative decay
is relatively soft, ω ∼ 40 MeV, so that the corresponding
matrix element decreases very rapidly in the upper part of the
scalar-mass range, from the KK̄ threshold to the mass of φ (see
the first plot in Fig. 4). However, in the reaction S → γω/γρ,

the photon energy appears to be large, about 200 MeV, so that
the matrix element exhibits a rather different pattern. In the
quark loop model it is nearly constant. As far as the kaon loop
mechanism is concerned, the corresponding matrix element
decreases rapidly with the scalar invariant mass from the KK̄

threshold downwards, but remains practically constant above
the KK̄ threshold (see the second plot in Fig. 4). In such
a case it is then possible to analyze the upper part of the
spectrum with much less uncertainty than in the φ radiative
decay.

For the sake of completeness we mention that the radiative
decays of scalar mesons have been also studied within the
vector dominance model. Corresponding results can be found,
e.g., in Ref. [48].

VI. SUMMARY

We have demonstrated that for radiative decays of the scalar
mesons f0(980) and a0(980) to the vector mesons ρ and ω,
meson loops and quark loops lead to very different predictions
for the ratio of the decays to ρ and ω, respectively. Specifically,
it follows from our results that for objects with a significant
component from a compact quark state both types of loops
should be equally significant. However, for scalar mesons
that are KK̄ molecules only meson loops can contribute.
The inferred estimates for the decay rates and, in particular,
the ratios that follow for the two scenarios are so drastically
different that it should be possible to discriminate between
them once experimental information becomes available.

We have also pointed out that the radiative decay rates
involving the scalar mesons (such as φ → γ S, S → γV , and
S → γ γ ) exhibit a distinct hierarchy pattern for a compact as
well as for a molecular structure of the scalars. This pattern
can be likewise used to distinguish between the two scenario
and, as an ultimate goal, to define the admixture of the bare
confined state in the wave function of the scalar mesons. It
requires, however, that a detailed and consistent calculation
of all those rates is performed within a particular model
for the scalar mesons. In this context let us mention that
the molecular picture of the scalar mesons has been already
successfully tested for the decays φ → γ S and S → γ γ , for
which experimental data are available. Note that there exist
calculations [49] that reproduce both the value of 2.61 keV [see
Eq. (28)] for the γ γ width of the f2(1270) and also the f0(980)
data [see Eq. (31)], in contrast to results of the nonrelativistic
quark model (29). Obviously, it would be important to perform
calculations within the quark-model picture of the scalar
mesons for the other decays discussed in this work.

Thus, experimental data on the transitions a0/f0 →
γρ/ω—especially when analyzed together with the existing
data on φ → γ a0/f0—will provide strong constraints on
models for the structure of the scalar mesons and, therefore,
are an important source of information toward a solution of
the scalar-meson puzzle.

ACKNOWLEDGMENTS

The authors thank D. Bugg and E. Oset for a careful
reading of the manuscript and for instructive comments.

045203-7



YU. KALASHNIKOVA et al. PHYSICAL REVIEW C 73, 045203 (2006)

They also acknowledge useful discussions with M. Büscher.
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APPENDIX: DIFFERENTIAL WIDTH FOR
UNSTABLE PARTICLES

For the calculation of observables, like the decay width,
in addition to M, two more ingredients are relevant—namely
the propagator of the scalar meson DS(p2) and that of the
vector meson DV (q2). The latter modifies the invariant mass
spectrum of the final state and one can use the unitarity relation
to introduce the spectral function ρV for the vector meson,

(2π )3
∫

d�k(pV ; p1, . . . , pk)|DV (q2)WV |2

= − 1

π
ImDV (q2) =: ρV (q2), (A1)

where the integral denotes the integration over the phase space
of the decay products of the vector meson that emerged from
the vertex WV . Note that the spectral density is normalized as

∫
ρV (q2)dq2 = 1. (A2)

The ω meson is quite narrow, so that choosing a Breit-Wigner
form for ρω is appropriate. For the ρ meson either a Breit-
Wigner form or the data from e+e− → π+π− directly can be
used.

The finite width of the scalars enables one to study the decay
rates as a function of the invariant mass of the decaying system.
Consequently, in the total decay width, DS(m2

S) appears as a
weight factor in the m2

S integration. For this distribution of the
scalar mesons one would either need to use parametrizations
given in the literature or refer to data from the same production
reaction where the radiative decay is extracted from.

Having this in mind we can straightforwardly generalize
Eq. (2) to the case of unstable particles in the final and initial
state:

d2�

dq2dm2
S

= m3
S

32π

∣∣M(
m2

S, q
2)DS

(
m2

S

)∣∣2
(

1 − q2

m2
S

)3

ρV (q2).

(A3)

As mentioned, the transition matrix element M is the quantity
of interest and we investigate it for various scenarios in the
main text. The theoretical predictions for the corresponding
two-dimensional distributions can be easily generated for each
scenario discussed in the main text.

It will be quite demanding to observe the radiative decays
of a0 and f0 experimentally. First, one has to identify reactions
that allow one to disentangle the isoscalar f0 and the isovector
a0. Possible reactions that isolate, e.g., the former state
would be dd → α + scalar and J/� → φ/ω + scalar. Then
the intermediate scalar states needs to be reconstructed from
the four-vectors of the decay particles.
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