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Relation between nuclear and nucleon structure functions and their moments
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Calculations of nuclear structure functions (SFs) F A
k=1,2(x,Q2) routinely exploit a generalized convolution,

involving the SFs for nucleons F N
k and the linking SF f PN,A of a fictitious nucleus, composed of point particles,

with the latter usually expressed in terms of hadronic degrees of freedom. For finite Q2 the approach seemed to
be lacking a solid justification and the same is the case for recently proposed, effective nuclear parton distribution
functions, which exactly reproduce the above-mentioned hadronically computed F A

k . Many years ago Jaffe and
West proved the above convolution in the plane-wave impulse approximation for the nuclear components in
the convolution. We extend the above proof to include classes of nuclear final-state interactions. One and the
same function appears to relate parton distribution functions in nuclei and nucleons and SFs for nuclear targets
and for nucleons. That relation is the previously conjectured one, with an entirely different interpretation of
f PN,A. We conclude with an extensive analysis of moments of nuclear SFs based on the generalized convolution.
Characteristics of those moments are shown to be quite similar to those for a nucleon. We conclude that the above
is evidence of asymptotic freedom of a nucleon in a medium and not the same for a composite nucleus.

DOI: 10.1103/PhysRevC.73.045201 PACS number(s): 24.10.−i, 13.60.Hb

I. INTRODUCTION

This paper concerns two related topics. The first is a
generalized convolution, involving structure functions (SFs)
FA

k and FN
k , which compose cross sections for inclusive

scattering of unpolarized leptons from composite targets A
and for a nucleon. The second one deals with implications of
the above for moments of FA

k .
Standard approaches employing hadronic degrees of free-

dom have used generalized convolutions of the form

FA = f A ∗ FN, (1.1)

FA
k (x,Q2) =

∑
α

∫ A

x

dz

z2−k
f α,A(z,Q2)Fa

k

(
x

z
,Q2

)
(1.2)

≈
∫ A

x

dz

z2−k
f PN,A(z,Q2)F 〈N〉

k

(
x

z
,Q2

)
, (1.3)

F
〈N〉
k = ZF

p

k + NFn
k

A

= 1

2

[
1 − δN

A

]
F

p

k + 1

2

[
1 + δN

A

]
Fn

k . (1.4)

The involved SFs depend on the squared four-momentum
transfer q2 = −Q2 = −(|q|2 − ν2) and on the Bjorken vari-
able x in terms of the nucleon mass M with support 0 � x =
Q2/2Mν � MA/M ≈ A.

Equation (1.2) decomposes FA
k into contributions from

various constituents ′a′, such as nucleon, virtual bosons, etc.
For the kinematic region of our main interest, x >∼ 0.2, it
suffices to retain only nucleons, or more precisely, the averaged
nucleon with SF F

〈N〉
k [Eq. (1.4)], which we obtained by

weighting F
p,n

k with Z and N ; δN/A is the relative neutron
excess.

Within the framework of hadron dynamics, the convolution
(1.3) can be proven in the plane-wave impulse approximation

(PWIA). In that approximation the linking function f in
convolution (1.3), which in general is the SF of a fictitious
nucleus composed of point nucleons, is approximated by
f PN,A → f PWIA, with the latter related to the spectral function
of the knocked-out nucleon in the target [1]. For finite Q2,
convolution (1.3) stood as a conjecture.

The same is the case for an alternative, nonperturbative
Gersch-Rodriguez-Smith (GRS) approach [2], which was
originally formulated for a nonrelativistic system of point
particles [3]. It was subsequently extended to systems of
composite constituents, such as quantum gases and liquids,
H2, D2, He, etc. Since the energy scales for electronic,
rotation-vibration modes, etc., differ appreciably, the Born-
Oppenheimer approximation applies. As a consequence, the
SF (or “linear response”) of the composite system is accurately
given as a repeated regular convolution, Eq. (1.1) involving the
SF of the translation of the centers of mass of inert molecules
and of internal modes of each molecule [4]:

F qugas(|q|, ν) =
∫

dν1F
trsl(|q|, ν − ν1)

∗
∫

dν2F
rot(|q|, ν1 − ν2)

∗
∫

dν3F
vibr(|q|, ν2 − ν3) ∗ . . . (1.5)

The next step in the development has been a covariant
generalization of the above GRS theory, first for the SF of
a system of point particles, i.e., for f in convolution (1.3) [5].
For increasing Q2, internal degrees of freedom need ultimately
to be included through F

〈N〉
k , as described by the generalized

convolution (1.3).
It stands to reason that, in general, convolution (1.3) for

a composite nucleus rests on different energy scales for the
participating modes. In fact, convolution (1.3) was proven for
a model with quarks clustered in nucleons, in which the energy
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scale for internal excitations is much in excess of that for NN
forces [2]. For higher but not asymptotic Q2, it seemed difficult
to derive a covariant version, and convolution (1.3) has been
considered a conjecture.

Calculations were based on data for F
p

2 and on some
adopted Fn

k [6], such that a calculation of FA
k amounts to

that of f GRS. The latter can be evaluated by use of purely
hadronic notions, such as single-nucleon spectral functions,
nuclear density matrices of various orders, NN forward-
scattering amplitudes (fsa’s), etc. Support for the validity of
convolution (1.3) came mainly from the reasonable description
of a large body of inclusive scattering cross-section data for
Q2 >∼ Q2

0 ≈ 2.5 GeV2 [7–9].
For later reference, we mention that convolution (1.3) has

its deficiencies. For example, F
〈N〉
k is taken to be the SF of a

free averaged nucleon, which generally is off its mass shell. In
addition, convolution (1.3) lacks explicit spin-isospin structure
and, in particular f is usually computed from spin-isospin-
averaged input.

Next we recall an alternative representation of a nuclear
SF, which uses nuclear parton distribution functions (pdf’s)
qA

i (x,Q2) for finite Q2, which have to be computed from
their nucleonic analogs qi(x,Q2). Those nuclear pdf’s are
effective ones: We do not aim for an underlying theory, and in
particular not for accounting for Q2 dependence, compatible
with evolution from a scale Q2

0. The only requirement is the
exact reproduction of FA

2 (x,Q2), as computed in hadronic
representation (1.3).

The above requirement is not anywhere sufficient to
determine those pdf’s, and the apparent freedom is exploited
by two deliberate choices [10]. An inessential choice is one for
which we assume FA

2 to be the same combination of nuclear
pdf’s, as F

〈N〉
2 is of nucleon ones; thus (for clarity we drop the

x,Q2 dependence in arguments)

F
〈N〉
2 =

∑
i

aixqi = 5x

18

[
uv + dv + 2ū + 2d̄ + 4

5
s

− 3δN

5A
(uv − dv + 2ū − 2d̄)

]
, (1.6)

FA
2 ≡

∑
i

aixqA
i = 5x

18

[
uA

v + dA
v + 2ūA + 2d̄A + 4

5
sA

− 3δN

5A

(
uA

v − dA
v + 2ūA − 2d̄A

)]
. (1.7)

Next we choose to relate nuclear pdf’s of given species i to
its analog for the averaged nucleon 〈N〉, in precisely the same
way as hadronic representation (1.3) links nuclear and nucleon
SF; thus

qi/A(x,Q2) =
∑

a

∫ A

0
dzfa/A(z,Q2)qi/a

(
x

z
,Q2

)
(1.8)

≈
∫ A

0
dzfN/A(x,Q2)qi/N

(
x

z
,Q2

)
. (1.9)

Approximation (1.9) does not mix flavors and uses a single
linking function fN/A = f PN,A, independent of the species,

whether valence, sea quarks, or gluons. By construction the
computed nuclear SF FA

2 (1.7) in the parton representation
(1.9) are identical to their hadronic analog (1.3), provided the
same input is used. In practice the input Fn

2 for the two differs
(see Ref. [10] for a discussion). Between parentheses we add
that, being the same SF as in that of convolution (1.3), f carries
along the above-mentioned deficiencies.

For both the hadron and pdf representations of FA
2 , there

seems to be missing proof of convolution (1.3), as well as
of an estimate of the lower-limit Q2

0 beyond which Eq. (1.7)
is approximately valid. However, we recently stumbled on
20-year-old papers by Jaffe and West, which contain the basics
of the desired proof [11,12]. Judging from the lack of citations,
even cognoscenti apparently overlooked or forgot those papers,
possibly because those were published in the proceedings of
a summer school and of an American Institute of Physics
meeting. In the above publications the generalized convolution
is derived by use of a parton model as well as pQCD, both in
the special case of the PWIA. In the following discussion
we generalize their results to include the nuclear final-state
interaction (FSI).

Since the article of Jaffe [11] is fairly self-contained, it will
suffice to cite only some essentials, in particular the central
relation between forward γ -target scattering amplitudes and
pdf’s. We then show that, although the inclusion of general
FSIs usually spoils their accommodation in a convolution
for FA

k [11], this is not the case for some nuclear FSIs not
involving partons. The above holds, for instance, for the
distorted-wave impulse approximation (DWIA) in the form
given in Ref. [13]. This is also the case for the GRS version
for finite, relatively large Q2 and for those f PN,A are just the
SFs in the representations (1.9) and (1.3); the above completes
the proof for what previously was called a conjecture. We
conclude this paper with an analysis of data on moments of
high-Q2 nuclear SFs and present pQCD results for the above
as was done in the past for a proton.

II. DERIVATION OF NUCLEAR PARTON DISTRIBUTION
FUNCTIONS

We start with a proton and consider the forward scattering
amplitude (fsa) a(γp) as a two-step process in which the proton
emits a quark, which in turn absorbs the virtual photon (Fig. 1).
That amplitude can be evaluated, given an expression for the
current in terms of parton fields. For instance, in a model with

q

p

q

k

p

q

p

p

q

kk

k

FIG. 1. The decomposition of the forward γp amplitude in the
PWIA and its link to the quark-p scattering amplitude.
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FIG. 2. Same as Fig. 1 for a composite target. The inclusion of an intermediate set of free nucleon and spectator states and a recombination
of terms (marked by dashed horizontal lines), lead to a generalized convolution of forward amplitudes a(γ N ) and a(N -Sp).

free parton fields, the result is [11]

F
p

2 (x,Q2) = x
∑

i

e2
i qi(x,Q2), (2.1)

qi(x,Q2) =
∫

d4k

(2π )4
δ

(
x − kq

pq

)
χi(k, p), (2.2)

qscal
i (x) = lim

Q2→∞
qi(x,Q2)

=
∫

d4k

(2π )4
δ

(
x − k+

p+

)
χi(k, p), (2.3)

where the sum in Eq. (2.1) is over quarks with charge ei ·
χi = χi/p in Eq. (2.3) is the fsa a(qip) in Fig. 1. Above one
neglects spin and color: Their inclusion is straightforward and
is immaterial for the reasoning. To lowest order, i.e., in the
PWIA, Eq. (2.2) is proportional to what in nuclear physics
parlance is called the spectral function of a parton i in the
p. The δ function in the integrand of Eq. (2.2) selects the
momentum fraction x of the quark in the proton as determined
by the four-momenta k, p, q of the quark, proton, and virtual
photon, and the integrand in Eq. (2.2) holds for finite Q2.
Equation (2.3) is the Bjorken limit of (2.2), in which case the
argument of the δ function can be expressed in terms of the
dominant light-cone components k+, p+: The resulting qi, F

p

2
are pdf’s and SFs in the scaling limit and depend only on x.

Of an entirely different nature is the Q2 dependence
generated by the FSI beyond the PWIA, coming from quarks
that emit gluons, from gluon pair production, triple gluon
coupling, etc. Those add ln(Q2) and [1/Q2]n corrections to
the above scaling limits for pdf’s and SFs. For the present
purpose it is irrelevant whether those ultimately derive from
the operator product expansion (OPE) or are calculated in
pQCD by evolution.

Much of the above for a p target, a neutron, or averaged
N holds also for a general target A: One can copy Eqs. (2.1)–
(2.3), replacing p(N ) with a composite target. However, it is
awkward to deal with the spectral function of a parton in a
nucleus, as is the fsa χi/A in the PWIA.

A more natural way is the evaluation of that amplitude
on insertion of an intermediate set of states for free nucleons
and a fully interacting daughter nucleus. The product of the
fsa’s a(γ qi) and a(qiN ) is subsequently integrated over the
intermediate momentum to form a(γN ) ∝ FN . The result,

illustrated in Fig. 2, amounts to the following relation between
the three involved fsa’s:

χi/A(k, P ) =
∑

a

∫
d4p

(2π )4
χi/a(k, p)χa/A(p, P ), (2.4)

where the two subamplitudes for γ q and N-Sp are in the PWIA.
The fsa a(N-Sp) in the PWIA is now related to the familiar
spectral function of a nucleon in the target.

As in Eq. (2.2) for a p, one now projects out of each fsa the
appropriate pdf; Eq. (2.4) is converted to

qi/A(x) =
∑

a

∫ A

x

dz

∫
dp2

0fa/A

(
z; p2

0

)
qi/a

(
x

z
; p2

0

)
(2.5)

≈
∫ A

x

dzfN/A(z)qi/N

(
x

z

)
. (2.6)

Again Eq. (2.5) relates to several constituents/clusters, all
of which may be off their mass shell (p2

0 �= M2
a ), while in

approximation (2.6) one retains only nucleons and in addition
disregards those off-shell effects. Approximation (2.6) is
clearly approximation (1.9) in the Bjorken limit.

Next, on inclusion of gluon emissions from quarks, nuclear
pdf’s acquire Q2-dependence, changing Eq. (2.5) and approx-
imation (2.6) into

qi/A(x,Q2) =
∑

a

∫ A

x

dz

∫
dp2

0fa/A

(
z,Q2; p2

0

)
qi/a

×
(

x

z
; Q2; p2

0

)
(2.7)

≈
∫ A

x

dzfN/A(z,Q2)qi/N

(
x

z
,Q2

)
. (2.8)

Above fN/A is the distribution function (df) of nucleons in
the nucleus in the PWIA, while qi/N are pdf’s beyond their
scaling limit. Now just as gluon effects may be viewed as FSIs
on the fsa a(γ qi) in the scaling limit, one should consider FSIs
pertinent to the nuclear part.

As emphasized by Jaffe, most classes of those FSIs cannot
be accommodated in a generalized convolution. However, the
above does not hold for selected, nuclear FSIs generated by the
interaction between the above-assumed free N and the specta-
tor nucleus. An illustrative example is a ladder of N-spectator
collisions, which turn the PWIA into the DWIA (Fig. 3). The
same holds for a description in the alternative, nonperturbative
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FIG. 3. Ladder of N-Sp nucleus collisions, which are accommo-
dated in a convolution, and an example of nuclear FSIs that cannot
be accommodated.

GRS theory for FSIs: fN/A → f PN,A → f GRS, which leads
to the GRS version of convolution (1.3) [2,5].

In the last step we take the proper combinations (1.6) and
(1.7) of respectively, nucleon and nuclear pdf, and obtain

FA
2 (s,Q2) =

∫ A

x

dzf PN,A(z,Q2)F 〈N〉
2

(
x

z
,Q2

)
. (2.9)

Approximation (2.8) and Eq. (2.9) are manifestly the same as
Eqs. (1.9) and (1.3), but Eq. (2.3) is a choice, whereas Eq. (2.8)
is the result of a derivation. Just as for the descriptions outlined
in Secs. I and II, here we deal with one species-independent
fN/A, which relates the df of partons in nuclei and nucleons
without flavor mixing. We recall that the above correspondence
holds for the two discussed approaches, in which quite similar
approximations have been applied, e.g., the use of averaged
spin-isospin observables and the neglect of off-shell effects.
Finally, not all, even purely nuclear FSI components can
be accommodated in a generalized convolution of the form
of Eq. (2.9) [14].

In spite of the established formal correspondence, the
interpretation and calculation of the components are entirely
different. For instance, the nuclear point-nucleon SFs f PN,A in
relation (1.9) are calculated with characteristic nuclear tools
and input, such as the single-N spectral function, A particle
density matrices of various orders, the effective NN scattering
amplitude, etc., whereas in Eq. (2.8) those relate to the fsa
a(N -Sp). Likewise, FN

2 in convolution (1.3) is plainly taken
from data, whereas in Eq. (2.9) it is the result of an elaborate
pQCD calculation.

We conclude this section by emphasizing the different
scales involved in the two factors of the integrand in Eq. (2.9),
as has been illustrated above in the example of quantum gases.
In Eq. (2.9) by far the strongest Q2 dependence resides in
F

〈N〉
2 (x,Q2), while that in the nuclear component f is soft. For

Q2 >∼ Q2
0 ≈ 3 GeV2 a parton description of the nucleon SF is

largely sufficient, whereas the nuclear part including the FSI
is most conveniently evaluated in a plain hadronic description.
The above value of Q2

0 is approximately the one above which
convolution (1.3) has empirically been found to hold.

This concludes our generalization of the proofs of Jaffe and
West on the “factorization” of nuclear pdf’s and SFs. The next
section deals with moments or Mellin transforms of nuclear
SFs in their obvious relation to F

〈N〉
2 (x,Q2).

III. MOMENTS OF NUCLEAR STRUCTURE FUNCTIONS

We recall the role played by moments M of F
p

2 for a p, for
instance the Cornwall-Norton moments [15]:

Mp(n,Q2) = [
M

p

2 (n,Q2
] =

∫ A

0
dxxn−2F

p

2 (x,Q2) (3.1)

For lowest twist (LO), nonsinglets (NSs) and large enough Q2,
asymptotic freedom of QCD predicts that moments of various
rank raised to known powers are linear in ln(Q2). In terms of
the strong coupling constant αc,

Mp(n,Q2)

Mp(n,Q2
0)

≈
[

αc

(
Q2

0

)
αc(Q2)

]−d(n)

, (3.2)

αc

(
Q2

0

)
αc(Q2)

≈ 1 + β0

4π
αc

(
Q2

0

)
ln

(
Q2

Q2
0

)

+O
{[

αc

(
Q2

0

)]2
}

, (3.3)

where Q0 is some scale and β0(Nf ) = 11 − 2Nf /3 in terms
of the number of flavors Nf . The exponents dNS(n,Nf )
in approximation (3.2) are expressed in terms of the NS
anomalous dimension γ NS

0 (n):

dNS(n,Nf ) = γ NS
0 (n)

2β0(Nf )
, (3.4)

γ NS
0 (n) = 8

3


1 − 2

n(n + 1)
+ 4

∑
2 � j � n

1

j


 . (3.5)

For conciseness we define

SA = [MA]−1/d(n),
(3.6)

LA = ln(SA),

and find, in view of | β0

4π
αc(Q2

0)| � 1,

Sp(n,Q2) ≈ Sp
(
n,Q2

0

) [
1 + β0

4π
α
(
Q2

0

)
ln

(
Q2

Q2
0

)]

= cp(n) ln(Q2) + bp(n)

≈ cp(n) ln(Q2) + bp, (3.7)

Lp(n,Q2) ≈ Lp
(
n,Q2

0

) + β0

4π
α
(
Q2

0

)
ln

(
Q2/Q2

0

)
≈ ζ p(n) ln(Q2) + ηp(n). (3.8)

Slopes cP (n) for order n and the common intercept bp are in
principle, determined by the scale or coupling constant, (3.3).
Decades ago, predictions (3.7) and (3.8) were checked against
available proton data [16]. A recent JLab experiment, covering
Q2 <∼ 4.5 GeV2 and x <∼ xM (Q2)(≈ 0.8 for Q2 = 4.5 GeV2),
led to a detailed analysis of the effects of higher-twist
components in the moments Mp(n,Q2) [17].
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There has been hardly any interest in moments of nuclear
SFs for moderate [18] and large Q2 (see for instance
Ref. [8]). In a straightforward way one can generalize the
above for any target A, including the averaged N. The latter
requires in addition to F

p

2 knowledge of Fn
2 , for which

there is no direct experimental information. We refer to
Ref. [6] for the description of an indirect extraction of Fn

2 or
C(x,Q2) = Fn

2 (x,Q2)/Fp

2 (x,Q2) from inclusive scattering
data on various targets. Once obtained,

F 〈N〉(x,Q2) = Z + NC(x,Q2)

Z + N
F

p

2 (x,Q2). (3.9)

Since Fn
2 �= F

p

2 , the parameter functions c and b in Eq. (3.7)
for a neutron will differ from those for a proton and the same
is the case for the averaged N, or for any target A. To relate
the latter two, one naturally exploits convolution (1.3) and its
Mellin transform (m〈N〉 ≡ 1):

MA(n,Q2) = mA(n + 1,Q2)M 〈N〉(n,Q2), (3.10)

with

MA(n,Q2) =
∫ A

0
dxxn−2FA

2 (x,Q2),

mA(n,Q2) =
∫ A

0
dxxn−2f PN,A(x,Q2), (3.11)

σA(n,Q2) = [mA(n,Q2)]−1/d(n).

A remark on mA is in order here. First, for Q2 >∼ 20 GeV2, one
may neglect FSI parts in the calculated SF f PN,A from which
mA is computed. Next, as moments of a peaked, normalized
f PN,A,mA(n = 2,Q2) has a minimum value of 1, independent
of A and Q2. For increasing n,mA(n) slowly increases, the least
for D and He and about to the same measure for all A >∼ 12.
Those moments moreover carry the weak Q2 dependence of
f [19] and reach for n = 7 the asymptotic limits ≈1.027 for D
and ≈1.082 for medium and heavy A.

For use below we also briefly discuss the behavior of σA,
Eqs. (3.11). For n between 2 and 7, the exponent d(n,Nf = 6)
increases from 0.507 to 1.397 and causes σA for D to barely
decrease from 1.000 to 0.977, and for A >∼ 12, from 1.000 to
≈0.931. It suffices to illustrate (Fig. 4) the n dependence of
mA(n,Q2 = 20 GeV2) for D and Fe, representative for a target
with A >∼ 12: The choice made for Q2 is irrelevant, since the
Q2 dependence of mA is negligible for all practical purposes.

For target-independent anomalous dimensions, Eqs. (3.9)–
(3.11) enable the generalizations of Eqs. (3.7) and (3.8),

S〈N〉(n,Q2) ≈ c〈N〉(n) ln(Q2) + b〈N〉(n), (3.12)

L〈N〉(n,Q2) ≈ ζ 〈N〉(n) ln(Q2) + η〈N〉(n), (3.13)

as well as

SA(n,Q2) ≈ cA(n) ln(Q2) + bA(n), (3.14)

LA(n,Q2) ≈ ζA(n) ln(Q2) + ηA(n). (3.15)

For given Q2 we compared separate expansions (3.14) and
(3.15) and found that the logarithm of the first is close to that
of the second.

2 3 4 5 6 7
n

0.94

0.96

0.98

1.0

1.02

1.04

1.06

1.08

1.1

Fe

D
m

Fe
m

D

FIG. 4. Moments mA(n, Q2) and their characteristic power
σA(n,Q2), Eq. (3.7), for A = D, Fe; n = 2−7, Q2 = 20 GeV2.

From the above one infers that slopes and intercepts c, b

will differ for p, n and thus for 〈N〉, while for general A one
checks from Eq. (3.10) the following approximations:

cA(2,Q2) ≈ σA(3,Q2)c〈N〉(n) ≈ c〈N〉(n),
(3.16)

bA(n,Q2) ≈ σA(n + 1,Q2)b〈N〉(n) ≈ b〈N〉(n),

ζA(n) ≈ ζ 〈N〉(n),
(3.17)

ηA(n,Q2) ≈ η〈N〉(n) + ln[σA(n + 1,Q2)] ≈ η〈N〉(n).

Medium changes are governed by σA, Eqs. (3.6): Target-to-
target differences between slopes and intercepts for general
targets and 〈N〉 never exceed a few percent [see Fig. 4, the text
after Eqs. (3.11), and also point 5 below].

In what follows we distinguish between computed and
experimenal SFs FA

2 and their moments, as well as ratios
ρA, which derive from Mellin transform (3.10) of convolution
(1.3). Using Eq. (3.10) one checks

ρA,th(n,Q2) ≡ MA,th(n,Q2)

mA(n + 1,Q2)
= M 〈N〉(n,Q2), (3.18)

[ρA,th(n,Q2)]−1/d(n) ≈ cA(n,Q2) ln(Q2) + bA(n,Q2)

≈ c〈N〉(n,Q2) ln(Q2) + b〈N〉(n,Q2).

(3.19)

For isosinglet targets M 〈N〉(n,Q2) does not depend on A,
whereas for I �= 0, there is a weak A dependence, that is due
to the small neutron excess δN/A, Eq. (1.4).
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Using the measured FA,dat, we consider the corresponding
moments MA,dat, Eqs. (3.11), and the ratios ρA,dat, Eq. (3.18).
In contrast to ρA,th, the ratios ρA,dat do depend on f PN,A. A
reliable computation of the latter and thus indirectly of mA is
currently possible only for A � 4.

Understanding the n dependence of MA(n,Q2) relies on
the knowledge that all SFs FA

2 (x,Q2) reach maxima for
the smallest x, then decrease with increasing x, and become
negligibly small beyond x ≈ 0.8. The derived moments
MA(n,Q2) of lowest order thus critically depend on the
values of FA

2 (x,Q2) for very small x. There is only meager
experimental information available on FA

2 for large Q2. In spite
of the fact that second-generation EMC ratios µA = FA

2 /FD
2

have been measured for large Q2, the individual FA
2 are only

rarely available. We know of CERN NA-4 data on FA
2 , A = D,

C [20,21], and NA-2 data for Fe [20,22], which are not
dense and do not extend over the entire required critical x
range. To those we added a few data points from a JLab
experiment [23], although the relevant Q2 is low for a LO
analysis.

For growing n,MA(n) draws more and more on increasing
x. Since for medium x, FA

2 have fallen by at least an order
of magnitude from their maxima, it becomes increasingly
difficult to reliably compute MA,dat(n,Q2) for large n. We
now mention results for Nf = 6.

(i) MA,th(n,Q2) is barely A-dependent, and for various n
slowly approaches its asymptotic Q2 limit. In particular
[10,12]

MA,th(n = 2,Q2 → ∞) → 5

6

Nf

(3Nf + 16)
= 0.1471.

(ii) In detail, the NA-4 FD
2 data show substantial scatter [20],

which reflects in their moments and inSD = [MD]−1/d(n).
In spite of the above remarks, SD for low n accurately
follows the theoretical curves, but for increasing n data
overshoots predictions up to ≈15% (Fig. 5).

It is instructive to make a similar comparison for a
large body of D data, which have been parametrized by
Arneodo et al. [24]. Very good agreement now obtains for
n � 4. Discrepancies grow again with n, but are definitely
smaller than for the above-mentioned data (Fig. 6). The
cause is clearly few percent differences between the two
data sets. The comparison also illustrates the effect of
experimental scatter.

(iii) The above data for FC
2 lack values for small x [20,21]

without which one cannot compute low-order moments.
We therefore took recourse to a previously proposed
method, which is based on the observation that all
FA

2 (x ≈ 0.18,Q2) have a common value ≈0.30, ap-
proximately independent of A and Q2 (see for instance
Ref. [6]). If nuclear SFs are well known for Xm > X0,
one may extrapolate FA down to X0 (Fig. 7).

(iv) Before discussing Fe, we mention the result of a
comparison of the high-Q2 data of Refs. [20–22] for
FA

2 (x,Q2): (a) FD
2 ≈ FC

2 , (b) for small x both D and
C are a few percent lower than F Fe

2 , but for x >∼ 0.18

the situation appears reversed and F
D,C
2 are ≈15%−20%

larger than for Fe. No similar behavior has been observed

.
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FIG. 5. Characteristic powers of moments SD(n,Q2), Eqs.
(3.6), for D as functions of In Q2. Data points for underlying
SFs are from Ref. [20]; n increases for lines with increasing
slopes.

for lower Q2. It is conceivable that the above Fe
data [20] have a normalization error of the order of
15%–20% for x >∼ 0.22. In Fig. 8 we entered adjusted
SFe,dat.

(v) All SA,th(n,Q2) intersect around Q2 ≈ (0.6−1.0) GeV2,
which is reflected in the approximate equality of all
bA(n). The exception is n = 2 for which SA has a
very small slope, which may reflect the sensitivity of
MA(n = 2, 3) to the small-x behavior of the nuclear SF.
The fact that there is little A dependence seems to exclude
screening effects in FA

2 for x <∼ 0.15 as a cause, but quarks
emitted by virtual bosons in the same small-x range may
contribute [25].

(vi) Results for ρA,dat and for ρA,〈N〉;th are assembled in
Table I. There is overall agreement for D and C and
a deficiency for the nonadjusted Fe data. The for-
mer imply that the extracted Mn(n,Q2) are practically
independent of A, as they ought to be.

(vii) We tested whether expansions (3.16) and (3.17) for
SA,th and LA,th and varying n are approximately linear
functions of ln(Q2) with only weakly A-dependent
coefficients. Table II confirms the above for our
targets.

The small but marked influence of mA is manifest in a
comparison between S〈N〉(n,Q2) (for which m〈N〉 ≡ 1)
and SA. As expression (3.16) predicts, intercepts
b〈N〉(n) ≈ bA(n) are quite similar, while for the slopes
one has approximately c〈N〉(n) ≈ cA(n = 2).
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FIG. 6. Same as Fig. 5 for parametrizations for the average of a
vast body of D data [24].
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FIG. 7. Same as Fig. 5 for C. Data are from Refs. [20,23].

. .
. . . .

. . .

10-1
2 5 100

2 5 101
2 5 102

Q
2
(GeV

2
)

-50

0

50

100

150

200

SFe
[n

,Q
2 ]

Fe

7
6

. 5
4
3
2
n

FIG. 8. Same as Fig. 5 for Fe for partly renormalized F Fe
2 data.
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FIG. 9. Lfe,th(n, Q2) versus Lfe,th(k, Q2), approximation (3.20),
for (n, k) = (4, 2), (5, 3), (6, 4), (7, 5), (7, 3). Data points as in Fig. 7.
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TABLE I. Ratios pA,dat(n,Q2), Eq. (3.18), A = D, C for n =
2−7 and a number of roughly common Q2 values m (Fe data are not
adjusted). Also shown are pA,th(n, Q2) for the averaged N, pertinent
to an isoscalar nucleus and for Fe.

Target pA,dat(n,Q2)

Q2 n 3.5 17 35 50 72

D 2 0.1548 0.1400 0.1372 0.1354 0.1315
3 0.0401 0.0309 0.0298 0.0290 0.0276
4 0.0156 0.0104 0.0099 0.0096 0.0090
5 0.0073 0.0043 0.0040 0.0039 0.0036
6 0.0038 0.0020 0.0019 0.0018 0.0017
7 0.0021 0.0010 0.0010 0.0009 0.0008

C 2 0.1555 0.140 0.1373 0.1351 0.1347
3 0.0398 0.031 0.0291 0.0284 0.0281
4 0.0152 0.011 0.0094 0.0091 0.0089
5 0.0069 0.004 0.0037 0.0036 0.0035
6 0.0034 0.003 0.0017 0.0016 0.0016
7 0.0017 0.001 0.0008 0.0008 0.0008

Fe 2 0.1499 0.1325 0.1290 0.1270 0.1267
3 0.0354 0.0276 0.0260 0.0253 0.0251
4 0.0121 0.0087 0.0080 0.0077 0.0076
5 0.0049 0.0034 0.0030 0.0029 0.0029
6 0.0021 0.0014 0.0013 0.0012 0.0012
7 0.0009 0.0007 0.0006 0.0006 0.0006

〈N〉I=0 2 0.1469 0.1414 0.1393 0.1380 0.1369
3 0.0376 0.0315 0.0296 0.0285 0.0275
4 0.0149 0.0111 0.0100 0.0096 0.0092
5 0.0073 0.0050 0.0044 0.0041 0.0038
6 0.0041 0.0026 0.0022 0.0020 0.0019
7 0.0025 0.0015 0.0012 0.0011 0.0010

〈N〉Fe 2 0.1448 0.1396 0.1380 0.1374 0.1353
3 0.0368 0.0308 0.0295 0.0288 0.0272
4 0.0145 0.0109 0.0098 0.0094 0.0090
5 0.0071 0.0048 0.0044 0.0041 0.0037
6 0.0039 0.0025 0.0022 0.0020 0.0018
7 0.0024 0.0014 0.0012 0.0011 0.0010

(viii) Finally we exploited the fact that ηA(n) 
 ζ (n) ln(Q2) in
approximation (3.15). Consequently

LA(n,Q2)

LA(k,Q2)
≈ ηA(n)

ηA(k)

{
1 +

[
ζA(n)

ηA(n)
− ζA(k)

ηA(k)

]
ln(Q2)

}

≈ ηA(n)

ηA(k)
. (3.20)

The form in curly braces exceeds 1 by less than 10% and
predicts only a weak A and Q2 dependence of the above ratios
for pairs n, k, which gently grows with n-k. It thus suffices to
illustrate the above for one species. We chose Fe and the pairs
n, k = (4, 2), (5,3), (6,4), (7,5), (7,3) (Fig. 9).

The data are seen to follow prediction (3.20) remarkably
well, including the weak ln(Q2) dependence in prediction
(3.20).

For a proton the linear dependence ofSp on ln(Q2) has been
regarded as experimental evidence for asymptotic freedom.
With quite similar results for nuclei, we do not tend to
conclude the same for composite systems. It is more likely
that the de facto separation of nuclear and nucleon components

TABLE II. Expansion coefficients ofS 〈N〉,A;th(n, Q2), approxima-
tions (3.12), (3.13), (3.14), (3.15), for n = 2−7, for A = D,C, Fe
compared with the same for the average nucleon 〈N〉I=0.

Target n cA(n) bA(n) ζA(n) ηA(n)

D 2 2.085 46.503 0.0426 3.840
3 9.937 73.035 0.1175 4.297
4 14.273 82.415 0.1444 4.421
5 17.717 87.177 0.1607 4.480
6 19.379 89.868 0.1731 4.512
7 21.111 91.332 0.1831 4.530

C 2 2.284 46.017 0.0469 3.830
3 10.286 71.608 0.1232 4.278
4 14.690 79.540 0.1526 4.386
5 17.641 82.447 0.1723 4.425
6 19.875 82.875 0.1891 4.433
7 21.655 81.655 0.2049 4.420

Fe 2 2.241 47.245 0.0449 3.856
3 10.404 73.705 0.1214 4.307
4 14.917 82.088 0.1505 4.418
5 17.937 85.366 0.1697 4.460
6 20.210 86.173 0.1856 4.471
7 22.002 85.414 0.2002 4.465

〈N〉I=0 2 2.137 40.989 0.0443 3.725
3 9.918 49.888 0.1182 4.020
4 14.246 50.006 0.1443 4.093
5 17.205 48.929 0.1598 4.126
6 19.504 47.498 0.1711 4.144
7 21.379 46.007 0.1800 4.154

reflects the manifestation of asymptotic freedom of (on-shell!)
nucleons and allocates to the medium controlled modifications
of slopes and intercepts (see Ref. [26] for a differently argued
separation).

It is instructive to compare the above with an extension
of the bag model of nucleons with nuclei with comparable
average internucleon spacings and sizes of bags, which may
overlap and cause conceptual complications. No such prob-
lems occur in the above interpretation of convolution (1.3).

Finally we remark that the above analysis is complicated by
the presence of color singlet contributions, which are coupled
to those for gluons. Only for sufficiently high n >∼ 4−5 are
those approximately decoupled [16], allowing an analysis of
actual moments and not of the assumed NSs. This is also the
reason why we do not study medium effects on slopes and
intercepts in greater detail.

IV. CONCLUSION

This note generalizes old work by Jaffe and West, who by
means of a parton model and pQCD in the PWIA for large Q2

proved that pdf’s and SFs of composite targets and of nucleons
are related by a generalized convolution. Their publications did
not appear in the standard literature and have apparently been
forgotten or disregarded. This paper is therefore in part an
amende honorable to their work.

We first reviewed facets of the conjectured convolution for
finite Q2, working in both a hadronic and an effective nuclear
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pdf representation. In those we did not aim to check whether
the Q2 dependence is actually reproduced by, or in agreement
with, evolution from a scale Q2

0.
Next, we mentioned crucial points in the publications

of Jaffe and West. Those are foremost the general relation
between fsa’s and pdf’s. Next we cited the decomposition of
fsa a(γA) into the fsa’s a(γN ) and a(N , spectator-nucleus).
Jaffe and West studied those first in the PWIA and in the
Bjorken limit, leading to the scaling results. Those have
subsequently been supplemented by contributions that are
due to gluon emission by quarks, etc., which, as regards
photon-parton scattering, extend results beyond the above
limit. We generalized the above, and included classes of FSIs
between a nucleon, intermediately emitted by a target and
the remaining spectator nucleus. The LO expressions, relating
nuclear and nucleon pdf’s, and consequently the same for SFs,
continue to be of the convolution type. Moreover, those are
identical to the same, previously conjectured ones in the above
hadron and effective pdf representations. That correspondence
is a formal one: The interpretation of the two results is entirely
different.

The existence of an “ultimate” description does not imply
a preference over an “effective” one under all circumstances.
It is easier to compute the SF f PN,A from nuclear physics
concepts than from pQCD, or to use data on nucleon SFs as
opposed to a calculation of FN : Results from effective theories
are frequently quite accurate.

The above is not at all specific for descriptions of nuclear
SFs, but holds for many effective theories. A classical example
is the interatomic interaction of the centers of the atoms in
diatomic molecules. The “true” potential ought in principle

to be computed quantum-mechanically, which is extremely
laborious, but in practice one uses Lennard-Jones or Morse
potentials. Those do contain the essentials of the physics,
including a short-range repulsion, which mimics the effect of
the Pauli principle for overlapping electron configurations. The
spectroscopy of diatomic molecules and the physics of gases
and liquids of diatomic molecules are accurately accounted for
by effective dynamics.

The last part of this paper concerns moments of nuclear
SFs. The behavior of moments Mp of the SF F

p

2 , specifically
the linear dependence of SP on ln (Q2), has in the past
been shown to be a consequence of asymptotic freedom
of QCD. Quite similar properties are shared by nuclear
moments. However, rather than concluding that inclusive
scattering data on nuclei support asymptotic freedom for
composite systems, we prefer a sober point of view. The
formal factorization of FA

2 [or the actual one of moments
MA(n,Q2)] separates nucleonic and nuclear dependencies
without changing the required separation of parts with hard
and soft Q2 dependence as is the case of a proton. The observed
ln(Q2) behavior simply reflects asymptotic freedom of isolated
nucleons, with characteristic medium modifications of nucleon
parameters.

After completion of this paper Simonetta Liutti alerted us
to previous work on moments of nuclear SFs. [27].
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