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Hadron production in the transfragmentation region in heavy-ion collisions
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We study the production of hadrons in Au+Au collisions in the region 0.6 < xF < 1.2, which we refer to as
the transfragmentation region (TFR), since it corresponds roughly to η′ > 0, where η′ = η − ybeam, depending
on the transverse momentum pT . We show how hadrons can be produced in that region when the hadronization
process is parton recombination. The inclusive x distributions for proton and pion production are calculated with
momentum degradation taken into account. The results show that the proton yield is significantly higher than that
of the pions in the TFR. Without particle identification, the existing data cannot be used for comparison with our
result on the p/π ratio. Without pT determination, it is not feasible to relate the x distribution to the experimental
η′ distribution. Nevertheless, on theoretical grounds we have shown why the production of hadrons in the TFR
is not forbidden by momentum conservation.
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I. INTRODUCTION

One of the interesting features of hadron production in
heavy-ion collisions (HIC) is the discovery of the scaling prop-
erty of the pseudorapidity distribution in the fragmentation
region over an order of magnitude of variation in the collision
energy [1,2]. Such a property was hypothesized in [3] for pp
collision, and was referred to as limiting fragmentation. The in-
dependence on energy, however, does not imply independence
on the collision system. The pseudorapidity distributions in
the fragmentation region show definitive dependence on the
centrality of Au+Au collisions for any fixed energy [2,4].
Indeed, one cannot expect on theoretical grounds that the
properties of hadron production in that region should be the
same in pp and AA collisions. Whereas in pp collisions no
particle can be produced with a rapidity greater than the beam
rapidity, that is not the case in AA collisions. In fact, in terms
of the variable η′ = η − ybeam, where η is the pseudorapidity
and ybeam the beam rapidity, PHOBOS data indicate that
the charged-particle distribution dNch/dη′ does not vanish in
the η′ > 0 region [2,5]. We shall refer to that region as the
transfragmentation region (TFR). In this paper we describe
the physics of hadron production in the TFR in the framework
of the recombination model.

Limiting fragmentation is a natural consequence of any
formalism that uses momentum fractions of partons as the
essential variables to describe hadronization since c.m. energy
does not appear explicitly. However, particle production in
the TFR is intriguing because it seems to violate momen-
tum conservation, as it certainly would in pp collisions. In
AA collisions, complications arise because fragments of the
noninteracting spectators can get into the detectors at small
angles. For peripheral collisions at relatively low energy
(
√

s = 19.6 GeV), dNch/dη′ seems to approach a constant
value as η′ → 2 [2,5]. Such effects seem to diminish at higher√

s. But let us put aside such issues, since our interest here is in
the hadronization of the interacting part of nuclear collisions.
For that, there is at present no data in the TFR for, say

√
s =

200 GeV. Nevertheless, it is an interesting and important

question to ask whether there exist theoretical reasons for
hadrons to be produced in the TFR.

Since the problem deals with low-transverse-momentum
(low-pT ) physics, one cannot make use of perturbative QCD
(pQCD) with any degree of confidence. Nevertheless, if one
takes the point of view that hadrons are produced in the
fragmentations region (FR) by parton fragmentation, such as
in the dual parton model [6], then no hadrons can appear in the
TFR, since all partons have momentum fractions less than 1.
On the other hand, in parton recombination, the momentum
fractions are additive and can result in a hadron momentum
fraction greater than 1, provided that the constituents come
from different nucleons in the colliding system, a condition that
is readily satisfied in AA collisions. It is with that possibility in
mind that we study in detail the problem of hadron production
in the TFR in the recombination model (RM) [7,8,9].

Nuclear collisions have the complication of momentum
degradation of constituents traversing nuclear matter. We have
investigated the degradation effect in pA collisions, treating
the constituents in terms of valons [8,10], and found good
agreement with the data on “baryon stopping” in the FR
[11,12]. Here, in AA collisions the medium is dense, and our
focus is on the TFR. Nevertheless, similar formalism will be
used to take the degradation effect into account.

Since hadronization is a problem that involves the momenta
of the consituents in an essential way (as does momentum
degradation), we shall be working with the momentum fraction
variable x, instead of the pseudorapidity variable η. In terms
of x, the TFR is more precisely x > 1, and the FR is for x < 1,
but above, say, 0.2. These regions do not map isomorphically
to regions in η, since pT is involved in the definition of angle
θ . Although η is a more convenient variable for experimental
detection, we shall work entirely with the x variables. The
mismatch between theory and experiment in that respect can
be overcome only when the pT values of the detected particles
are determined. Until then, we cannot compare our predictions
with any data. In our treatment, the physics of hadronization
on both sides of x = 1 is continuous, so we shall calculate
the spectra in the region 0.6 < x < 1.2, which we broadly
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refer to as TFR, as it roughly corresponds to the η′ > 0 region
(although in principle, there is no upper limit on x).

We note that in the region x ∼ 1 the possibility of formation
of very high parton density at very high energy has been
pointed out in [13]. Such a possibility may affect the p/π

ratio, but is not taken into account in our treatment here.
Apart from details, our main qualitative prediction is that

protons dominate the charge particles detected in the TFR.
Such a prediction should be easier to confirm or falsify than
the verification of our results on the inclusive distributions in
x. It is hoped that this paper will stimulate an effort to improve
particle idenfication in the TFR.

II. PRELIMINARY CONSIDERATIONS

Let us begin with the kinematics relevant for the TFR in
HIC at high energy. For hadrons detected at small angle θ

relative to the beam axis, we may approximate tan θ/2 by
pT /2pL, where pT and pL are the transverse and longitudinal
momenta, respectively, of the produced hadron. Thus the
pseudorapidity is η = ln(2pL/pT ), while the beam rapidity
is ybeam = ln(

√
s/mp), where mp is the proton mass. With η′

being the shifted pseudorapidity, η′ = η − ybeam, we have for
Feynman x, defined by x = 2pL/

√
s,

x = pT

mp

eη′
. (1)

The mapping between η′ and x therefore depends on pT .
If in the forward region 〈pT 〉 < mp, then the η′ > 0 region
corresponds to a range in x that straddles x = 1. For that reason,
we study the hadron spectra in the range 0.6 < x < 1.2 as a
representative of the TFR.

Next we consider the geometrical aspect of nuclear colli-
sions. For convenience in identifying the forward direction,
let us consider AB collisions, and we are interested in the
production of hadrons in the TFR of A. In the Glauber model,
we write the cross section of AB collisions in the form

σAB =
∫

d2bgAB(b), (2)

where

gAB(b) =
∫

d2sTA(s)[1 − e−σTB (|�s−�b|)]

+
∫

d2sTB(s)[1 − e−σTA(|�s−�b|)]. (3)

TA(s) is the thickness function normalized to A, i.e.,

TA(s) = A

∫
dz ρ(s, z),

∫
d2s TA(s) = A, (4)

ρ being the nuclear density normalized to 1; σ in Eq. (3) is the
inelastic nucleon-nucleon cross section.

To calculate the average number of wounded nucleons in B,
we consider only the first term in Eq. (3) and call it g(A)B(b).
Define �(A)B

ν (b) to be the probability of A having ν collisions
in B at impact parameter b, so that

g(A)B(b) =
B∑

ν=1

�(A)B
ν (b). (5)

Then we have

�(A)B
ν (b) =

∫
d2sTA(s)πpB

ν (|�s − �b|), (6)

where π
pB
ν is the corresponding probability in pB collisions

[14]

πpB
ν (b) = 1

ν!
[σTB(b)]ν exp[−σTB(b)], (7)

from which one can recover the necessary condition

B∑
ν=1

πpB
ν (b) = 1 − exp [−σTB(b)] , (8)

as required by Eqs. (5) and (6). Moreover, we obtain

B∑
ν=1

νπpB
ν (b) = σTB(b). (9)

Thus for pB collisions the average number of wounded
nucleons in B at b is

ν̄pB (b) =
∑B

ν=1 νπ
pB
ν (b)∑B

ν=1 π
pB
ν (b)

= σTB(b)

1 − exp[−σTB(b)]
. (10)

Now, returning to AB collisions, the average number of
wounded nucleons in B is

ν̄(A)B(b) ≡
∑B

ν=1 ν�(A)B
ν (b)∑B

ν=1 �
(A)B
ν (b)

= σ
∫

d2sTA(s)TB(|�s − �b|)
g(A)B(b)

.

(11)

Since the number of binary collisions NAB
coll (b) is the numerator

of the last expression in Eq. (11), and the number of
participants NAB

part is gAB(b), we have for AA collisions

ν̄(A)A(b) = NAA
coll (b)

NAA
part(b)/2

. (12)

For Au+Au collisions at 200 GeV, the tabulated values of Ncoll

and Npart are 1065 and 351 (at 0–5% centrality) and 220 and
114 (at 30–40%) [15]. Hence we get

ν̄(A)A = 6.1 (0–5%),

= 3.9 (30–40%). (13)

The impact parameters that correspond to the two centrality
bins can be calculated from the overlap function

TAA(b) =
∫

d2s TA(s)TA(|�s − �b|). (14)

Using the simplified form for ρ(s, z) with uniform density
in Eq. (4) results in a distribution for TAA(b) that is slightly
higher than the tabulated values for various centrality bins
given in [15]. Nevertheless, from the shape of the distribution,
the corresponding values of b can reasonably be set at

b = 1fm (0–5%),

= 8fm (30–40%). (15)

The consideration of nuclear geometry and the associated
wounded nucleons will become important in the following
when the momentum degradation effect is taken into account.
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III. HADRON PRODUCTION AT LARGE pL IN THE
RECOMBINATION MODEL

In pp collisions, no particle can be produced with pL >√
s/2. In AB nuclear collisions, one would initially expect the

same to be true. However, n nucleons in A have a combined
momentum of n

√
s/2, which can make possible a particle

produced with pL >
√

s/2 without violating momentum
conservation, if a coherence effect is at work. That would
be the case if the valence quarks in three nucleons in A, each
with momentum fraction xi > 1/3, say, recombine to form
a nucleon, whose Feynman x can then exceed 1. It is also
possible for a pion to be produced with x > 1, but since an
antiquark in the sea (or a gluon converted to qq̄) is needed
with large enough xi to recombine with a valence quark of
another nucleon, the probability is much lower. This type
of consideration need not be restricted to the x > 1 region.
Even for x > 0.6, which we broadly refer to as TFR, the
recombination of partons from different nucleons in A will
dominate over those processes where the partons are from
the same nucleon, as in pB collisions. That dominance is
over and above the shifted peak in rapidity due to “baryon
stopping” simply on the basis of extra momentum availability
in AB collisions. Thus, even without detail calculations we can
predict that the p/π ratio is large in the TFR in AB collisions.
Similarly, the �/K ratio is also large.

Hadron production at low pT and large pL in hadronic
collisions has been treated in the RM in good agreement with
data [7,8,9]. The extension now to nuclear (AB) collisions with
emphasis on the TFR region has the same basic recombination
formula,

HAB
p (x) ≡ x

dNAB
p

dx
=

∫
dx1

x1

dx2

x2

dx3

x3
FAB

uud (x1, x2, x3)

×Rp(x1, x2, x3, x), (16)

for the production of proton. Rp is the recombination function
(RF) that has been studied in the framework of the valon
model for the nucleon structure [8,10] by relating Rp to the
valon distribution Gp in the proton [16],

Rp(x1, x2, x3, x) = gst
x1x2x3

x3
Gp

(x1

x
,
x2

x
,
x3

x

)
, (17)

where

Gp(y1, y2, y3) = gp(y1y2)αy
β

3 δ(y1 + y2 + y3 − 1), (18)

gp = [B(α + 1, α + β + 2)B(α + 1, β + 1)]−1 ,

(19)

and gst is the statistical factor 1/6 [16]. It is by successfully
fitting the CTEQ parton distribution functions at low Q2 that
the parameters α and β are determined to be [10]

α = 1.75, β = 1.05. (20)

The δ function in Eq. (18) enforces the momentum sum for
recombination:

∑
i xi = x.

The key quantity in Eq. (16) is the three-quark distribution
FAB

uud (x1, x2, x3). If it were like in pB collisions, then the
quarks would all originate from the projectile, and the xi

in F
pB

uud (x1, x2, x3) would satisfy
∑

i xi < 1. However, in the

TFR of AB collisions, we consider the dominant component
in which each quark is from a separator nucleon in the same
longitudinal tube at distance s from the center of A, so that we
can write in the factorizable form

F
(3)B
uud (x1, x2, x3) = Fu

ν̄ (x1)Fu
ν̄ (x2)Fd

ν̄ (x3), (21)

with the labels �s and �b suppressed. On the left-hand side
of Eq. (21) we use (3) instead of A in the superscript to
emphasize that only three nucleons in A are considered. How
to generalize from 3 to A will be discussed in Sec. IV. The
effect of momentum degradation due to the passage through B
will be considered in the next section. The crucial point here is
that the variables xi in Eq. (21) are independent of one another,
so the integrals in Eq. (16) are from 0 to 1 for each xi . Thus the
maximum possible x is 3, well beyond the conventional FR. It
is this unconventional possibility of producing a proton in the
TFR that motivates our investigation here.

In Eq. (21), we used the superscripts u and d to denote the
flavors of quarks that are to recombine in Eq. (16) where the
RF is given by Eqs. (17) and (18) with y1 and y2 referring to
the u quark and y3 to the d quark. However, if the projectile
A is an isoscalar, which we shall assume, then at every impact
parameter s there are equal numbers of protons and neutrons,
so Fu

ν̄ = Fd
ν̄ . In the valon model for pB collisions, the quark

distributions are [11]

F
u,d
ν̄ (xi) =

∫ 1

xi

dy ′Ḡ′
ν̄(y ′)K

(
xi

y ′

)
, (22)

where the valon distribution Ḡ′
ν̄(y ′) differs from G(y) because

of momentum degradation, as will be discussed in detail in
the following section. K(z) is the quark distribution in a
valon. Since our valon distribution is flavor independent, K(z)
consists of both valence and sea quarks [10]

K(z) = KNS(z) + L(z), (23)

where

KNS(z) = za(1 − z)b/B(a, b + 1),
(24)

a = 0.35, b = −0.61.

These parameters a and b are determined from the moments
of KNS given in [10]. For the sea quark distribution L(z) we
have to do two things: first, we have to average the favored
(Lf ) and unfavored (Lu) distributions given [10]; second, we
readjust the normalization to saturate the sea. Lf (z) and Lu(z)
have been determined for the proton sea to distinguish, for
example, a u quark in a U valon (favored) from a d quark in a
U valon (or a u quark in a D valon, unfavored). They are, for
Q = 1 GeV/c [10],

ln Lf (z) = −2.66 + 0.08t − 10.4t2 − 6t3,
(25)

ln Lu(z) = −2.92 + 4.0t − 5.95t2 − 1.4t3,

where t = − ln(1 − z). We define

Lq(z) = 1
2 [Lf (z) + Lu(z)]. (26)

This distribution does not include the conversion of gluons to
the sea quarks, a process that we must consider in order to
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account for the hadronization of all partons, including gluons
[8,9]. Thus to saturate the sea, we renormalize as

L′
q(z) = ZLq(z), (27)

where Z is determined by solving the two algebraic equations
that express the momentum conservation in the u, d, s sections
in terms of the second moments [9]

K̃NS(2) + 2[2L̃q(2) + L̃s(2)] + L̃g(2) = 1 (28)

K̃NS(2) + 2[2L̃′
q(2) + L̃′

s(2)] = 1 (29)

Z = 1 + L̃g(2)

2[2L̃q(2) + L̃s(2)]
. (30)

In Eq. (29) we have assumed that the s-quark sea is enhanced
also in nuclear collisions, unlike the case of hadronic collision
where the gluons are convected to the light-quark sector only
through g → qq̄ [9]. In forming Eq. (30), we have set L′

s =
ZLs also. Since the second moments in Eq. (30) are tabulated
in [9], we obtain

Z = 3.42. (31)

In the following we shall consider L′
q(z) only when the light

quarks in the sea are needed, including the L(z) term in
Eq. (23).

For pion production, the physical content of the calcula-
tional procedure is the same as for proton production, except
that it is a qq̄ recombination. Thus, as in Eqs. (16), (21), and
(22), we have

HAB
π (x) ≡ x

dNAB
π

dx
=

∫
dx1

x1

dx2

x2
FAB

qq̄ (x1, x2)Rπ (x1, x2, x),

(32)

F
(2)B
qq̄ (x1, x2) = F

q
ν̄ (x1)F q̄

ν̄ (x2), (33)

F
q̄
ν̄ (x2) =

∫ 1

x2

dy ′Ḡν̄(y ′)L′
q

(
x2

y ′

)
, (34)

where F
q̄
ν̄ is obtained from the saturated sea. The recombina-

tion function for pion is [8,9]

Rπ (x1, x2, x) = x1x2

x2
δ
(x1

x
+ x2

x
− 1

)
. (35)

In an isosymmetric collision system, we need not distinguish
the charge states. � and K production can similarly be
considered.

IV. MOMENTUM DEGRADATION

In the preceding section, we described the quark distribution
in Eq. (22) as a convolution of the valon distribution and the
quark distribution in a valon, but we did not specify the former.
In a pp collision, the valon distribution G(y), y beginning the
momentum fraction, has been identified as that of the free
proton on the basis that at low pT and large pL the fast partons
in the forward direction are unaffected by the opposite-going
partons because of the lack of long-range correlation in
rapidity. The valon model connects the bound-state problem
of a static proton (in terms of constituent quarks) with the

structure problem of a proton in collision (in terms of partons)
[8]. In a pA collision, the effect of momentum degradation
in the passage of the projectile through the nuclear target is
applied to the valons in Ref. [11], where it is shown not only
how baryon stopping can be obtained in agreement with data,
but also how pion production in the FR can be determined. We
now extend the treatment to the TFR in the AB collisions.

In a free proton, the single-valon U and D distributions are
obtained from the exclusive distribution given in Eq. (18) by
integration,

GU (y1) =
∫ 1−y1

0
dy2

∫ 1−y1−y2

0
dy3 Gp(y1, y2, y3)

= gpB(α + 1, β + 1)yα
1 (1 − y1)α+β+1, (36)

GD(y3) =
∫ 1−y3

0
dy1

∫ 1−y1−y3

0
dy2 Gp(y1, y2, y3)

= gpB(α + 1, α + 1)yβ

3 (1 − y3)2α+1. (37)

For isoscalar nuclei, we take the average

G(y) = 1
2 [GU (y) + GD(y)] (38)

before the nucleon traverses the nuclear medium. We note
that G(y) is not an invariant distribution, but yG(y) is. It is
normalized by∫ 1

0
dyG(y) =

∫
dy1dy2dy3 G(y1, y2, y3) = 1, (39)

i.e., the probability for the proton to consist of three and only
three valons is 1.

Suppose now that a nucleon in A at a fixed impact parameter
s collides with ν̄ wounded nucleons in B on the average. Since
|�s − �b| can be almost as large as the radius R, it is possible
for ν̄(b, s) to be very small. That is the geometrical situation
where several nucleons in A can contribute to the TFR without
much momentum degradation. When we consider fluctuations
of ν from ν̄, we must include the possibility of ν being 0. Thus
we use the Poisson distribution

Pν̄(ν) = ν̄ν

ν!
e−ν̄ (40)

with normalization defined by summation from ν = 0
∞∑

ν=0

Pν̄(ν) = 1. (41)

If a valon loses a momentum fraction 1 − κ at each
collision, then after ν collisions the modified valon distribution
is

y ′G′
ν(y ′) =

∫ 1

y ′
dy G(y) δ

(
y ′

y
− κν

)
, (42)

from which follows

G′
ν(y ′) = κ−2νG(κ−νy ′). (43)

The parameter κ for the reduced momentum fraction is
unknown, since it should not be inferred from the pA collision,
which is for a cold nuclear target. In AB collisions a tube in
A contains many nucleons which cannot all be treated as if
each of them collides with ν nucleons in a cold nucleus B.
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FIG. 1. Proton distributions in the TFR for (a) b = 1 fm and
(b) b = 8 fm.

Indeed, it is hard to assess the state of B when the back part of
the tube traverses the medium. We can at best use an adjustable
parameter κ to describe in some average sense what contributes
to the TFR. From Eq. (43), we obtain after ν̄ collisions on the
average

Ḡ′
ν̄(y ′) =

∞∑
ν=0

G′
ν(y ′)Pν̄(ν). (44)

Identifying ν̄ with the quantity expressed by Eq. (10) is
based on the assumption that each valon experiences the same
average number of collisions as the parent nucleon does.

Ḡ′
ν̄(y ′), as given in Eq. (44), is the modified valon

distribution that should be used in Eqs. (22) and (34). That
takes care of the nuclear effect. What remains is the calculation
of the p and π distributions in the TFR.

V. PROTON AND PION DISTRIBUTIONS

To calculate the hadron distributions in x, we return to
Eq. (16) as a general formula, which needs, however, some
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FIG. 2. Proton distributions in the TFR normalized by Npart/2
for (a) κ = 0.8 and (b) κ = 0.6, where κ is the survival factor in
momentum degradation.

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

b=1 fm

(a) κ=0.8

κ=0.6

b=8 fm

(b)

(a) b=1 fm

κ=0.8

κ=0.6

(b) b=8 fm

(a) b=1 fm

κ=0.8

κ=0.6

(b) b=8 fm

(a) b=1 fm

κ=0.8

κ=0.6

(b) b=8 fm

0.6 0.8 1 1.2
x

10
–6

10
–4

10
–2

10
0

10
–6

10
–4

10
–2

xd
N

π/d
x

FIG. 3. Same as Fig. 1, but for pion distributions.

more elaboration to account for the size of A. In Eq. (21)
we show the factorizable form of F

(3)B
uud when there are only

three nucleons in the projectile, each contributing a quark.
Now, we specify the details of how to calculate FAB

uud , which is
called for in Eq. (16).

In Sec. II, we have in Eq. (7) the probability π
pB
ν (b) for a

nucleon making ν collisions in B at impact parameter b. Now,
consider the same quantity in A and write

πAp
µ (s) = 1

µ!
[σTA(s)]µ exp [−σTA(s)] (45)

for the probability that µ nucleons in A colliding with a nucleon
in B at impact parameter s in A. In place of Eq. (6), we now
have for µ nucleons in A colliding with ν nucleons in B the
probability

�AB
µν (b) =

∫
d2s

σ
πAp

µ (s)πpB
ν (|�s − �b|). (46)

Since at least three nucleons in A are needed for our calculation
of the proton distribution in the TFR of A, as done in Sec. III,
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FIG. 4. Same as Fig 2, but for pion distributions.
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FIG. 5. p/π ratio for (a) b = 1 fm and (b) b = 8 fm.

we must sum over µ starting with µ = 3 and get

HAB
p (x, b) =

∫
d2s

σ

∞∑
µ=3

πAp
µ (s)

(
µ

3

)
H (3)B

p (x, b, s), (47)

where H (3)B
p (x, b, s) is what we described in Eqs. (16), (21),

and (22), i.e.,

H (3)B
p (x, b, s) =

∫ [
3∏

i=1

dxi

xi

F
q
ν̄ (xi)

]
Rp(x1, x2, x3, x), (48)

where ν̄ is given by Eq. (10) but at |�s − �b|, that is,

ν̄ = ν̄pB (|�s − �b|) = σTB(|�s − �b|)
1 − exp

[
−σTB(|�s − �b|)

] . (49)

The sum over µ in Eq. (47) can be performed, yielding

HAB
p (x, b) =

∫
d2s

σ

[σTA(s)]3

3!
H (3)B

p (x, b, s). (50)

Note that with this formula we do not need the results on
ν̄(A)A(b) given in Eqs. (12) and (13).
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FIG. 6. Same as Fig. 5, but for (a) κ = 0.8 and (b) κ = 0.6.

For pion production, it is straightforward to modify Eq. (50)
and get

HAB
π (x, b) =

∫
d2s

σ

[σTA(s)]2

2!
H (2)B

π (x, b, s), (51)

where

H (2)B
π (x, b, s) =

∫
dx1

x1

dx2

x2
F

q
ν̄ (x1)F q̄

ν̄ (x2)Rπ (x1, x2, x),

(52)

since F
q̄
ν (x2) is severely damped at large x2,H

AB
π (x, b) is ex-

pected to be much more suppressed compared to HAB
p (x, b) in

the TFR. Nevertheless, HAB
π (x, b) need not vanish for x > 1,

unlike H
pB
π (x, b).

On the basis of Eqs. (50) and (51) we have calculated the
proton and pion distributions for Au+Au collisions at b = 1
and 8 fm, corresponding to 0–5% and 30–40% centralities,
according to Eq. (15). We used the approximation of uniform
nuclear density with R = 1.2A1/3 fm, and σ = 41 mb. For the
parameter κ , which represents the surviving valon momentum
fraction after each collision, we chose two representative
values, κ = 0.8 and 0.6, where κ = 1 implies no momen-
tum degradation. The results for the invariant distribution
xdNp/dx for the proton, which is just H AuAu

p (x, b), are shown
in Fig. 1 for b = 1 and b = 8 fm, with κ = 0.8 and 0.6. All
four lines are nearly straight, i.e., exponential in x, smoothly
throughout the TFR. There can be other contributions to proton
production in that region due to the recombination of quarks
originating from one or two nucleons, but they are so small
that we ignore them.

Figure 1 shows that the x distributions are suppressed
when there is more momentum degradation (smaller κ), as
expected. In the case of pA collisions, such a suppression would
correspond to the qualitative notion of baryon stopping. But in
AA collisions, instead of stopping, we have protons produced
at x > 1. Nevertheless, the overall normalization is lowered
when there is more momentum degradation. Thus, there are
two features about the inclusive distribution of the proton: it
extends smoothly beyond x = 1, and it is more suppressed at
lower κ . The physical value of κ that corresponds to reality can
be determined only after data become available and are plotted
as in Fig. 1. To summarize the behavior of the x distributions,
we parametrize them in the form

x
dNp

dx
(b) = exp

[
h

p

0 (b) − h
p

1 (b)x
]
, 0.6 < x < 1.2, (53)

which fits the lines in Fig. 1 extremely well with the parameters
h

p

0 (b) and h
p

1 (b) given in Table I.
It is of interest to know how the distribution depends on

centrality at a given κ . We plot the distributions normalized by

TABLE I. Parameters h
p

0 and h
p

1 for proton.

κ = 0.8 κ = 0.6

b = 1 b = 8 b = 1 b = 8

h
p

0 (b) 10.58 9.90 7.03 7.93

h
p

1 (b) 9.80 8.18 8.41 8.04
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TABLE II. Parameters hπ
0 , hπ

1 , and hπ
2 for pion.

κ = 0.8 κ = 0.6

b = 1 b = 8 b = 1 b = 8

hπ
0 1.96 1.25 0.0063 −0.083

hπ
1 5.46 7.39 7.40 8.32

hπ
2 14.15 14.79 14.66 14.87

Npart/2 in Fig. 2, which shows how they are suppressed as the
collision changes from peripheral to central. At larger b, the
collisions on average have higher µ and lower ν in Eq. (46),
leading to more partons hadronizing in the TFR.

In [2], data from Au+Au collisions at 200 GeV show
that the η′ distributions for 0–6% and 35–40% crossover at
η′ ≈ −2. According to Eq. (1), that would correspond to
x ≈ 0.135pT /mp <∼ 0.1, which is significantly outside the
TFR. For −2 < η′ < 0, the data show the peripheral case
higher than the central case, not unlike what we have in
Fig. 2(a).

For pion production, Fig. 3 shows the rapid decline of the
x distributions, as x is increased toward 1 and beyond. Since
q̄ distribution is suppressed at large x2, it is difficult for a
pion to acquire enough momentum to go deep into the TFR.
Nevertheless, the x > 1 region is not forbidden. It is evident
from Fig. 3 that there is no sensitive dependence on κ . The
reason is partly because there are only two Ḡ′

ν̄ functions in
Eqs. (33) and (34) for π , instead of three for p, but mostly
because the RF for π is broader than that for p. The valon
distribution in π is flat [9] (corresponding to pion being a
tightly bound state), so the wider momentum spread allows the
more degraded parton momenta to contribute to the formation
of π . In Fig. 4, we show the dependence on b. Compared
to Fig. 2, the pions do not show as much dependence as do
the protons, although the vertical scales of the two figures are
different and can lead to visual misreading. Quantitatively, we
can fit the distributions by

x
dNπ

dx
(b) = exp

[
hπ

0 (b) + hπ
1 (b)x − hπ

2 (b)x2
]
,

0.6 < x < 1.2, (54)

with the parameters given in Table II. Qualitatively, the pion
distributions are orders of magnitude lower than the proton
distributions.

Apart from the details of the x distributions, our main
prediction is that proton production dominates over pion
production in the TFR. To give a visual impact of that
dominance, we show in Figs. 5 and 6 the p/π ratio. At x ∼ 1,
the ratio is roughly 103 for any combination of b and κ . It is
such a large ratio that particle identification in the TFR would
be the most direct way to settle the question of whether our
hadronization scheme is in any way close to reality.

VI. CONCLUSION

We have investigated hadron production in the transfrag-
mentation region. The overwhelming feature of our result is
that the p/π ratio is extremely large, roughly 103 at x ∼ 1.
That feature is a direct consequence of parton recombination.
For a proton to be produced at x ∼ 1, it is rather easy to find
three nucleons in A, each contributing a quark at xi ∼ 1/3 to
form the proton. However, for a pion at x ∼ 1, it is hard to
find any antiquark at, for example, xi ∼ 1/3 to help a quark
at ∼2/3 to make up the pion momentum. The quantitative
value of the p/π ratio can be obtained only after some rather
involved calculations. But to qualitatively have a distribution
in x that crosses the boundary at x = 1 smoothly is possible
only by parton recombination. Fragmentation would require all
hadrons to be produced at x < 1, if no parton had momentum
>1. In AA collisions, it is, in principle, possible for a parton
to acquire momentum >1; however, the probability for that is
very low, and the effect of its fragmentation is insignificant
compared to the recombination process of producing hadrons
at x ∼ 1.

Experimental data do show that particles can be produced
at η′ > 0, at least at lower energies. At 200 GeV, the data
stop at η′ ∼ 0, but show no evidence of vanishing there [2].
It is unfortunate that we cannot compare our result in x
to the data in η′, since pT of the produced particles are
unknown. Either particle identification or pT determination,
preferably both, would greatly help to relate theory and
experiment.

The importance of clarifying what happens in the TFR
is in the determination of whether there exists new physics
in the FR and beyond. In our treatment of the problem, we
have considered only low-pT physics, but we extended it to
include recombination of quarks at medium xi from different
nucleons. If proven correct by data, our results form the basis
from which to extend further to higher pT in the TFR. Then
there should arise a competition between the enhancement
effect studied here and the suppression effect found earlier in
forward production at intermediate pT in d + Au collisions
[17]. The suppression can be due to either initial-state or final-
state physics. Any future study of hadron production in a larger
domain in pT in the TFR will have to be consistent with the
physics explored here at low pT .
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