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Energy loss and dynamical evolution of quark pT spectra

Pradip Roy,1 Abhee K. Dutt-Mazumder,1 and Jan-e Alam2

1Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
2Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata, India

(Received 14 November 2005; published 25 April 2006)

Average energy loss of light quarks has been calculated in a two stage equilibrium scenario where the quarks
are executing Brownian motion in a gluonic heat bath. The evolution of the quark pT spectra is studied by solving
Fokker-Planck equation in an expanding plasma. Results are finally compared with experimentally measured
pion pT spectrum at RHIC.
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Production of high transverse momentum (pT ) particles
in heavy ion collision, in recent years, has assumed special
interest. This is related with the phenomenon of high pT

particle suppression dubbed as jet quenching. Actually ener-
getic partons while passing through plasma lose energy which
degrades the population of high pT hadrons. Experimentally
such suppression has been observed at Relativistic Heavy Ion
Collider (RHIC) at high pT domain [1]. This phenomenon of
“jet quenching” can be used to extract the properties of early
stage of the plasma temporarily produced in the high energy
heavy ion collision [2].

An essential component to study the modified pT spectrum
is to estimate parton energy loss in the thermal bath of quarks
and gluons. Significant progress has been made in recent years
to calculate this energy loss [2–9]. Partons in a plasma can
dissipate energy in two ways, either by two body scattering
(collisional loss) or via the emission of gluons (radiative loss).
In many of these calculations, first, path length dependent
energy loss is estimated, which, consequently is used to
modify the fragmentation functions that depopulate high pT

hadrons [10]. The present approach is different in the sense
that here we dynamically evolve the spectra (quark) from an
initial distribution and investigate its shape at different time
scales. The importance of this has already been discussed
in Refs. [3,11] where the focus has been on the radiative
loss. Even though this is the main mechanism of energy loss,
under certain kinematic conditions, collisional loss could be
comparable, or even be more, to its radiative counterpart [9].
In view of this, to estimate energy loss, we inject quarks with a
narrow distribution of energy and study the broadening of the
same as the system expands and cools. Likewise, pT spectra
is also evolved dynamically.

In the present model gluons are thermalized at a much
smaller time scale than quarks. Such two stage equilibration
scenario, albeit in a different context, was considered sometime
ago [12,13] comparing gg, gq(q̄) and qq(q̄) scattering rates.
The possibility of earlier thermalization (even faster) of (soft)
gluons is further accentuated, if the gluons are assumed to
be in color glass condensate (CGC) state initially. In CGC
scenario, it has been shown that thermal bath for the gluons
could be formed much earlier. The typical time scale for RHIC
and LHC energies are estimated to be ti = 1.40 GeV−1, ti =
0.62 GeV−1, respectively [14].

Under such a simplifying scenario, it thus reduces to
the Brownian motion problem where quarks are executing
random motion in the gluonic bath. Further evolution of
the quarks are, therefore, governed by the Fokker-Planck
equation (FPE). So we avoid solving full Boltzmann kinetic
equation (BKE) and approximate relevant collision integral in
terms of appropriately defined drag and diffusion coefficients
[15–17].

The drag and diffusion coefficients are calculated using
techniques of finite temperature perturbative quantum chromo-
dynamics. The former is related to the quark energy loss, while
the latter is related to the square of the momentum transfer
[15,16]. Both of these quantities show infrared divergences as
the collisions are dominated by soft (t-channel) gluons. To cure
this problem, we screen the interaction via hard thermal loop
(HTL) corrected propagator which makes long range Coulomb
interaction finite.

To arrive at the relevant FP equation from BKE we assume
that there is no external force and therfore,(

∂

∂t
+ vp · ∇r

)
f (p, x, t) = C[f (p, x, t)]. (1)

Here, quarks have a phase space distribution which evolves
in time and the collision term is evaluated by considering
ultrarelativistic scattering of the quarks and gluons which
eventually are expressed in terms of transport coefficients.
Considering that the system expands in the longitudinal
direction and taking z along the collision axis, the above
equation takes the form [18]

∂f (p, z, t)

∂t
+ vpz

∂f (p, z, t)

∂z
= C[f (p, z, t)]. (2)

Here, vpz = pz/Ep (for light partons Ep = |p|). This equation
can be simplified further for the central rapidity region which
is boost invariant in rapidity. This implies

f (pt, pz, z, t) = f (pt, p
′
z, τ ). (3)

Here p′
z = γ (pz − uzp), the transformation velocity uz =

z/t, γ = (1 − u2
z)−1/2 = t/τ and τ = √

t2 − z2 denotes
the proper time. Using the Lorentz transformation re-
lation ∂τ/∂z|z=0 = 0, γz=0 = 1 and ∂p′

z/∂z|z=0 = −p/t ,
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one finds

vpz

∂f

∂z
= −pz

t

∂f

∂pz

. (4)

Therefore the Boltzmann equation takes the following form:

∂f (pt, pz, t)

∂t

∣∣∣
pzt

=
(

∂

∂t
− pz

t

∂

∂pz

)
f (pt, pz, t), (5)

(
∂

∂t
− pz

t

∂

∂pz

)
f (pt, pz, t) = C[f (pt, pz, t)]. (6)

Evidently in Eq. (6), the term on the left side involving
pz/t arises because of the expansion while the right hand side
characterizes the collisions. The latter can be written in terms
of the differential collision rate Wp,q

C[f (pT,pz,t)] =
∫

d3q[Wp+q;qf (p + q) − Wp;qf (p)] (7)

which quantifies the rate of change of the quark momentum
from p to p − q,Wp,q = d�(p, q)/d3q.

In a partonic plasma, small angle collisions, with parametric
dependence of O(g2T ), are more frequent than the large angle
scattering rate. The latter goes as ∼O(g4T ). Therefore the
distribution function does not change much over the mean
time between two soft scatterings. This allows us to approx-
imate f (p + q) � f (p). In contrast, Wp,q, being sensitive to
small momentum transfer, falls off very fast with increasing q.
Therefore, we write

Wp+q,qf (p + q) � Wp,qf (p) + qi

∂

∂pi

(Wp,qf )

+ 1

2
qiqj

∂2

∂pi∂pj

(Wp,qf ). (8)

With this approximation, Eq. (6) can be written as(
∂

∂t
− pz

t

∂

∂pz

)
f (pT, pz, t)

= ∂

∂pi

Ai(p)f (p) + 1

2

∂

∂pi∂pj

[Bij (p)f (p)], (9)

where we have defined the following kernels:

Ai =
∫

d3qWp,qqi, (10)

Bij =
∫

d3qWp,qqiqj , (11)

Ai = ν

16p(2π )5

∫
d3k′

k′
d3k

k

d3q

p′ dωqi |M|2t→0f (k)

× (1+f (k′))δ3(q − k′ + k)δ(ω − vk′ · q)δ(ω − vk · q),

(12)

Bij = ν

16p(2π )5

∫
d3k′

k′
d3k

k

d3q

p′ dωqiqj |M|2t→0f (k)

× (1 + f (k′))δ3(q − k′ + k)

× δ(ω − vk′ · q)δ(ω − vk · q). (13)

First we consider Compton scattering (gq(q̄) → gq(q̄)) for
which

|M|2 = g4

[
s2 + u2

t2
− 4

9

s2 + u2

us

]
. (14)

In terms of explicit momentum variables it reduces to

|M|2t→0 = 8g4 p′k′pk

(q2 − ω2)2
(1 − cos θpk)(1 − cos θp′k′). (15)

In general we level the incoming four-momentum of the bath
particle (gluon) as K and the final momentum of the out going
particles as P ′ and K ′. The usual Mandelstums are written as
s, u, t with t = ω2 − q2, s = −(u + t). The scattering angles,
following Ref. [19], can be written as

cos θpq = ω

q
+ t

2pq
,

(16)
cos θkq = ω

q
− t

2pq
.

The parton parton collision is dominated by the soft
momentum transfer. To calculate the leading contribution,
therefore, we consider small angle scatterings only. In this
limit t → 0 and s = −u. Hence the collision is dominated
by the t channel, |M|2 → g42s2/t2. We also have cos θkq ∼
cos θk′q ∼ ω/q ∼ cos θpq ∼ cos θp′q and cos θpk = ω2/q2 +
(1 − ω2/q2) cos φpk . With these azimuthal angle averaged
matrix element becomes

〈M〉2
t→0 � 12g4p′k′pk(1 − ω2/q2)2/(q2 − ω2)2

� 12g4p2k2/q4. (17)

It might be noted that Eq. (12) is symmetric under k ↔ k′,
which allows one to write

A(p2) = ν

16p2(2π )5

∫
d3k′

k′
d3k

k

d3q

p′ dωp · q〈M〉2
t→0

× 1

2
[f (k)(1 + f (k′)) − f (k′)(1 + f (k))]

× δ3(q − k′ + k)δ(ω − vk′ · q)δ(ω − vk · q).

(18)

Recognizing the fact that ω is small compared to the momen-
tum, we have

f (k) − f (k′) = −ω
∂f

∂k
. (19)

Furthermore,

−
∫

k2 ∂f (k)

∂k
dk =

∫
2kf (k)dk = π2T 2

3
. (20)

With the help of these identities, the drag coefficient can easily
be calculated at the leading log order:

A(p2) = νπα2
s T

2

6p
L, (21)

where L = ∫
dq

q
[14]. Evidently this is infrared singular.

Such divergences do not arise if close and distant collisions
are treated separately. For very low momentum transfer the
concept of individual collision breaks down and one has to
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take collective excitations of the plasma into account. Hence
there should be a lower momentum cutoff above which bare
interactions are valid description, while for the softer collisions
medium modified hard thermal loop corrected propagator
should be used [8,9]. It is evident that Eq. (12) actually gives
dE/dt or the energy loss rate [9] that can be related to the
drag coefficient.

Bij can be decomposed into longitudinal and transverse
components:

Bij = Bt

(
δij − pipj

p2

)
+ Bl

pipj

p2
. (22)

Explicit calculation shows that the off diagonal components
of Bij vanish,

Bt,l = ν

(2π )5

∫
d3kd3qdω

2k2k′2p2p′ δ(ω − vp · q)δ(ω − vk · q)

×〈M〉2
t→0f (k)

[
1 + f (k) + ω

∂f

∂k

]
q2

t,l . (23)

Here, in the small angle limit ql � ω and qt �
√

q2 − q2
l . With

all these, in the leading log approximation

Bt = 2νπα2
s

3
T 3L, (24)

Bl = νπα2
s

3
T 3L. (25)

Here the fluctuation-dissipation theorem, is found to be
satisfied automatically. This connects drag and momentum
diffusion constant giving rise to Einstein’s relation B(p2) =
2T EA(p2), where Bij (p2) = δijB(p2). To remove arbitrari-
ness related with the momentum cutoff scales hidden in L,
hard thermal loop corrected propagator is used [9].

In the Coulomb gauge, we can define D00 = �l and Dij =
(δij − qiqj /q2)�t where �l and �t denote the longitudinal
and transverse gluon propagators given by

�l(q0, q)−1 = q2 − 3

2
ω2

p

[
q0

q
ln

q0 + q

q0 − q
− 2

]
, (26)

�t (q0, q)−1 = q2
0 − q2 + 3

2
ω2

p

×
[

q0
(
q2

0 − q2
)

2q3
ln

q0 + q

q0 − q
− q2

0

q2

]
. (27)

With this matrix element in the limit of small angle
scattering, we get the following expression for the squared
matrix element:

|M|2 = g4Cqq16(EE1)2|�l(q0, q)

+ (v × q̂).(v1 × q̂)�t (q0, q)|2 (28)

with v = p̂, v1 = p̂1 and Cqq is the color factor. With this
screened interaction, further calculation for the drag and
diffusion constant proceeds along the line of Ref. [9].

Now to calculate average energy loss of the light quarks
in an expanding partonic plasma we inject test quarks having
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FIG. 1. Average energy loss of quarks as a function of time for
various initial average energies.

following distribution at time ti :

f (pT , pz, t = ti) = Nδ2(pT − pT 0)δ(pz − pz0). (29)

As the time progresses the system expands and f (pT , pz, t)
evolves according to Eq. (9). The average energy loss is given
by

〈�E〉 = 〈E〉 − E0, (30)

where 〈E(t)〉 = ∫
d3pEf (pT , pz, t)/

∫
d3pf (pT , pz, t). E0

corresponds to the peak of the initial spectrum, i.e., E0 =
〈E(ti)〉.

In Fig. 1, we present results for the energy loss as a function
of time for various initial energies with means indicated in the
legend. To describe the expansion dynamics we implement

Bjorken cooling law [20]τiT
1/c2

s

i = τT 1/c2
s , where cs is the

velocity of sound. The results are compared with the measured
pion pT spectrum at RHIC [21] in Fig. 2. The initial pT

distribution of quarks is assumed to be proportional to the
pion pT spectrum as measured in p-p collision [22]:

f (pT , pz, t = ti) = N0

pT

dN(y = 0)

d2pT dy
= N̄0

pT

1(
1 + pT

p0

)ν , (31)

where, ν = 9.97 and p0 = 1.212 and N0 is the normalization
constant.

The expanding system approach the transition temperature,
Tc ∼ 190 MeV at a time t ∼ 2 fm/c. Assuming that the
high pT partons materialize into hadrons outside the system
and the hadronization process does not affect the shape
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FIG. 2. Time evolution of the transverse momentum distributions.
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of the pT distribution drastically, the quark spectra at t ∼
2 fm/c may be compared with the pion spectrum obtained
experimentally.

In conclusion, we, in the present work, estimate quark
energy loss considering stochastic nature of the interaction
for which three dimensional FP equation is solved. Relevant

drag and diffusion coefficient have been calculated in the
soft collision limit. To highlight the importance of collisional
energy loss radiative processes is excluded. We find that two
body scattering gives reasonable amount of quenching so as to
accommodate RHIC data and also describes the shape of the
pT spectra reasonably well.
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