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Back-to-back correlations for finite expanding fireballs
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Back-to-back correlations of particle-antiparticle pairs are related to the in-medium mass-modification and
squeezing of the quanta involved. They are predicted to appear when hot and dense hadronic matter is formed in
high energy nucleus-nucleus collisions. The survival and magnitude of the back-to-back correlations (BBC) of
boson-antiboson pairs generated by in-medium mass modifications are studied here in the case of a thermalized,
finite-sized, spherically symmetric expanding medium. We show that the BBC signal indeed survives the finite-
time emission, as well as the expansion and flow effects, with sufficient intensity to be observed at BNL Relativistic
Heavy Ion Collider (RHIC).
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I. INTRODUCTION

Recently, it has been shown [1,2] that large back-to-back
correlations (BBC) of particle-antiparticle pairs of bosonic
particles might appear in high energy nucleus-nucleus colli-
sions as a consequence of in-medium mass modification of
the bosons. Detailed calculations indicate that the BBC signal
appears for values of transverse momenta below 1–2 GeV/c.
More recently, it was shown [3] that BBC of similar strength
might appear for fermionic particles as well. The main physical
ingredient used in the evaluation of the effects of in-medium
modified masses on two particle correlation functions is a
quantum-mechanical correlation induced by a nonzero overlap
between in-medium and free states. The induced quantum
mechanical correlation can be represented in terms of two-
mode squeezed states of the asymptotic, observable states and
is implemented through a Bogoliubov-Valatin transformation.

The possibility of measuring a significant BBC signal in
heavy-ion collisions opens new interesting possibilities for
accessing the properties of the matter formed in such collisions.
The BBC signal is linked to in-medium mass modifications
of hadrons in the hot and dense environment the detected
particles experience before freezing out and in this sense BBC
measurements provide independent pieces of information on
medium modifications from the ones obtained from dilepton
yields and spectra. However, there are several additional
physical effects that interfere with mass modifications of the
detected particles in the interpretation of the BBC signal.

All studies in Refs. [1–3] were restricted to infinite,
static media. For testing the robustness of the effect, we
generalize the previous studies to a more realistic situation
of mass modification in a finite-sized, expanding thermalized
medium. In this first investigation of such effects, we use a

simple hydrodynamical model for the expansion and simple
three-dimensional Gaussian profile for the size of the system.
Although simple, the model is rich enough to indicate the
influence of the expansion and finite-size effect on BBC.

In the next section we review the basic ingredients of the
model and in Sec. III we generalize the model to include
expansion effects. Numerical results are presented in Secs. IV
and V presents our conclusions and future perspectives.

II. REVIEW OF THE MODEL—INFINITE
HOMOGENEOUS MEDIUM

In the present paper we concentrate on bosonic BBC and
restrict the discussion to cases where the boson is its own
antiparticle—like the φ meson. We are interested in the two-
particle correlation function

C2(k1, k2) = N2(k1, k2)

N1(k1)N1(k2)
, (1)

where N1(ki) and N2(k1, k2) are, respectively, the invariant
single-particle and two-particle momentum distributions

N1(k1) = ωk1

d3N

dk1
= ωk1

〈
a
†
k1

ak1

〉
, (2)

N2(k1, k2) = ωk1ωk2

〈
a
†
k1

a
†
k2

ak2ak1

〉
= ωk1ωk2

[〈
a
†
k1

ak1

〉〈
a
†
k2

ak2

〉 + 〈
a
†
k1

ak2

〉〈
a
†
k2

ak1

〉
+ 〈

a
†
k1

a
†
k2

〉〈
ak2ak1

〉]
, (3)

where a
†
k and ak are free-particle creation and annihilation

operators of scalar quanta, and the angular brackets mean
thermal averages. The factorization of the expectation value
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of four operators into products of expectation values of two
operators in Eq. (3) has been derived as a generalization of
Wick’s theorem for locally equilibrated (chaotic) systems in
Refs. [4–6]. Introducing the chaotic and squeezed amplitudes
as

Gc(k1, k2) = √
ωk1ωk2

〈
a
†
k1

ak2

〉
, (4)

Gs(k1, k2) = √
ωk1ωk2

〈
ak1ak2

〉
, (5)

the two-particle correlation function can be written as

C2(k1, k2) = 1 + |Gc(k1, k2)|2
Gc(k1, k1)Gc(k2, k2)

+ |Gs(k1, k2)|2
Gc(k1, k1)Gc(k2, k2)

. (6)

The Gc(1, 2) is the usual Hanbury-Brown–Twiss (HBT)
amplitude and Gs(1, 2) is BBC amplitude.

The thermal average of an operator Ô, 〈Ô〉 = Tr(ρ̂ Ô), is
calculated with a density matrix ρ̂ corresponding to medium-
modified, thermalized quanta. The crucial point is that the
in-medium thermalized quanta are not the ones detected. The
detected quanta have energy-momentum kµ = (ωk, k), ω2

k =
k2 + m2 and are described by the creation and annihilation
operators a

†
k and ak. However, if we denote by b

†
k and bk the

creation and annihilation operators of in-medium, thermalized
quanta with k∗µ = (�k, k),�2

k = k2 + m2
∗(|k|), we can relate

the (a†
k, ak) to (b†k, bk) through a Bogoliubov-Valatin (BV)

transformation. Specifically, the annihilation operator ak1 for
the asymptotic quanta with momentum k1 is related to the
in-medium operators bk1 and b

†
k1

as [1]

ak1 = ck1bk1 + s∗
−k1

b
†
−k1

≡ C1 + S
†
−1, (7)

where we have introduced the notation C1 = ck1bk1 and S−1 =
s∗
−k1

b
†
−k1

to simplify later notation, and

ck = cosh[fk], sk = sinh[fk], fk = 1

2
log

(
ωk

�k

)
. (8)

The BV transformation for the creation operator a
†
k1

is obtained
from Eq. (7) by Hermitian conjugation. As is well known,
the Bogoliubov transformation is equivalent to a squeezing
operation, and this motivates calling fk the mode-dependent
squeezing parameter. In this way, it is the squeezing parameter
fk that carries the in-medium effects. Using the BV relation,
we obtain for the thermal averages in Eqs. (4) and (5)

Gc(k1, k2) = √
ωk1ωk2 [〈C†

1C2〉 + 〈S−1S
†
−2〉], (9)

Gs(k1, k2) = √
ωk1ωk2 [〈S†

−1C2〉 + 〈C1S
†
−2〉]. (10)

After performing the thermal averages indicated above,
with the help of a thermal density matrix ρ̂ corresponding
to the in-medium modified, thermalized quanta, the resulting
expressions for the case of an homogeneous medium are

Gc(1, 2) =
{

E1,2

(2π )3
[|c1,2|2n1,2

+ |s−1,−2|2(n−1,−2 + 1)]

}
V δ1,2, (11)

Gs(1, 2) =
{

E1,2

(2π )3
[s∗

−1,2c2,−1n−1,2

+ c1,−2s
∗
−2,1(n1,−2 + 1)]

}
V δ1,−2. (12)

From Eqs. (11) and (12) it is easily seen that, in the
approximation of a sudden freeze out, and in the case of a
homogeneous medium, Gc(k1, k2) ∝ V δ1,2 and Gs(k1, k2) ∝
V δ1,−2. Therefore, the amplitudes Gc(k1, k2) and Gs(k1, k2)
are nonvanishing only for k1 = k2 and k1 = −k2, respectively.
In the expression for the two-particle correlation function the
volume factors cancel out, and we obtain [2]

C2(k, k) = 2, (13)

C2(k,−k) = 1 + |cks
∗
knk + c−ks

∗
−k (n−k + 1) |2

n1(k)n1(−k)
, (14)

where n1(k) is defined by

N1(k) = V

(2π )3
ωkn1(k), (15)

with

n1(k) = [|ck|2nk + |s−k|2(n−k + 1)], (16)

and nk is the Bose-Einstein distribution function of the
in-medium quanta with energy �k at temperature T. The
exact value of the intercept, C2(k, k) = 2, is a characteristic
signature of a chaotic Bose gas without dynamical two-body
correlations outside the domain of Bose-Einstein condensa-
tion.

We should note that Eq. (14) is valid only in the rest frame
of the medium, i.e., the correlation is back-to-back only in
the rest frame of the matter. In the next section we extend
the model to a medium with finite size corresponding to a
fireball, which is exploding with a position dependent flow
velocity field distribution, so that only the central point of this
exploding fireball is at rest in the frame of the observation.

III. SPECTRA AND CORRELATIONS FOR MASS-SHIFTED
BOSONS IN FINITE EXPANDING SYSTEMS

We are mainly interested here in the study of the squeezed
correlation function—first and third terms of Eq. (6). For
studying the expansion of the system we adopt for the emission
function the nonrelativistic hydrodynamical parametrization
of Ref. [7], which was shown later to actually be a nonrel-
ativistic hydrodynamical solution. In this model the fireball
expands in a spherically symmetric manner with nonrela-
tivistic four-velocity uµ = γ (1, v), with γ = (1 − v2)−1/2 ≈
1 + v2/2, where

v = 〈u〉r/R,

〈u〉 and R are, respectively, the mean expansion velocity and
the radius of the fireball. Thus, we divide the inhomogeneous
medium into independent cells and assume that Eqs. (9) and
(10) can be evaluated locally within each cell using the BV
transformation of Eq. (7)—and its Hermitian conjugate. Then,
the amplitudes Gc and Gs can be written in the special form
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derived by Makhlin and Sinyukov [4], which are given by
Eqs. (22) and (23) of Ref. [2], namely,

Gc(k1, k2) =
∫

d4σµ(x)

(2π )3
K

µ

1,2e
iq1,2·x{|c1,2|2n1,2(x)

+ |s−1,−2|2[n−1,−2(x) + 1]}, (17)

Gs(k1, k2) =
∫

d4σµ(x)

(2π )3
K

µ

1,2e
2 iK1,2·x{s∗

−1,2c2,−1n−1,2(x)

+ c1,−2s
∗
−2,1 [n1,−2(x) + 1]}. (18)

Here d4σµ(x) = d3	µ(x; τf )F (τf )dτf is the product of the
normal-oriented volume element depending parametrically on
the freeze-out hypersurface parameter τf and on its invariant
distribution function F (τf ). We should notice that, in the
particular case in which each d4σµ(x) of Eqs. (17) and (18)
is parallel to uµ, that is, the emission from an elementary cell
mentioned above occurs instantaneously in its proper frame,
the exponential factor there will give rise, upon integration
over the cell assuming it is large enough, to the same factor
δ1,2 or δ1,−2 that were present in Eqs. (11) or (12), respectively.
As mentioned at the end of Sec. II, the arguments of δ here are
not k1 and k2 of the left-hand side, but should be understood
as given in the proper frame of the cell. In what follows,
the condition of instantaneous emission in the proper frame
of each cell is assumed to be approximately verified, since
our calculation is nonrelativistic. However, we should remark
that due to the fact that our elementary cells are not always
large, the correlation described above is only approximately
back-to-back.

The other quantities appearing in Eqs. (17) and (18) are
ni,j (x) ≡ n(x,Ki,j ), the local density distribution, and ci,j =
cosh[fi,j (x)] and si,j = sinh[fi,j (x)], squeezed functions with

fi,j (x) = 1

2
log

[
K

µ

i,j (x)uµ(x)

K∗ ν
i,j (x)uν(x)

]
, (19)

where uµ(x) is the local flow vector at freeze-out. The
relative and the average pair four-momentum coordinates
are defined as q0

1,2 = ω1 − ω2, q1,2 = k1 − k2,K
0
1,2 = (ω1 +

ω2)/2, and K1,2 = (k1 + k2)/2. Also, we identify in-medium
and squeezed quantities by superscripted asterisks. The relative
q

µ

i,j (x) and total four momenta Kµ of particles 1 and 2 are given
by

q
µ

i,j (x) = k
µ

i (x) − k
µ

j (x), K
µ

i,j (x) = 1
2

[
k

µ

i (x) + k
µ

j (x)
]
,

(20)

where k
µ

i (x) for i = ±1,±2 are given by

k
µ

±i(x) = ωki
(x)uµ(x) ± k̃

µ

i (x),
(21)

ωki
(x) =

√
m2 − k̃i

µ
k̃iµ = k

µ

i uµ(x),

with k̃
µ

i orthogonal to uµ(x):

k̃
µ

i = k
µ

i − ki · u(x)uµ(x), (22)

The corresponding in-medium quantities are given by

q
∗µ

i,j (x) = k
∗µ

i (x) − k
∗µ

j (x), K
∗µ

i,j (x) = 1
2

[
k

∗µ

i (x) + k
∗µ

j (x)
]
,

(23)

and

k
∗µ

±i (x) = �ki
(x) uµ(x) ± k̃

∗µ

i (x),
(24)

�ki
(x) =

√
m2∗(x, k̃) − k̃

∗µ

i k̃∗
iµ = k

∗µ

i uµ(x),

with

k̃
∗µ

i = k
∗µ

i − k∗
i · u(x)uµ(x). (25)

Now, it is not difficult to show that k̃
∗µ

i (x) = k̃
µ

i (x) and
therefore no star is necessary in k̃ for the in-medium quantities.
It should be noted that this equality was not clearly emphasized
in Ref. [2]. An important aspect of these relations is that due
to the mass modification, the energy in the local comoving
frame is modified from ωki

(x) = k
µ

i (x)uµ(x) = k
µ

±i(x)uµ(x)
to �ki

(x) = k
∗µ

i (x)uµ(x) = k
∗µ

±i (x)uµ(x), without modifying
the component of the four-momentum orthogonal to the
four-velocity. The above definitions are the detailed write-up of
similar definitions of Ref. [2], where a more succinct notation
has been used and the misprint signs (∓, instead of ±) in
Eqs. (27) and (28) of Ref. [2] have been corrected, respectively,
in expressions for k

µ

±i(x) and k
∗µ

±i (x) above. These definitions
of momenta are illustrated in Fig. 1, corresponding to the
relativistic and nonrelativistic limits, in parts (a) and (b),
respectively.

Using the above expressions, the squeezing parameter can
be evaluated as

fi,j (x) = 1

2
log

[
K

µ

i,j (x)uµ(x)

K∗ν
i,j (x)uν(x)

]

= 1

2
log

[
ωki

(x) + ωkj
(x)

�ki
(x) + �kj

(x)

]
≡ f±i,±j (x), (26)

FIG. 1. (Color online) The definition of the various momentum
possibilities discussed above (where the index 1 was chosen for
simplicity), and the illustration of the dependence of the back-to-back
momentum pairs on the four-velocity and on the mass shift, is shown
in (a) using relativistic notation. Solid lines represent the locally
back-to-back momentum pair and its components for asymptotic
quanta; dashed lines represent the same for in-medium modified,
mass-shifted quanta. In (b), the analogous situation is illustrated using
the nonrelativistic notation.
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where the spatial coordinate dependence enters through the
position dependence of either the four-velocity or the in-
medium mass modification, or both. However, it does not
matter which of the locally back-to-back momenta are used
for the evaluation of the amount of squeezing.

In this paper, we focus on the effects of expansion on the
back-to-back correlations—or, in other words, does the flow
wash out the signal for these correlations or not? Although
the formalism of the squeezed back-to-back correlations was
worked out with expanding systems in Ref. [2], no detailed
investigations were performed to quantitatively study, e.g., the
strength of the signal with varying the strength of the flow.

Here we intend to investigate this question in one of the
simplest geometrical cases. For the sake of clarity, we evaluate
the flow effects for a nonrelativistically expanding, spherically
symmetric fireball, that freezes out at a constant temperature
T and has a Gaussian density profile. In this sense, we adopt
the model emission function of Ref. [7], that was developed
to study single particle spectra and Bose-Einstein (HBT)
correlation functions in the simplest possible case of expanding
systems. Later on it has been realized, that this emission
function corresponds to the simplest member of a new family
of exact solutions of nonrelativistic hydrodynamics [8], which
can be generalized in a straightforward manner to cylindrically
and ellipsoidally symmetric [9] expansions, as well as to the
case of relativistic expansions [10], and in all cases, systems
that expand with inhomogeneous temperature profiles [9,11].

Before investigating in detail the effects of various kind of
inhomogeneities in the flow profiles and in the temperature
profiles, let us turn our attention to the nonrelativistic limit
adopting the simplest possible scenario for the expansion that
leads to analytic forms [7,8].

For the sake of clarity, we present the explicit expressions
in the nonrelativistic limit of the above quantities, which is the
appropriate limit for our nonrelativistic flow model. Writing
uµ = γ (1, v) and using γ = (1 − v2)−1/2 ≈ 1 + v2/2 ≈ 1, we
have that Eq. (22) leads to

ki − mv = k∗
i − m∗v, (27)

and therefore

k±i(r) = m v(r) ∓ mv(r) ± ki , (28)

k∗
±i(r) = m∗ v(r) ∓ m∗v(r) ± k∗

i . (29)

With this, we obtain

K
∗µ

i,j (x)uµ ≈ m∗ + 1

2m∗

{
[K∗

i,j − m∗v(r)]2 + 1

4
(q∗

i,j )2

}
,

(30)

where the total and relative local in-medium momenta are
given by

K∗
1,2(r) = 1

2 (k1 + k2) + (m∗ − m)v(r),
(31)

q∗
1,2(r) = (k1 − k2)

K∗
1,−2(r) = m∗v(r) + 1

2 (k1 − k2),
(32)

q∗
1,−2(r) = −2mv(r) + (k1 + k2)

K∗
−1,2(r) = m∗v(r) − 1

2 (k1 − k2),
(33)

q∗
−1,2(r) = 2mv(r) − (k1 + k2)

K∗
−1,−2(r) = (m∗ + m)v(r) − 1

2 (k1 + k2),
(34)

q∗
−1,−2(r) = −(k1 − k2).

The unstarred Ki,j and qi,j momenta are obtained from the
above by replacing m∗ by m in these expressions. Note that
q∗

i,j = qi,j , as it should be. These relations imply, that in the
nonrelativistic limit,

K∗
ij − m∗v = Kij − mv. (35)

In discussing finite-size effects, we distinguish between
the volume of the entire thermalized medium, denoted by V,
and the volume filled with mass-shifted quanta, denoted by
Vs . Naturally, Vs � V in the general case. In the derivation
of the expressions for Gc(1, 2) and Gs(1, 2), for simplicity,
we introduce a Gaussian profile function in the integrands,
i.e., we consider that the volumetric region where the mass
m∗ is significantly modified is smooth and Gaussian in shape.
In other words, instead of considering a particular domain of
integration, we perform the spatial integrals for Gc(1, 2) and
Gc(1, 2) using a Gaussian weight e−r2/2R2

s in the integrands,
extending the integration region to infinity. Specifically, we
have for Gc(1, 2) and Gs(1, 2)

Gc(k1,k2)= E1,2

(2π )3

∫
d3re−i(k1−k2)·r{e−r2/2R2

s (|c(1, 2)|2n∗
1,2(x)

+ |s(−1,−2)|2[n∗
−1,−2(x) + 1])

+ (
1 − e−r2/2R2

s

)
n1,2(x)

}
, (36)

Gs(k1, k2) = E1,2

(2π )3

∫
d3r e−i(k1+k2)·re−r2/2R2

s (s∗(−1, 2)

× c(2,−1) n∗
−1,2(x) + c(1,−2)s∗(−2, 1)

× [1 + n∗
1,−2(x)]), (37)

where n∗
i,j (x) means that the local distribution function is to be

evaluated with in-medium momenta, i.e., n∗
i,j (x) ≡ n(x,K∗

i,j ).

The integral over the factor (1 − e−r2/2R2
s ) represents the

integration over the region where there is no mass shift,
corresponding to the region V − Vs . In this region, we have
that the squeezing factors become c(i, j ) → 1 and s(i, j ) → 0.

In order to proceed, we need the expressions for n∗(i, j )
and n(i, j ). We consider their Boltzmann limit

n(x,Ki,j ) ≈ exp

[
−K

µ

i,juµ(x) − µ(x)

T (x)

]
, (38)

and the same for n∗
i,j (x) with Ki,j (x) replaced by K∗

i,j (x).
Considering that the chemical potential in the model of Ref. [7]
can be written as µ(x)/T (x) = µ0/T − r2/2R2, and making
use of Eq. (30), it is easy to show that

n∗
1,2(r) = n∗

0 exp

{
− r2

2R2
− [(k1 + k2)/2 − m〈u〉r/R]2

2m∗T

− (k1 − k2)2

8m∗T

}
= n∗

−1,−2(r) = n∗
−1,2(r) = n∗

1,−2(r), (39)
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where

n∗
0 = exp

(
−m∗ − µ0

T

)
. (40)

This factor is proportional to the mean multiplicity, and can
be determined in principle from the absolute normalization of
the single particle spectra. The corresponding unstarred ni,j (r)
are obtained from n∗

i,j (r) by replacing m∗ by m in Eq. (39).
When evaluating the spectra and the correlations from this

model, we realize that a mathematically equivalent problem
has already been considered in Ref. [7]. By replacing m → m∗
and t0 → RGm∗/〈u〉m in the equations of Ref. [7], the results
obtained there can be directly transcribed here.

Due to the equality in Eq. (35), we see that the accounting
for the squeezing effects can be simplified for small mass shifts
(m∗ − m)/m 
 1, such that the squeezing parameter can be
written as

f (i, j,r) = 1

2
log

[
Kµ(i, j,x)uµ(x)

Kν∗ (i, j,x)uν(x)

]
≈ 1

2
log

(
m

m∗

)
. (41)

The neglected terms are order of (kinetic energy/mass)2

(masshift/mass)2 and hence are of fourth order in small
quantities. This limit is important, because in this case the
coordinate dependence enters the squeezing parameter f only
through the possible position dependence of the mass-shift
and so the flow effects on the squeezing parameter can be
neglected. In principle, the position dependence of the mass
shift can be calculated from thermal field models in the local
density approximation. Therefore, in an approximation that
the position dependence of the in-medium mass is neglected,
the c(i, j ) = c0 and s(i, j ) = s0 factors can be removed from
the integrands and all what remains to be done are Fourier
transforms of Gaussian functions. The final result for Gc and
Gs can be written as

Gc(k1, k2) = E1,2

(2π )3

[
n∗

0(|c0|2 + |s0|2)I c
1,2(Rs,R, T ,m∗)

+|s0|2I c
1,2(Rs,∞,∞,m∗) + n0I

c
1,2(∞,R,T ,m)

− n0I
c
1,2(Rs,R, T ,m)

]
, (42)

Gs(k1, k2) = E1,2

(2π )3
c0| s0|

[
2n∗

0I
s
1,2(Rs,R, T ,m∗)

+ I s
1,2(Rs,∞,∞,m∗)

]
, (43)

where I c
1,2 and I s

1,2 are the resulting Fourier integrals

I c
1,2(Rs,R, T ,m(∗)) = (2πρ2

(∗))
3/2 exp

{
−

(
k2

1 + k2
2

)
4m(∗)T

− ρ2
(∗)

2

× [
(k1 − k2) + i

m〈u〉(k1 + k2)

2m(∗)T R

]2

}
,

(44)

I s
1,2(Rs,R, T ,m∗) = (2πρ2

∗)3/2 exp

{
−

(
k2

1 + k2
2

)
4m∗T

− ρ2
∗

2

[
1 + i

m〈u〉
2m∗T R

]2

(k1 + k2)2

}
, (45)

with

1

ρ2
(∗)

≡ 1

R2
s

+ 1

R2

(
1 + m2〈u〉2

m(∗)T

)
. (46)

Finally, we include finite-time emission effects in a
schematic way using for the invariant function F (τ ), that ap-
pears in the expression for d4σµ(x), the following expression:

F (τ ) = θ (τ − τ0)

t
e−(τ−τ0)/t , (47)

where t is a free parameter. This finishes the derivation of
all the ingredients needed to evaluate C2(k1, k2), Eq. (6). In
the next section we will present numerical results.

IV. NUMERICAL RESULTS

We present numerical results for two situations regarding
the volumes over which mass modification occurs. In the first
situation the mass shift occurs over the entire volume of the
expanding system, i.e., Vs = V . This amounts to removing
the factor e−r2/2R2

s in Eqs. (36) and (37) or, equivalently, take
Rs → ∞ in I c and I s . In the second situation, we consider
Vs < V . In order to comply with the nonrelativistic nature of
the expansion model used in this paper, we present numerical
results for the back-to-back correlations of a φ meson pair. In
free space, the φ meson mass is mφ = 1020 MeV.

A. Bulk decay of a volume filled with mass-shifted quanta

In this case, we suppose that the mass-shift occurs in the
entire volume of the system, for simplicity considered here as
a Gaussian with rms radius R. We will focus on the BBC
correlation function, whose generic expression consists of
the first and third terms on the right-hand-side of Eq. (6).
The detailed expressions for the amplitudes are given in
Appendix A. In what follows, we will concentrate on the
value of momenta of the participant pair that maximizes the
BBC signal, i.e., the case in which k1 = −k2 = k. The BBC
correlation function can then be written as

Cmax
BBC(k1, k2) = CBBC(k,−k)

= 1 + |Gs(k,−k)|2
Gc(k, k)Gc(−k,−k)

= 1 + |Gs(k,−k)|2
[Gc(k, k)]2 . (48)

In the above equation, we have used the fact that the single-
inclusive distribution, Gc(k, k) = Gc(−k,−k) depends only
on the absolute value of the momentum, as can be seen in
Eq. (A8). With the aid of this equation, as well as of Eq. (A6),
the expression of the BBC correlation function is finally
written as

CV
BBC(k,−k) = 1 + |c0 s0|2

×
∣∣∣∣∣ 2n∗

0 R3
∗ exp(−k2/2m∗T ) + R3

n∗
0R

3∗
(|c0|2 + |s0|2

)
exp(−k2/2m∗T∗) + R3|s0|2

∣∣∣∣∣
2

, (49)
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where

1

R2∗
= 1

R2

(
1 + m2〈u〉2

m∗T

)
, T∗ = T + m2

m∗
〈u〉2, (50)

as given in Table I of Appendix A. The quantities R∗ and T∗ are,
respectively, the flow-modified radius and the flow-modified
temperature of the system where the mass-shift occurs in the
entire volume.

In Fig. 2 we present the results for CV
BBC for T = 140 MeV,

R = 7 fm and a finite emission time t = 2 fm/c, for two
different flow values. We clearly see in this figure that the
presence of a radial flow causes the BBC correlation to be
higher than the case with no flow in the low momentum region
and for the same values of m∗ and k1 = −k2 = k, but it grows
more slowly than in the no-flow case for increasing values
of k and same m∗. We also see that for a flow of 〈u〉 = 0.5,
the BBC signal increases for values of the momenta |k| <∼
1000 MeV/c, but the no-flow case surpasses the previous
case for |k| >∼ 1000 MeV/c. This conclusion is more easily
achieved by looking into the right panel of Fig. 2. The inversion
of the BBC behavior for that value of k roughly coincides with
the limit of applicability of our nonrelativistic approximation.
This result is very interesting, suggesting that we would have
bigger chances of observing the BBC effect in the lower |k|
side of the BBC × m∗ × |k| region. The numerical predictions
should provide some incentive for experimental groups to
extract the predicted correlation functions from data.

In Fig. 3 we present results for different combinations of
temperatures and flow velocities and emission times. We see
again that flow enhances the BBC correlation function for

small values of |k|. The effect of the temperature is such that
the BBC signal is stronger for lower values of T, and decreases
the signal for higher values of T.

B. Decay of a volume partly filled with mass-shifted quanta

Here we consider the scenario in which the mass shift of
the bosons occurs in part of the system volume only. In this
case, the expression for the BBC correlation function is more
complex, even in the simpler limit of the maximal effect, i.e.,
when k1 = −k2 = k. The expression of Cmax

BBC can again be
obtained from Eq. (48), but this time we must replace the
amplitudes by the expressions of Eqs. (B10) and (B11) of
Appendix B, in the limit that the particles are back-to-back.
In this case, we must use for the squeezing parameters in the
region where there is no medium modification their appropriate
limiting values

lim
m∗→m

(
c0

s0

)
−→

(
1
0

)
. (51)

With this, we obtain after a long but straightforward calculation
the expression

C2V
BBC(k,−k) = 1 + |c0 s0|2

∣∣∣∣2n∗
0 ρ3

∗ exp

(
− k2

2m∗T

)
+ R3

s

∣∣∣∣
2

×
{

n∗
0 ρ3

∗(|c0|2 + |s0|2)
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FIG. 2. (Color online) The back-to-back correlation is shown as a function of the shifted mass m∗ on the left panels, and as a function of
both m∗ and the momentum of each particle (k1 = −k2 = k) on the right ones, for R = 7 fm/c, T = 140 MeV and t = 2 fm/c. The plots (a)
and (b) illustrate better the behavior of the BBC signal seen on the right panel, when |k| = 500 MeV/c and for |k| = 1000 MeV/c, respectively.
In both cases, the dashed curve corresponds to 〈u〉 = 0 and the solid curve, to 〈u〉 = 0.5. In (c), it is shown the 3D plot corresponding to the
no flow case, with 〈u〉 = 0, whereas in (d), a radial flow with 〈u〉 = 0.5 was considered.
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FIG. 3. The effect of a finite emission interval on the back-to-back correlation function, as compared to instant emission, is illustrated in
the left panel. The dashed curves have been reduced by a factor of 400, and the solid curves correspond to the suppression by a finite emission
duration, of about t  2 fm/c. The plot in (a) shows this effect in the absence of flow, already discussed in our previous paper. The plot in
(b) shows the corresponding result when flow is included, with 〈u〉 = 0.5 (the other parameters adopted to produce the curves are R = 7 fm/c,
T = 140 MeV and t = 2 fm/c). In part (c), we fixed the other parameters and study the influence of increasing values of |k| (the dashed curve
corresponding to |k| = 500 MeV/c and the solid one, to |k| = 1000 MeV/c). Finally, the plot in (d) considers the variation of the BBC curve
for increasing values of the temperature, T , as indicated by the arrows, keeping all the other variables fixed to their values above.

× exp

(
−

(
R2 + R2

s

)
k2

2m∗
(
R2T + R2

s T∗
)
)

+ R3
s |s0|2

+ n0R̃3 exp

(
− k2

2mT̃

)
− n0ρ̃

3

× exp

(
− (R2 + Rs

2)k2

2m(R2T + Rs
2T̃ )

)}−2

, (52)

where the parameters T̃ = T + m〈u〉2, R̃−2 = R−2(1 + m

〈u〉2/T ), ρ̃−2 = R̃−2 + R−2
s , ρ−2

∗ = R−2(1 + m2〈u〉2/m∗T ) +
R−2

s are given in Table II of Appendix B. The two
are, respectively, the flow-modified temperature and the
flow-modified radius in the region of no mass-shift. On
the other hand, ρ̃ and ρ∗ are effective radius parameters
corresponding to the no mass-shift region and the region
where the mass-shift occurred, respectively. We see that they
are functions of the flow parameter 〈u〉 and the parameter Rs ,
which corresponds to the radius of the mass-shift region. The
parameter T∗ = T + m2〈u〉2/m∗, is the same as before, also
written in Table I of Appendix A.

Similarly to Eq. (49), the above Eq. (52) has also very
interesting limiting cases. The first one is the case of vanishing
squeezing, m∗ → m, which implies that |s0| → 0 and |c0| → 1,
and the squeezed back-to-back correlations vanish.

The large momentum limit is also very interesting. In this
case, the exponential, thermal contributions disappear, and
the surviving terms come from the decay of the squeezed
vacuum to the asymptotic quanta. Both the numerator and the

denominator of Eq. (52) will be proportional to the square
of the squeezed volume, hence Eq. (52) and Eq. (49) will be
reduced to a form similar to

C(k,−k) = 1 + |c0/s0|2

which has no upper limit, and diverges for small but non-
vanishing amount of squeezing, where |c0| → 1 and |s0| →
0. This property, the unlimited strength of the squeezed
BBC-s—even if the mass modification does not happen in the
whole volume—makes it worthwhile to look for these effects
experimentally as signals of in-medium mass modifications.
Again, for large in medium mass modifications and large
momenta, the strength of the squeezed BBC-s will be similar
to that of the HBT effect:

C(k,−k) → 2

if |c0|, |s0| → ∞, as in this limit, |c0|/|s0| → 1.
The single particle spectra also behaves interestingly in

these limits, which is discussed in Appendices A and B.
In Fig. 4 we show the BBC correlation corresponding to the

hypothesis that the mass-shift occurred only in a smaller part
of the system volume. We see a very close similarity to the
results corresponding to the mass-shift occurring in the entire
system volume, shown in Fig. 2. The major difference between
the two of them is that in Fig. 4 the correlation signal is lower,
as expected, since the mass-shift occurred in a smaller volume
in this case.
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FIG. 4. (Color online) The plots in this panel are similar to the ones on Fig. 2. The main difference is that here we assumed that the
mass-shift occurred only in a smaller part of the system volume. Here, the back-to-back correlation is shown as a function of the shifted mass
m∗ on the left panel, and as function of both m∗ and the momentum of each particle (k1 = −k2 = k), on the right ones, for R = 7 fm/c, Rs =
5 fm/c, T = 140 MeV and t = 2 fm/c. The plots in parts (a) and (b) illustrate better the behavior of the BBC signal seen in parts (c) and (d),
for |k| = 500 MeV/c and for |k| = 1000 MeV/c. In both cases, the dashed curve corresponds to 〈u〉 = 0 and the solid curve, to 〈u〉 = 0.5. In
the 3D plot in (c), no flow (〈u〉 = 0) was considered, whereas a radial flow with 〈u〉 = 0.5 included in the (d) plot.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we discussed the effects of the system
expansion and flow on the back-to-back correlations, also
limiting the system to a more realistic finite size. For simplicity,
we restricted our analysis to the nonrelativistic domain. In
our study, we have also considered that the flow effects on
the squeezing parameter were negligible. For simplicity, we
have also assumed a 3D Gaussian profile for the system.
As a result, we have shown that the back-to-back particle-
antiparticle correlations survive the diluting effects of a
spherical hydrodynamical expansion and, therefore, of flow
effects in general. Nevertheless, more detailed studies would
be necessary for estimating how the results would change
when considering a less symmetric and relativistic expansion
scenario.

We showed the effects of the decoupling temperature on
the BBC signal, fixing all other parameters, as in the bottom
right plot of Fig. 3. In this case, we observed that the BBC
signal survives stronger if the decoupling temperature is lower.
Fixing T and the other parameters, we also showed the effect of
increasing momentum on the signal survival. More striking,
we showed in Figs. 2 and 4 the conclusion about the best
region for looking into the BBC effect in the m∗ × |k| plane:
the search for the signal is more pronounced in the small |k|
region, when we are to take into account the system expansion
and the presence of moderate to strong flow. For higher values
of |k|, the BBC signal would be more pronounced if the system
flow could be neglected.

From the exposed results we see that the qualitative property
of the back-to-back correlation function, C(k,−k), deviating
from unity is not significantly altered by the flow effects,
remaining a sensitive measure of the in-medium hadronic
mass modification. In any case, what remains as the most
encouraging point coming out of our present study is that
the BBC seems to survive with measurable intensity in the
more realistic situation of finite size systems subjected to
hydrodynamical expansion and consequent flow.
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APPENDIX A: MASS-SHIFTED IN THE
ENTIRE VOLUME

It turns out that the formalism can be presented in the
simplest manner if we assume, that the whole thermalized
medium is filled with mass-shifted quanta, and that the whole
medium decays suddenly to asymptotic quanta. This case is
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the subject of this appendix. It is also possible, that, e.g., due
to density inhomogeneities, the volume where the mass shift
is nonzero is different (smaller) than the totality of the volume
filled out by thermalized quanta. This case will be investigated
in the next appendix.

For the case of nonrelativistic hydrodynamics, as-
suming for the sake of simplicity a sudden freeze-out,∫

d4	µK
µ

ij = ∫
d3r

∫
dtδ(t − t0)Eij = Eij

∫
d3r, the chaotic

and the squeezed amplitudes are easily obtained from the
ones previously derived in Eqs. (42) and (43) by taking the
limit Rs → ∞ in those equations as well as in all the others
that immediately follow them, i.e., Eqs. (44), (45), and (46).
The intuitive way to understand this limit is to consider the
mass-shift region as extended so as to include the entire volume
of the system, by simply taking the limit Rs → ∞. The volume
of the system, however, will be still delimited by the Gaussian
profile with rms R. In this limit, the last two terms in Eq. (42)
exactly cancel, since

lim
Rs→∞

I c
1,2(Rs,R, 〈u〉,m) = I c

1,2(∞, R, 〈u〉,m). (A1)

Consequently, the effective squeezing region becomes
Rs → R.

Before writing the resulting expression for Gc(1, 2),
Gs(1, 2), and Gc(i, i), it is usefull to define two parameters
in terms of which we can write those expressions, i.e., the
flow-modified temperature T∗ and the flow-modified radius of
the single volume case

R∗ = lim
Rs→∞

ρ(Rs,R,m(∗)) (A2)

as given in Eq. (46). We can then write the chaotic amplitude,
Gc(k1, k2) as

G1V
c (k1, k2) = lim

Rs→∞

{
E1,2

(2π )3

[
n∗

0(|c0|2 + |s0|2)

× I c
1,2(Rs,R, T ,m∗)

+ |s0|2I c
1,2(Rs,R,∞,m∗)

]}

= E1,2

(2π )3
|s0|2(2πR2)3/2 exp

[
−R2

2
(k1 − k2)2

]

+ E1,2

(2π )3
n∗

0(|c0|2 + |s0|2)(2πR2
∗)3/2

× exp

{
−

(
k2

1 + k2
2

)
4m∗T

− R2
∗

2
[(k1 − k2)

+ i
m〈u〉(k1 + k2)

2m∗T R

]2
}

. (A3)

We can rearrange the above terms in a more compact form, and
explicitly writing in terms of the variables defined in Table I
(from which we can see that R2

∗/RT = R/T∗) we have

G1V
c (k1, k2) = E1,2

(2π )3/2
R3|s0|2 exp

[
−R2

2
(k1 − k2)2

]

+ E1,2n
∗
0

(2π )3
(|c0|2 + |s0|2) (2πR2

∗)3/2

TABLE I. Parameters used in the single volume case.

Parameter Relation to other Integral results
parameters where they appear

T∗ T∗ = T + m2

m∗ 〈u〉2 I c
i,j (∞, R, T , m∗)

R∗ R−2
∗ = R−2

(
1 + m2〈u〉2

m∗T

)
I s
i,j (∞, R, T , m∗)

× exp

[
− (k1 + k2)2

8m∗T∗

]
exp

[
− im〈u〉R

2m∗T∗

× (
k2

1 − k2
2

) −
(

1

8m∗T
+ R2

∗
2

)
(k1 − k2)2

]
.

(A4)

The coherent amplitude Gs(k1, k2) can be written as

G1V
s (k1, k2) = lim

Rs→∞

{
E1,2

(2π )3
c0|s0|

[
2n∗

0I
s
1,2(Rs,R, T ,m∗)

+ I s
1,2(Rs,R,∞,m∗)

]}

= E1,2

(2π )3
c0|s0|(2πR2)3/2 exp

[
−R2

2
(k1 + k2)2

]

+ E1,2n
∗
0

(2π )3
2c0|s0|(2πR2

∗)3/2 exp

[
−

(
k2

1 + k2
2

)
4m∗T

− R2
∗

2

(
1 + i

m〈u〉
2m∗T R

)2

(k1 + k2)2

]
. (A5)

Similarly to what was done before, can also rewrite the
expression for Gs(k1, k2) explicitly in terms of the variables
defined in Table I, leading to

G1V
s (k1, k2) = E1,2

(2π )3
c0|s0|(2πR2)3/2 exp

[
−R2

2
(k1 + k2)2

]

+ E1,2n
∗
0

(2π )3/2
(2πR2

∗)3/2(2c0|s0|)

× exp

[
− (k1 − k2)2

8m∗T

]
exp

[
− im〈u〉R

2m∗T∗

× (k1 + k2)2 −
(

1

8m∗T∗
+ R2

∗
2

)
(k1 + k2)2

]
.

(A6)

Also, the single-particle distribution, the amplitude appearing
in the denominator of both the BBC and the HBT correlation
functions can be written as

N1V
1 (ki) = G1V

c (ki , ki)

= lim
Rs→∞

Ei,i

(2π )3

[
n∗

0(|c0|2 + |s0|2)I c
i,i(Rs,R, T ,m∗)

+ |s0|2I c
i,i(Rs,R,∞,m∗)

]
= Ei,i

(2π )3
|s0|2(2πR2)3/2 + Ei,in

∗
0

(2π )3
(|c0|2 + |s0|2)

× (2πR2
∗)3/2 exp

[
− k2

i

2m∗T
+ R2

∗
2

(
m〈u〉ki

m∗T R

)2
]

.

(A7)
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Analogously, we can rewrite Gc(ki , ki) explicitly in terms of
T∗ and R∗, as

N1V
1 (ki) = G1V

c (ki , ki)

= Ei,i

(2π )3
|s0|2(2πR2)3/2 + Ei,in

∗
0

(2π )3/2
(|c0|2 + |s0|2)

× (2πR2
∗)3/2 exp

(
− k2

i

2m∗T∗

)
. (A8)

Let us investigate the vanishing squeezing and the large
momentum limits of the single particle spectra, similarly to
the analysis of the correlation functions as was done after
Eq. (49).

In case of vanishing squeezing, m∗ → m, |s0| → 0 and
|c0| → 1, hence the spectra will contain a thermal and a flow
contribution, and we recover the results of Ref. [7]. In the
large momentum limit, for nonvanishing squeezing, rather
surprisingly the single particle spectra becomes a constant.
This corresponds to the decay of a modified vacuum with a
fixed volume, described by the first term of Eq. (A8). This is the
direct consequence of our neglecting for the present purposes
the position dependence of the in-medium mass modification.
Also, this result implies that the squeezing mechanism not only
makes strong signals in the back-to-back correlations, but there
is also an interesting signal for squeezing in the single particle
spectra.

APPENDIX B: MASS-SHIFTED IN PARTIAL VOLUME

If the mass shift occurs only in a certain portion of volume
Vs of the whole system V (>Vs), the expressions for the
amplitudes contain other terms besides the ones discussed in
the Appendix A. Again, in order to avoid too much clutter it is
useful to define appropriate flow-modified variables. However,
in this case, we will need to define two sets of such parameters
as flow-modified radii and temperatures, one set corresponding
to the region where there is no mass-shift, which we will denote
by R̃, ρ̃, and T̃ , and another for the inside of the mass-shifted
region, denoted by R∗ and T∗, this last one, naturally, being
the same as defined in Table II.

In the case where the mass-shift occurs in a small portion
of the system volume, Vs < V , the chaotic amplitude is given

TABLE II. Parameters used in the two-volume case.

Parameter Relation to other Integral results
parameters where they appear

T̃ T̃ = T + m〈u〉2 I c
i,j (∞, R, T , m)

&Ic(Rs, R, T , m)

R̃ R̃−2 = R−2
(
1 + m

T
〈u〉2

)
I c
i,j (∞, R, T , m)

ρ̃ ρ̃−2 = R̃−2 + R−2
s I c

i,j (Rs, R, T , m)

T∗ T∗ = T + m2

m∗ 〈u〉2 I c
i,j (Rs, R, T , m∗)

ρ∗ ρ−2
∗ = R−2

(
1 + m2〈u〉2

m∗T

)
+ R−2

s I s
i,j (Rs, R, T , m∗)

by Eqs. (42) and (44), i.e.,

G2V
c (1, 2) = E1,2

(2π )3

[
n∗

0(|c0|2 + |s0|2)I c
1,2(Rs,R, T ,m∗)

+|s0|2I c
1,2(Rs,∞,∞,m∗) + n0I

c
1,2(∞, R, T ,m)

− n0I
c
1,2(Rs,R, T ,m)

]
. (B1)

Working out each of the integrals above separately, we have

I c
1,2(Rs,R, T ,m∗) = (2πρ2

∗)3/2 exp

{
−

(
k2

1 + k2
2

)
4m∗T

− ρ2
∗

2

[
(k1 − k2) + i

m〈u〉(k1 + k2)

2m∗T R

]2
}

= (2πρ2
∗)3/2 exp

[
−i

m〈u〉ρ2
∗
(
k2

1 − k2
2

)
2m∗RT

]

× exp

[
−

(
1

8m∗T
+ ρ2

∗
2

)
(k1 − k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m∗
(
R2T + R2

s T∗
)

]
, (B2)

I c
1,2(Rs,∞,∞,m∗) = (

2πR2
s

)3/2
exp

[
−R2

s

2
(k1 − k2)2

]
,

(B3)

I c
1,2(∞, R, T ,m) = (2πR̃2)3/2 exp

{
−

(
k2

1 + k2
2

)
4mT

− R̃2

2

[
(k1 − k2) + i

m〈u〉(k1 + k2)

2mT R

]2
}

= (2πR̃2)3/2 exp

[
−i

〈u〉R̃2
(
k2

1 − k2
2

)
2RT

]

× exp

[
−

(
1

8mT
+ R̃2

2

)
(k1 − k2)2

− (k1 + k2)2

8mT̃

]
, (B4)

I c
1,2(Rs,R, T ,m) = (2πρ̃2)3/2 exp

{
−

(
k2

1 + k2
2

)
4mT

− ρ̃2

2

[
(k1 − k2) + i

m〈u〉(k1 + k2)

2mT R

]2
}

= (2πρ̃2)3/2 exp

[
−i

〈u〉ρ̃2
(
k2

1 − k2
2

)
2RT

]

× exp

[
−

(
1

8mT
+ ρ̃2

2

)
(k1 − k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m
(
R2T + R2

s T̃
)

]
. (B5)
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Substituting these into Eq. (B1), the complete expression for
the chaotic amplitude can finally be written as

G2V
c (1, 2) = n∗

0 ρ3
∗[|c0|2 + |s0|2] exp

[
−i

m〈u〉ρ2
∗
(
k2

1 − k2
2

)
2m∗RT

]

× exp

[
−

(
1

8m∗T
+ ρ2

∗
2

)
(k1 − k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m∗
(
R2T + R2

s T∗
)

]
+ E1,2

(2π )3/2
R3

s |s0|2

× exp

[
−R2

s

2
(k1 − k2)2

]
+ E1,2n0

(2π )3

{
(2πR̃2)3/2

× exp

[
−i

〈u〉R̃2
(
k2

1 − k2
2

)
2RT

]

× exp

[
−

(
1

8mT
+ R̃2

2

)
(k1 − k2)2

− (k1 + k2)2

8mT̃

]
− (2πρ̃2)3/2

× exp

[
−i

〈u〉ρ̃2
(
k2

1 − k2
2

)
2RT

]

× exp

[
−

(
1

8mT
+ ρ̃2

2

)
(k1 − k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m
(
R2T + R2

s T̃
)

]}
. (B6)

The coherent amplitude is given by Eqs. (43) and (45), as

G2V
s (k1, k2) = E1,2

(2π )3
c0| s0|

[
2n∗

0I
s
1,2(Rs,R, T ,m∗)

+ I s
1,2(Rs,∞,∞,m∗)

]
, (B7)

where

I s
1,2(Rs,R, T ,m∗) = (2πρ2

∗)3/2 exp

{
−

(
k2

1 + k2
2

)
4m∗T

− ρ2
∗

2

[
1 + i

m〈u〉
2m∗T R

]2

(k1 + k2)2

}

= (2πρ2
∗)3/2 exp

[
−i

m〈u〉ρ2
∗(k1 + k2)2

2m∗RT

]

× exp

[
− (k1 − k2)2

8m∗T
− ρ2

∗
2

(k1 + k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m∗
(
R2T + R2

s T∗
)

]
, (B8)

I s
1,2(Rs,∞,∞,m∗) = (

2πR2
s

)3/2
exp

[
−R2

s

2
(k1 + k2)2

]
.

(B9)

By substituting the above two terms, Eqs. (B8) and (B9) into
Eq. (B7), we get the final form of the coherent amplitude

G2V
s (1, 2) = E1,2

(2π )3

(
2πR2

s

)3/2
(c0s0) exp

[
−R2

s

2
(k1 + k2)2

]

+ E1,2n
∗
0

(2π )3
(2πρ2

∗)3/2(2c0s0)

× exp

[
−i

m〈u〉ρ2
∗(k1 + k2)2

2m∗RT

]

× exp

[
− (k1 − k2)2

8m∗T
− ρ2

∗
2

(k1 + k2)2

−
(
R2 + R2

s

)
(k1 + k2)2

8m∗
(
R2T + R2

s T∗
)

]
. (B10)

The single-particle distribution for this situation of two
volumes can be written as

N2V
1 (ki) = G2V

c (i, i)

= Ei,i

(2π )3

[
n∗

0(|c0|2 + |s0|2)I c
i,i(Rs,R, T ,m∗)

+ |s0|2I c
i,i(Rs,∞,∞,m∗) + n0I

c
i,i(∞, R, T ,m)

− n0I
c
i,i(Rs,R, T ,m)

]

= Ei,i

(2π )3

{(
2πR2

s

)3/2|s0|2

+ n∗
0 (2πρ2

∗)3/2(|c0|2 + |s0|2)

× exp

[
−

(
R2 + R2

s

)
k2

i

2m∗
(
R2T + R2

s T∗
)
]

+ n0(2πR̃2)3/2 exp

(
− k2

i

2mT̃

)
− n0(2πρ̃2)3/2

× exp

[
−

(
R2 + R2

s

)
k2

i

2m
(
R2T + R2

s T̃
)
]}

. (B11)

Note again that in the large momentum region only the first
term survives, which corresponds to a constant contribution
given by the modified vacuum, and the size of this contribution
is less than in case of Eq. (A8), as the in-medium modified
quanta do not fill the entire volume in the present case:
Rs < R.
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