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Relativistic heavy-ion collisions within three-fluid hydrodynamics∗: Hadronic scenario
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A three-fluid hydrodynamic model for simulating relativistic heavy-ion collisions is introduced. Along with
two baryon-rich fluids, the new model considers the time-delayed evolution of a third, baryon-free (i.e., with
zero net baryonic charge) fluid of newly produced particles. Its evolution is delayed because of a formation time
τ , during which the baryon-free fluid neither thermalizes nor interacts with the baryon-rich fluids. After the
formation it starts to interact with the baryon-rich fluids and quickly gets thermalized. Within this model with
pure hadronic equation of state, a systematic analysis of various observables at incident energies between few and
about 160A GeV has been done as well as a comparison with results of transport models. We have succeeded in
reasonably reproducing a great body of experimental data in the incident energy range of Elab � (1–160)A GeV.
The list includes proton and pion rapidity distributions, proton transverse-mass spectra, rapidity distributions of
� and �̄ hyperons, elliptic flow of protons and pions (with the exception of proton v2 at 40A GeV), multiplicities
of pions, positive kaons, φ mesons, hyperons, and antihyperons, including multistrange particles. This agreement
is achieved on the expense of substantial enhancement of the interflow friction as compared to that estimated
proceeding from hadronic free cross sections. However, we have also found out certain problems. The calculated
yield of K− is approximately higher than that in the experiment by a factor of 1.5. We have also failed to describe
directed transverse flow of protons and pion at Elab � 40A GeV. This failure apparently indicates that the used
EOS is too hard and thereby leaves room for a phase transition.

DOI: 10.1103/PhysRevC.73.044904 PACS number(s): 24.10.Nz, 25.75.−q

I. INTRODUCTION

Relativistic nucleus-nucleus collisions at incident energies
Elab � (10–40)A GeV presently attracts special attention,
because the highest baryon densities [1,2] and highest relative
strangeness [3] at moderate temperatures are expected in
this incident energy range. The interest to this energy range
has been recently also revived in connection with new
experimental results from low-energy scanning SPS program
[4] and the project of the new accelerator facility SIS300 at
GSI [5]. This domain of the nuclear phase diagram is less
explored both experimentally and theoretically as compared to
the corresponding extremes, i.e., cold compressed matter and
baryon-free hot matter. Moreover, a critical point of the quan-
tum chromodynamics (QCD) phase diagram may occur to be
accessible in these reactions [6,7]. There are already available
experimental data [4] pointing out that something interesting
really happens in this energy range. To draw information on
properties of hot and compressed nuclear matter from available
experimental data, we need better understanding of dynamics
of nucleus-nucleus collisions under investigation.

A direct way to address thermodynamic properties of the
matter produced in these reactions consists in application
of hydrodynamic simulations to nuclear collisions. However,
finite nuclear stopping power, revealing itself at high incident
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energies, makes the collision dynamics nonequilibrium and
prevents us from application of conventional hydrodynamics
especially at the initial stage of the reaction. Because the
resulting nonequilibrium is quite strong, introduction of
viscosity and thermal conductivity does not help to overcome
this difficulty, because by definition they are suitable for weak
nonequilibrium. A possible way out is taking advantage of a
multifluid approximation to heavy-ion collisions, pioneered by
Los Alamos group [8,9] and further developed at the Kurchatov
Institute [10–12], Frankfurt [13–15], and GSI [16,17]. The
last development [16,17], i.e., the mean-field dynamics in
the multifluid background, concerns mostly moderate energies
around 1 GeV/nucleon and therefore is not discussed here.

The first extension of the original two-fluid model [8,9],
the two-fluid hydrodynamics with free-streaming radiation of
pions, was advanced in Ref. [10]. The initial stage of heavy-ion
collisions definitely is a highly nonequilibrium process. Within
the hydrodynamic approach this nonequilibrium is simulated
by means of a two-fluid approximation, which takes care
of the finite stopping power of nuclear matter [18,19] and
simultaneously describes the entropy generation at the initial
stage. The radiated pions form a baryon-free matter in the
midrapidity region, whereas two baryon-rich fluids simulate
the propagation of leading particles. The pions are the most
abundant species of the baryon-free matter that may contain
any hadronic, including baryon-antibaryon pairs and/or quark-
gluon species.

First applications of the two-fluid model with direct pion
radiation [11,12] were quite successful for describing heavy-
ion collisions in the wide range of incident energies, from
SIS to SPS. In these 3D hydrodynamic simulations the whole
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process of the reaction was described, i.e., the evolution
from the formation of a hot and dense nuclear system to its
subsequent decay. This is in distinction to numerous other
simulations, which treat only the expansion stage of a fireball
formed in the course of the reaction, whereas the initial
state of this dense and hot nuclear system is constructed
from either kinetic simulations [20] or more general albeit
model-dependent assumptions (e.g., see Refs. [21,22]).

However, the approximation of free-streaming pions, pro-
duced in the midrapidity region, was still irritating from the
theoretical point of view, in particular, because the relative
momenta of the produced pions and the leading baryons are
in the range of the � resonance for the incident energies
considered. This would imply that the interaction between the
produced pions and the baryon-rich fluids should be strong.
The free-streaming assumption relies on a long formation
time of produced pions. Indeed, the proper time for the
formation of the produced particles is commonly assumed
to be of the order 1 fm/c in the comoving frame. Because
the main part of the produced pions is quite relativistic at
high incident energies, their formation time should be long
enough in the reference frame of calculation to prevent them
from interacting with the baryon-rich fluids. However, this
argument is qualitative rather than quantitative and hence
requires further verification. The first attempt to do this was
undertaken by the Frankfurt group [13], which started to
explore an opposite extreme. They assumed that the produced
pions immediately thermalize, forming a baryon-free fluid
(or a “fireball” fluid, in terms of [13]), and interact with
the baryon-rich fluids. No formation time was allowed, and
the strength of the corresponding interaction was guessed
rather than microscopically estimated. This opposite extreme,
referred to as a (2 + 1) fluid model and being not quite
justified either, yielded results substantially different from
those of the free-streaming approximation. This was one of
the reasons why in subsequent applications the Frankfurt group
neglected the interaction between baryon-free and baryon-rich
fluids while keeping the produced pions thermalized [14,15],
thus effectively restoring the free-streaming approximation.
However, the assumed immediate thermalization of the fireball
fluid together with the lack of interaction with baryon-rich
fluids still was not a consistent approximation.

In the present article we introduce an extension of the
multifluid approach for simulating heavy-ion collisions, i.e.,
a three-fluid model with formation time. This model is a
straightforward extension of the two-fluid model with radiation
of direct pions [10–12] and (2 + 1)-fluid model [13–15].
We extend the above models in such a way that the created
baryon-free fluid (which we call a “fireball” fluid, according
to the Frankfurt group) is treated on equal footing with
the baryon-rich ones. This implies that we allow a certain
formation time for the fireball fluid, during which the matter
of the fluid propagates without interactions. Moreover, we
assume that the fireball matter gets quickly thermalized after
its formation. The latter approximation is an enforced one,
because we deal with the hydrodynamics rather than with
kinetics. The interaction between fireball and baryon-rich
fluids is estimated based on elementary cross sections. A brief
account of this model has been already reported in Ref. [23].

The formation time (τ ) is a conventional tool of the hadronic
physics, which is associated with a finite time of string
formation. It is incorporated in kinetic transport models such
as UrQMD [24] and HSD [25]. In dense medium the separate
strings can already interact; this is the reason of introduction
of junctions and formation of color ropes. In fact, this string
interaction is a method of extending the treatment beyond
the approximation of binary collisions that is inherent to the
conventional Boltzmann equation. This interaction does not
invalidate the concept of formation time but rather extends it
to the case of multiparticle collisions. The concept of strings
becomes irrelevant in the deconfined state of matter. Here there
are two points of view: (i) quarks and gluons are instantly
produced accordingly to the QCD perturbation theory or (ii)
they are mediated by a coherent color field [26,27], i.e., first
the coherent color field is produced that subsequently decays
into incoherent fluctuations—quarks and gluons. The first
mechanism implies that τ =0, whereas the second one still
makes room for a finite τ . Therefore, the fitted value of τ may
help to distinguish between these two mechanisms of the QGP
production.

The developed code allows calculations with various
equations of states (EOS), which enter as a separate block of
the code. We have started with the simplest, purely hadronic
EOS that involves only a simple density-dependent mean
field providing saturation of cold nuclear matter at normal
nuclear density n0 = 0.15 fm−3 and with the proper binding
energy −16 MeV. This EOS is a natural reference point for
any other more elaborate EOS. Much to our surprise, this
trivial EOS turned out to be able to reasonably reproduce
a great body of experimental data. Taking advantage of the
modern computers, substantial work has been also done on
improvement of numerics of the model. These results are
reported in this article.

II. THREE-FLUID HYDRODYNAMIC MODEL
WITH DELAYED FORMATION

The derivation of equations of the three-fluid model
presented below is in fact only an illustration of physical
assumptions that this model is based on. Indeed, the Boltzmann
equation, from which this derivation starts, strictly speaking
is inapplicable to a dense and strongly interacting matter.
Therefore, the applicability of the three-fluid model to heavy-
ion collisions is certainly an assumption that should be verified
in comparison with experimental data. However, this is a
general situation with dense systems even in simpler cases. The
basic reason for introduction of the three-fluid approximaion is
simulation of the finite stopping power, which is important at
the formation stage of the initial hot and dense blob of nuclear
matter. In this sense, it is an alternative to constructing this
initial blob by means of either various kind kinetic transport
models [20] or model assumptions [21,22].

A. Basic formulation

Unlike the conventional hydrodynamics, where local
instantaneous stopping of projectile and target matter is
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assumed, a specific feature of the dynamic three-fluid de-
scription is a finite stopping power resulting in a counter-
streaming regime of leading baryon-rich matter. Experimental
rapidity distributions in nucleus-nucleus collisions support
this counterstreaming behavior, which can be observed for
incident energies between few and 200A GeV. The basic
idea of a three-fluid approximation to heavy-ion collisions
[10,28] is that at each space-time point x = (t, x) the generally
nonequilibrium distribution function of baryon-rich matter,
fbr(x, p) can be represented as a sum of two distinct
contributions

fbr(x, p) = fp(x, p) + ft (x, p), (1)

initially associated with constituent nucleons of the projectile
(p) and target (t) nuclei. In addition, newly produced particles,
populating the midrapidity region, are associated with a fireball
( f ) fluid described by the distribution function ff (x, p).
Therefore, the three-fluid approximation is a minimal way
to simulate the finite stopping power at high incident energies.
Note that both the baryon-rich and fireball fluids may consist
of any type of hadrons and/or partons (quarks and gluons),
rather than only nucleons and pions. However, here and below
we suppress the species label at the distribution functions for
the sake of transparency of the equations.

With the above-introduced distribution functions fα (α =
p, t, f ), the coupled set of relativistic Boltzmann equations
looks as follows:

pµ∂µ
x fp(x,p) = Cp(fp,ft ) + Cp(fp,ff ), (2)

pµ∂µ
x ft (x,p) = Ct (fp,ft ) + Ct (ft ,ff ), (3)

pµ∂µ
x ff (x,p) = Cf (fp,ft ) + Cf (fp,ff ) + Cf (ft ,ff ), (4)

where Cα denote collision terms between the constituents of
the three fluids. We have omitted intrafluid collision terms,
like Cp(fp, fp), because below they will be canceled anyway.
The displayed interfluid collision terms have a clear physical
meaning: Cp/t (fp, ft ), Cp/t (fp/t , ff ), and Cf (fp/t , ff ) give
rise to friction between p, t , and f fluids, and the term
Cf (fp, ft ) takes care of particle production in the midrapidity
region. Note that up to now we have done no approximation,
except for hiding intrafluid collision terms.

Let us proceed to approximations that justify the term fluids
having been used already. We assume that constituents within
each fluid are locally equilibrated, both thermodynamically
and chemically, i.e., that fα are equilibrium distributions. In
particular, this implies that the intrafluid collision terms are
indeed zero. This assumption relies on the fact that intrafluid
collisions are much more efficient than interfluid interactions
in driving a system to equilibrium. As applied to the fireball
fluid, this assumption requires some additional comments,
related to the concept of a finite formation time. During the
proper formation time τ after production, the fireball fluid
propagates freely, interacting neither with itself nor with the
baryon-rich fluids. After this time interval, the fireball matter
starts to interact with both itself and the baryon-rich fluids and,
as a result, locally thermalizes. Being heated up, these three
fluids may contain not only hadronic and but also deconfined
quark-gluon species, depending on the EOS used.

The above assumption suggests that interaction between
different fluids should be treated dynamically. To obtain the
required dynamic equations, we first integrate the kinetic
Eqs. (3)–(4) over momentum and sum over particle species
with weight of baryon charge. This way we arrive to equations
of the baryon charge conservation

∂µJµ
α (x) = 0, (5)

for α = p and t, where Jµ
α = nαuµ

α is the baryon current
defined in terms of baryon density nα and hydrodynamic
four-velocity uµ

α normalized as uαµuµ
α = 1. Equation (5)

implies that there is no baryon-charge exchange between p and
t fluids, as well as that the baryon current of the fireball fluid
is identically zero, J

µ

f = 0. Integrating kinetic Eqs. (3)–(4)
over momentum with weight of four-momentum pν and
summing over all particle species, we arrive at equations of the
energy-momentum exchange for energy-momentum tensors
T µν

α of the fluids

∂µT µν
p (x) = −Fν

p (x) + Fν
fp(x), (6)

∂µT
µν
t (x) = −Fν

t (x) + Fν
ft (x), (7)

∂µT
µν

f (x) = Fν
p (x) + Fν

t (x) − Fν
fp(x) − Fν

ft (x), (8)

where the Fν
α are friction forces originating from interfluid

collision terms in the kinetic Eqs. (3)–(4). Fν
p and Fν

t in Eqs. (6)
and (7) describe energy-momentum loss of baryon-rich fluids
because of their mutual friction. A part of this loss |Fν

p − Fν
t |

is transformed into thermal excitation of these fluids, whereas
another part (Fν

p + Fν
t ) gives rise to particle production into

the fireball fluid [see Eq. (8)]. Fν
fp and Fν

ft are associated with
friction of the fireball fluid with the p and t fluids, respectively.
Note that Eqs. (6)–(8) satisfy the total energy-momentum
conservation

∂µ

(
T µν

p + T
µν
t + T

µν

f

) = 0. (9)

As described above, the energy-momentum tensors of
the baryon-rich fluids (α = p and t) take the conventional
hydrodynamic form

T µν
α = (εα + Pα)uµ

αuν
α − gµνPα (10)

in terms of the proper energy density, εα , and pressure, Pα .
For the fireball, however, only the energy-momentum tensor
of the formed matter is of practical interest for us. Because
we treat the fireball matter as a fluid, we have nothing to
do but assume that it is formed already thermalized. This
assumption implies that its thermalization time is essentially
shorter than its formation time. Moreover, this assumption is
in the spirit of other assumptions made: we distinguish the
main nonequilibrium associated with finite stopping power
and consider all the rest of dynamics within local equilibrium.
Thus, only the formed (and by assumption thermalized)
part of the energy-momentum tensor is described by this
hydrodynamic form

T
(eq)µν

f = (εf + Pf )uµ

f uν
f − gµνPf . (11)
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Its evolution is defined by an Euler equation with a retarded
source term

∂µT
(eq)µν

f (x) = −Fν
fp(x) − Fν

ft (x) +
∫

d4x ′δ4[x − x ′

−UF (x ′)τ ]
[
Fν

p (x ′) + Fν
t (x ′)

]
, (12)

where τ is the formation time and

Uν
F (x ′) = uν

p(x ′) + uν
t (x ′)

|up(x ′) + ut (x ′)| (13)

is a free-propagating four-velocity of the produced fireball
matter, which is evidently a timelike four-vector. In fact, this is
the velocity at the moment of production of the fireball matter.
According to Eq. (12), the energy and momentum of this matter
appear as a source in the Euler equation only later, i.e., after
the time interval U 0

F τ on the production, and in different space
point x′ − UF (x ′)τ , as compared to the production point x′.
From the first glance, one can immediately simplify the r.h.s.
of Eq. (12) by performing integration with the δ function.
However, this integration is not so straightforward, because the
expression under the δ function, x − x ′ − UF (x ′)τ = 0, may
have more than one solution with respect to x ′. The latter would
mean that the matter produced in several different space-time
points x ′ is simultaneously formed in the same space-time
point x. This is possible because of the nonlinearity of the
hydrodynamic equations.

The above discussed free-propagating fireball matter is, of
course, a certain approximation for treating free-streaming
particles, which this matter consists of. These produced
free-streaming particles are characterized by a distribution
function, f (p), in the momentum space, which is determined
by their production cross sections, e.g., p0dσNN→πX/d3p. In
particular, this means that particles get formed at different
time instants τparticleγparticle, depending on the particle velocity
(γparticle is the γ factor of the particle). This particle formation
is governed by a particle formation time τparticle that differs
from our τ we use in the hydrodynamic formulation. Our τ

has a meaning of the particle formation time τparticle averaged
over the distribution f (p):

τ γf =
∫

d3p

p0
τparticle γparticlef (p)

/∫
d3p

p0
f (p), (14)

where γf is the γ factor of the unformed fireball matter.
Equation (14) shows that τ is always longer than τparticle.
In particular, if the fireball matter consists of pions, which
have approximately thermal distribution with temperature
≈100 MeV, then τ ≈ 2τparticle.

The free-streaming particles are not only formed at different
time instants but also in different space points because of the
same f (p) distribution. Thus, another approximation we have
done consists in neglecting this spacial spread. We could take it
into account by changing the δ function in the r.h.s. of Eq. (12)
to a smooth distribution of formed particles. This would result
in spatial smearing of formation of the fireball fluid. However,
at the same time it would make the model formulation more
complex, because this smooth distribution of formed particles
should depend on the initial f (p) distribution and, hence,
on the cross sections, like p0dσNN→πX/d3p. Moreover, it

would be another source of uncertainty, because the NN →
πX process is not the only relevant one. Therefore, for the
first estimate of effects of the formation time we avoid these
complications.

The residual part of T
µν

f (the free-propagating one) is
defined as

T
(fp)µν

f = T
µν

f − T
(eq)µν

f . (15)

The equation for T
(fp)µν

f can be easily obtained by taking the
difference between Eqs. (8) and (12). If all the fireball matter
turns out to be formed before freeze-out, then this equation
is not needed. Thus, the three-fluid model introduced here
contains both the original two-fluid model with pion radiation
[10,11] and the (2 + 1) fluid model [13–15] as limiting cases
for τ → ∞ and τ = 0, respectively.

B. Friction between baryon-rich fluids and their unification

The nucleon-nucleon cross sections at high energies are
strongly forward-backward peaked. This fact, which originally
served as justification for subdividing baryonic matter into
target and projectile fluids, was used in Ref. [18] to estimate
the friction forces, Fν

p and Fν
t , proceeding from only NN elastic

scattering. Later these friction forces were calculated [29]
based on (both elastic and inelastic) experimental inclusive
proton-proton cross sections. In the present calculations we
use the following form of the projectile-target friction

Fν
α = ϑ2ρξ

pρ
ξ
t

[(
uν

α − uν
ᾱ

)
DP + (

uν
p + uν

t

)
DE

]
, (16)

α = p or t, p̄ = t , and t̄ = p. Here, ρξ
α denotes a kind of “scalar

densities” of the p and t fluids (see details below),

DP/E = mNV
pt

relσP/E(spt), (17)

where mN is the nucleon mass, spt = m2
N (uν

p + uν
t )2 is the

mean invariant energy squared of two colliding nucleons from
the p and t fluids,

V
pt

rel = [
spt

(
spt − 4m2

N

)]1/2/
2m2

N (18)

is the mean relative velocity of the p and t fluids, and σP/E(spt)
are determined in terms of nucleon-nucleon cross sections
integrated with certain weights (see [10,11,29] for details):

σP (spt) =
∫

θc.m.<π/2
dσNN→NX

(
1 − cos θc.m.

pout

pin

)
, (19)

σE(spt) =
∫

θc.m.<π/2
dσNN→NX

(
1 − Eout

Ein

)
. (20)

Here the integration is restricted to the forward hemisphere
(θc.m. < π/2) of the center-of-mass (c.m.) scattering angles
θc.m., pin = (spt/4 − m2

N )1/2 and Ein = s
1/2
pt /2 are the in-

coming momentum and energy of the nucleon before the
scattering in the NN c.m. frame, respectively, and pout and Eout

are the corresponding out-coming quantities. σP (spt) is a kind
of a transport cross section, which is nonzero at any physical
spt, as it is seen from Eq. (19). At the same time, the σE(spt)
quantity, which is responsible for the fireball production, is
zero for spt below the inelastic threshold. In particular, the
latter feature makes DE = 0, and hence the friction Fα = 0, at
vanishing relative velocity up − ut = 0. The overall ϑ2 factor

044904-4



RELATIVISTIC HEAVY-ION COLLISIONS WITHIN . . . PHYSICAL REVIEW C 73, 044904 (2006)

in Eq. (16) is associated with unification of p and t fluid into
a single one [see Eq. (23)], when their relative velocity gets
small enough.

The above friction (16) is a certain extension of that
derived in Ref. [29] and used in Refs. [10–14]. This original
derivation was performed under assumption that baryon-rich
fluids consist of only nucleons, or baryons, assuming that
baryon-baryon cross sections are similar to proton-proton
ones. Therefore, in the original expression for Fν

α [10–14,29]
modified scalar densities of the p and t fluids are substituted by
corresponding baryon densities (with ξh = ξq = 1 and ϑ2 = 1,
see below). However, this original calculation is incomplete,
because it does not take into account (i) various mesonic (and,
maybe, quark and gluonic) species produced in the collision,
(ii) possible multiparticle interactions that are quite probable
in the dense medium, (iii) possible medium modifications
of cross sections and effective masses, and (iv) quark and
gluon interactions, if the system happens to undergo the
phase transition to the quark-gluon phase. Moreover, (v) even
experimental cross sections between hadronic species are only
poorly known. As for the nonperturbative quark-gluon phase,
this is in the range of pure speculation.

In view of theses uncertainties, it is reasonable to make
provisions for tuning the above friction. For this purpose we
introduced tuning factors ξ (spt) in the scalar densities of the p
and t fluids

ρξ
α(spt) = (

ρbar.
α + 2

3ρmes.
α

)
ξh(spt) + 1

3

(
ρq

α + ρg
α

)
ξq(spt), (21)

where ρbar.
α , ρmes.

α , ρ
q
α , and ρ

g
α are scalar densities of all

baryons, all mesons, quarks, and gluons, respectively, defined
in the conventional way, i.e.,

ρa(x) = ma

∫
d3p

p0
fa(x, p) (22)

for the a species of mass ma which are ρα[T (x), µB (x)]
in the thermodynamic limit. These scalar densities (but of
course, only nucleon ones) result from the original derivation
of Ref. [29]. We just extended the recipe of Ref. [29] to other
species. In fact, in the nonrelativistic case the scalar density
is identical to the usual particle-number density, because the
mass ma in Eq. (22) is canceled by p0 in the denominator.
Moreover, in the relativistic case the scalar density is a
natural result, because it is a Lorentz invariant contrary to
the particle-number density, which is the fourth component
of a four-vector. However, in the relativistic case we run into
trouble with gluons and quarks. If one uses current masses
for gluons and quarks, the corresponding scalar densities are
either identically zero (for gluons) or negligibly small (for u
and d quarks). To overcome this problem we imply that either
thermal effective masses or constituent masses, depending on
particular model, should be used in the scalar densities, or they
should be calculated beyond the quasiparticle approximation
(e.g., on the lattice).

Factors like 2/3 and 1/3 in Eq. (21) take into account
the assumed scaling of cross sections in accordance with
the naive valence-quark counting. Note that the original free
cross section in Eq. (16) was estimated for the proton-proton
pair. In Eq. (21) different tuning factors are introduced for

hadronic and quark-gluon phase: ξh and ξq , respectively. If the
system occurs in pure hadronic phase, ξ 2

h directly scales the
cross sections σP/E . If the system happens to be in a mixed
phase, like in the crossover phase transition, both ξh and ξq

participate in the cross-section scaling. Note that originally the
scalar densities depend only on x, cf. Eq. (21). The introduced
s-dependent tuning factors make the tuned scalar densities ρξ

α

also s dependent. In general, ξh and ξq could be also assumed
to be temperature dependent, because the σP/E are obtained
by averaging over certain thermal distributions. Nevertheless,
we avoid doing this to keep the number of “fitting degrees of
freedom” as low as possible.

When the baryon-rich fluids become decelerated enough, it
is reasonable to unify them into a single fluid. This limit is not
automatically present in the model formulation and therefore
should be stipulated [106]. For this purpose we introduce an
auxiliary function

ϑ = 1 − exp
[−(

V
pt

rel

/
�V

)4]
, (23)

where V
pt

rel is the mean relative velocity of the p and t fluids
of Eq. (18) and �V is the characteristic velocity of particles
inside the flow (the Fermi velocity of nucleons in cold matter
or the thermal velocity of particles in hot matter)

[1 − (�V )2]−1/2 − 1 = max
p,t

{
εF

mN

,
3T

2mN

}
, (24)

where εF is the Fermi energy corresponding to the baryon
density of the fluid, T is temperature of the fluid, and the
maximum value is searched over quantities corresponding to
the two overlapped (p and t) fluids. Thus, at V pt

rel � �V,ϑ = 1
and the purely two-fluid regime is realized, whereas at V

pt
rel 	

�V,ϑ = 0 and the one-fluid regime takes place, which implies
complete equilibration of the overlapping fluids. During the
numeric simulation the two-fluid and one-fluid solutions are
mixed in proportion ϑ and 1 − ϑ , respectively, thus providing
a smooth approach to the one-fluid limit. This interpolation
procedure concerns the pressure Pα and hydrodynamic three-
velocity vα , i.e., those quantities that are required for the
hydrodynamic transport and are nonadditive:

P̃α = ϑPα + (1 − ϑ)
nα

ntot
Ptot, (25)

ṽα = ϑvα + (1 − ϑ)vtot. (26)

Here P̃α and ṽα are interpolated quantities for the α fluid,
and Ptot, vtot, ntot, etc., are quantities derived from the total
baryon density J 0

tot = J 0
p + J 0

t and the 0ν components of the
total baryon-rich energy-momentum tensor T 0ν

tot = T 0ν
p + T 0ν

t ,
assuming that p and t fluids are unified. The difference
between Pα and Ptot, and between vα and vtot, respectively,
is as follows. From the solution of hydrodynamic Eqs. (5)–
(7) and (12) at each time step we obtain hydrodynamic
quantities J 0

α , T 0ν
α , and T

(eq)0ν

f . At the same time, we need,
in particular, the pressure and hydrodynamic four-velocity to
proceed to the next time step. We have to calculate them
based on the above hydrodynamic quantities and the EOS.
Here we can proceed in two ways. The conventional way
of the multifluid hydrodynamics consists in calculating the
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pressure and four-velocity for each fluid, i.e., solely based on
the J 0

α and T 0ν
α quantities related to this fluid. This way we

arrive at Pα and vα , which completely preserve the multifluid
character of the solution. Alternatively, we can completely
abandon the multifluid nature and assume that we deal with
a locally equilibrium piece of baryon-rich matter, which is
characterized by J 0

tot and T 0ν
tot , and then calculate the pressure

and four-velocity of this “unified” piece. Thereby we arrive
at Ptot and vtot, which describe unified baryon-rich fluids as if
they are mutually stopped.

This unification procedure was first proposed by the Los
Alamos group [8] and then used in subsequent applications
of the multifluid dynamics [11–14]. Evidently, this procedure
also affects the stopping power and therefore can be added
to the above list of uncertainties associated with the friction
force Fν

α . Other criteria of unification may produce different
observable stopping, as it was shown in Ref. [15]. However,
we prefer to keep the original criterion, keeping in mind that
this is an important part of the stopping prescription.

As compared to the already conventional unification proce-
dure described above, we have also introduced ϑ2 factor in the
friction force itself, cf. Eq. (16). It is justified, because only the
ϑ fraction of each baryon-rich fluid remains in the two-fluid
regime, as it follows from the above discussion. Therefore, to
be consistent with the above unification procedure, we should
keep only this ϑ fraction of the density of each fluid, ρξ

α , in the
friction term.

As it has been already mentioned, the way, in which the
unification procedure is realized, affects the stopping of the
nuclear matter. In fact, it is possible to avoid this artificial
unification procedure. As it was shown in Refs. [16,28], the
formulation of the multifluid dynamics in terms of mean fields
rather than of the EOS results in automatic unification of
mutually stopped matter. However, the problem of such mean-
field formulation is that the mean fields become unrealistically
strong at high relative velocities of counterstreaming matter,
whereas they should die out because to momentum dependence
of self-energies, as it was advocated in the HSD model [25].
Therefore, for the domain of high incident energies the
present approach, based on a separate EOS in each fluid
and complemented by the unification procedure, is certainly
preferable as compared to the pure mean-field formulation of
Refs. [16,28]. The latter formulation is definitely advantageous
at moderate incident energies of the order of 1A GeV.

Equations (5)–(7) and (11), supplemented by a certain
EOS and expressions for friction forces Fν , form a full
set of equations of the relativistic three-fluid hydrodynamic
model. The only quantity we still need to define, in terms of
hydrodynamic variables and some cross sections, is the friction
of the fireball fluid with the p and t fluids, Fν

fp and Fν
ft .

C. Interaction between fireball and baryon-rich fluids

Our aim here is to estimate the scale of the friction force
between the fireball and baryon-rich fluids, similarly to that
done before for baryon-rich fluids [29]. To this end, we
consider a simplified system, where all baryon-rich fluids
consist only of nucleons, as the most abundant component
of these fluids, and the fireball fluid contains only pions.

For incident energies from 10A (AGS) to 200A GeV (SPS),
the relative nucleon-pion energies are in the resonance range
dominated by the � resonance. To estimate this relative energy
we consider a produced pion, being at rest in the center of mass
of the colliding nuclei, p = {mπ, 0, 0, 0}c.m.. Baryon-rich
fluids decelerate each other during their interpenetration. This
means that the nucleon momentum q should be smaller than the
incident momentum, q0 = EN < mNγc.m., where γc.m. is the
γ factor of the incident nucleon in the c.m. frame. Calculating
the invariant relative energy squared s = (p + q)2 at Elab =
158A GeV, we obtain s1/2 < 1.8 GeV. This range of s precisely
covers the resonance region, 1.1 GeV < s1/2 < 1.8 GeV [30].
At Elab = 10A GeV we arrive at s1/2 < 1.3 GeV, which is also
within the resonance region. At even lower incident energies
the strength of the fireball fluid becomes so insignificant, as
compared with thermal mesons in the p and t fluids, that the
way of treatment of its interaction with the baryon-rich fluids
does not essentially affect the observables. For the same reason
we do not apply any special prescription for the unification
of the fireball fluid with the baryon-rich fluids, because this
may happen only at relatively low incident energies Elab <

10A GeV.
The resonance-dominated interaction implies that the es-

sential process is absorption of a fireball pion by a p or t fluid
nucleon with formation of an R resonance (most probably
�). This produced R resonance still belongs to the original
p or t fluid, since its recoil because of absorption of a light
pion is small. Subsequently this R resonance decays into a
nucleon and a pion already belonging to the original p or t
fluid. Symbolically, this mechanism can be expressed as

Nα + πf → Rα → Nα + πα.

As a consequence, only the loss term contributes to the kinetic
equation for the fireball fluid.

Proceeding from the above consideration, we write down
the collision term between fireball-fluid pions and α-fluid
nucleons (α = p or t) as follows:

Cf (fα, ff ) = −
∫

d3q

q0
WNπ→R(s)f (eq)

f (p)fα(q), (27)

where s = (p + q)2,

WNπ→R(s) = 1
2

√(
s − m2

N − m2
π

)2 − 4m2
Nm2

πσNπ→X
tot (s)

is the rate to produce a baryon R resonance and σNπ→X
tot (s) is the

parametrization of experimental pion-nucleon cross sections
[30]. Here, only the distribution function of formed (and hence
thermalized) fireball pions, f

(eq)
f , enters the collision term,

because the nonformed particles do not participate in the
interaction by assumption.

Multiplying Cf (fα, ff ) by the four-momentum pν and
integrating the result over momentum, we arrive at

Fν
f α(x) =

∫
d3q

q0

d3p

p0
pνWNπ→R(s)f (eq)

f (p)fα(q)

� WNπ→R(sf α)

mπu0
f

[∫
d3q

q0
fα(q)

]
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×
[∫

d3p

p0
p0pνf

(eq)
f (p)

]
= Df α

T
(eq)0ν

f

u0
f

ρα, (28)

where we substituted p0 and s by their mean values,
〈p0〉 = mπu0

f and sf α = (mπuf + mNuα)2, and introduced
the transport coefficient

Df α = WNπ→R(sf α)

mNmπ

= V
f α

rel σNπ→R
tot (sf α). (29)

Here, V
f α

rel = [(sf α − m2
N − m2

π )2 − 4m2
Nm2

π ]1/2/(2mNmπ )
denotes the mean invariant relative velocity between the
fireball and the α fluids. Thus, we have expressed the friction
Fν

f α in terms of the fireball-fluid energy-momentum density
T 0ν

f (of only pions as yet), the scalar density ρα of the α fluid
(of only nucleons as yet), and a transport coefficient Df α . Note
that this friction is zero until the fireball pions are formed,
because T

(eq)0ν

f = 0 during the formation time τ .
In fact, the above treatment is an estimate of the friction

terms rather than their strict derivation. All the uncertainties
mentioned in the previous subsection are well applied to the
case under consideration. This peculiar way of evaluation
is motivated by the form of the final result [Eq. (28)]. An
advantage of this form is that mπ and any other mass do not
appear explicitly, and hence it allows a natural extension to any
content of the fluid, including deconfined quarks and gluons,
assuming that Df α represents just a scale of the transport
coefficient. Performing such extension, we assume that T 0ν

f

represents the total energy-momentum density of the fireball
fluid and ρα is the total scalar density of the α fluid, i.e.,
ρα ≡ ρξ=1

α in terms of Eq. (21). Here we have omitted tuning
ξ factors in the scalar density ρα , because in this case their
effect is very similar to that of the formation time, which
switches on/off the interaction at various stages and thereby
effectively changes its strength.

D. Freeze-out

The hydrodynamic simulation is terminated by a freeze-out
procedure. Though this method (as applied to high-energy
physics) was first proposed almost 50 years ago [31], this is still
an actual problem that is actively discussed. The method was
intuitively clear and easily applicable. However, as was shown
by Cooper and Frye [32], the Milekhin’s method violates the
energy conservation. To remedy the situation, they proposed
their own recipe. The Cooper-Frye recipe [32] was not free of
problems as well. It gives negative contribution to the particle
spectrum in some kinematic regions in which the normal vector
to the freeze-out hypersurface is spacelike. This negative con-
tribution corresponds to frozen-out particles returning to the
hydro phase. Cutoff of this negative contribution again returns
us to the violation of the energy conservation. To get rid of this
negative spectrum, a modification of the Cooper–Frye recipe
was proposed based on a cut-Jüttner distribution [33–36].
In this distribution the part of the Jüttner distribution that
gave the negative spectrum is simply cut off. To preserve the
particle and energy conservation, the rest of Jüttner distribution

is renormalized, effectively resulting in a new temperature
and chemical potential (so-called “freeze-out shock”). In fact,
this cut-Jüttner recipe has no physical justification, except
for practical utility. Moreover, the cut-Jüttner recipe is not
supported by schematic kinetic treatment [37] of the transi-
tional region from hydro regime to that of dilute gas and looks
like a violence to the nature, making the freeze-out procedure
uncontrollable. Recently there was proposed a new freeze-out
recipe, a canceling-Jüttner distribution [38], which complies
with results of schematic kinetic treatment [37]. However, very
recently the authors reported [39] that this canceling-Jüttner
distribution is satisfactory only for the spacelike freeze-out,
whereas it fails for the timelike one. It should be stressed
that this was precisely the schematic kinetic treatment. This
region, where the transition from highly collisional dynamics
to the collisionless one occurs, is highly difficult for the kinetic
treatment and allows hardly any justified simplifications.

All the above considerations of the freeze-out process
proceeded from assumption of existing some continuous
hypersurface separating the hydro system from the frozen-
out gas. Conservation conditions on such hypersurface are
constructed in analogy with shock front in hydrodynamics.
From the practical point of view, it would mean that we should
first run the hydro calculation without any freeze-out and
only after that look for a hypersurface where the freeze-out
criterion is met. In practice our hydro simulation proceeds in
different way. The freeze-out criterion is checked continuously
during the simulation. If some parts of the hydro system meet
this criterion, they decouple from the hydro calculation. The
frozen-out matter escapes from the system, removing all the
energy and momentum accumulated in this matter. Therefore,
it produces no recoil to the rest of still hydrodynamic system
[107]. In particular, it means that the boundary condition on
the free surface (between the hydro system and vacuum) is
not kept at the same position as in the calculation without
freeze-out but moves inside the system. It affects not only the
system surface but also the interior. The freeze-out process
looks like an evaporation (or fragmentation, on account of
final-size grid) first from the system surface and then as a
volume fragmentation of the system residue.

In view of the above, we prefer to avoid using not-quite-
justified complications of the freeze-out procedure and make
use of the simplest (however equally unjustified) original
choice of Milekhin [31] with corrected treatment of the energy
conservation. The freeze-out criterion we use is

εtot < εfrz, (30)

where

εtot = (
T 00

p + T 00
t + T

(eq)00
f

)
proper (31)

is the energy density of all three fluids in the proper reference
frame, where all nondiagonal components of the total energy-
momentum tensor are zero,(

T µν
p + T

µν
t + T

(eq)µν

f

)µ =ν

proper = 0, (32)

and εfrz is the critical freeze-out energy density. If the freeze-
out criterion is met in some space-time point, all three fluids in
this point get frozen out and removed from the hydrodynamic
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evolution. In fact, we freeze-out the fluids in tiny portions, i.e.,
droplets. This is allowed and even implied by the numerical
scheme we use (see Appendix A). Each droplet gets frozen
out in its proper reference frame. In terms of the hypersurface,
our freeze-out hypersurface is discontinuous and consists of
small fragments with normal vectors of local four-velocities.
Any transport is prohibited on the nonexistent parts (parallel to
the flow velocity) of the surface. In this sense, our freeze-out
is more similar to a continuous fragmentation of the system
rather than to occurrence of the shock front.

A frozen-out droplet of the α fluid (let it be marked as iα)
is still characterized by some temperature, baryon, and strange
chemical potentials corresponding to a nongas EOS (involving
some mean fields) used in the hydro calculation. This is not
suitable for calculation of the spectrum of observable particles.
First we should release the energy stored in mean fields. To do
this, we recalculate temperature (T iα(gas)), baryon (µiα(gas)

b ),
and strange (µiα(gas)

s ) chemical potentials corresponding to
the hadronic gas EOS proceeding from conservations of
total energy-momentum, baryon, and strange charges in the
droplet. This has been done in the following way. From
the solution of hydrodynamic Eqs. (5)–(7) and (12) we
know five quantities for each fluid: J 0

α , T 00
α , T 01

α , T 02
α , and

T 03
α . To interpret them in thermodynamic terms, we should

first determine six quantities for each fluid: nα, εα, Pα , and
three components of the four-velocity uα , proceeding from
above five hydrodynamic quantities, see Eqs. (10) and (11).
Naturally, five equations are not enough for determining
six quantities. Therefore, we add one more equation to this
set—the EOS. Thus, the resulting thermodynamic quantities
turn out to be EOS dependent. In particular, this scheme with
the gas EOS results in a change of the hydrodynamic four-
velocity (uµ

iα(gas)) as compared to that calculated with the EOS
used in the hydrodynamic simulation. The second, already
conventional step consists in determination of temperature
and chemical potentials proceeding from baryonic, strange
and energy densities and pressure.

This is a kind of “freeze-out shock,” which, however, is
completely different from that induced by the cut-Jüttner
recipe. Now in terms of frozen-out droplets of various α fluids,
the spectrum of observable hadrons of a species with ea

b baryon
and ea

s strange charges can be expressed as follows:

E
dNa

d3p
=

∑
iα

gaV
(proper)
iα

(2π )3

× pµu
µ

iα(gas)

exp
[(

pµu
µ

iα(gas) − ea
bµ

iα(gas)
b − ea

s µ
iα(gas)
s

)/
T iα(gas)

]± 1
,

(33)

where ga is degeneracy of the a particle, V (proper)
iα is the volume

of the iα droplet in its rest frame, and the sum runs over all
frozen-out droplets of all fluids. If the a species is a baryon,
the upper sign (+) should be taken in the denominator, if it is
a meson, the lower sign (−).

The described “fragmentation” method of freeze-out pre-
cisely conserves energy-momentum and various charges.
However, it is also not free from problems. The microscopic

justification of this method is still lacking. The problem of
returning frozen-out particles into the hydrodynamic phase
still persists. Certainly, further search for a reliable freeze-out
procedure is needed. A more consistent way of performing
the freeze-out, the method of “continuous emission,” was
proposed in Ref. [40]. Avoiding sharply defined freeze-out
hypersurface, this method considers a continuous emission of
particles from a finite volume, governed by their mean free
paths. Its predictions at the level of observables differ from
those based on the Cooper-Frye recipe [41]. Unfortunately,
this method is very difficult for the numerical implementation.

III. SIMULATIONS OF NUCLEUS–NUCLEUS COLLISIONS

The 3D code for the 3-fluid model was constructed by
means of modifying the existing 2-fluid code of Refs. [10,12].
The numeric scheme of the code is based on the modified
particle-in-cell method [42–45], cf. Appendix A. The strategy
of our simulations is as follows. At the first step, we try to
reproduce the stopping power observed in proton rapidity
distributions by means of fine fitting of friction forces of the
model. In principle, friction forces are EOS dependent both
through scalar densities [Eq. (21)] and because of medium
modifications of cross sections. In spite of this, our friction is
just schematically estimated proceeding from vacuum proton-
proton cross sections and therefore does not comply with the
EOS used. This is so even for the simplest hadronic EOS, used
in the present article. The list of uncertainties relevant to the
friction forces was discussed in Sec. II B. In view of this, the
strategy of fine fitting of friction forces is quite reasonable.
Note that the success of such fit is not obvious in advance
because by means of two functions ξh(s) and ξq(s) of a single
variable [in the present case, only ξh(s)], see Eq. (21), we fit
a function of three variables: rapidity, incident energy, and
impact parameter. It is worthwhile to mention that the fit of
the friction is EOS dependent. It allows to reproduce proton
rapidity distributions only with the particular EOS. In general,
another EOS requires different fit.

After the friction forces have been fixed, we tune the freeze-
out energy density (in the reasonable range) to reproduce
transverse-mass proton spectra and multiplicities of produced
pions at comparatively low incident energies Elab <∼ 20A GeV.
At higher incident energies, the pion multiplicity turns out
to be weakly sensitive to variation of the freeze-out energy
density. In principle, the freeze-out criterion could be different
for different particle species and even for the chemical and
thermal freeze-out. However, we keep it unique for all the
cases to avoid multiplication of fitting parameters. Therefore,
fit of these quantities by means of a single parameter is not
an obvious task. At higher incident energies Elab >∼ 30A GeV
the pion multiplicities become sensitive to the formation time
τ . Therefore, the next step consists in tuning τ (again in the
reasonable range) to reproduce them again at higher incident
energies. These subsequent steps are simplified by the fact
that proton rapidity distributions are only slightly sensitive
to variation of τ and the freeze-out energy density. After all
these steps, all the model parameters got fixed, and all further
calculations give pure predictions of the model. Our final aim
is to find a EOS that reproduces in the best way the largest
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body of the observables of nuclear collisions in the incident
energy range Elab � (1–160)A GeV.

A. Hadronic EOS

We start our simulations with the purely hadronic EOS.
This EOS, which was originally used in two-fluid simulations
[10–12], was proposed in Ref. [46]. It is a natural reference
point for any other more elaborate EOS. The energy density
and pressure are constructed as follows:

ε(nB, T ) = εgas(nB, T ) + W (nB), (34)

P (nB, T ) = Pgas(nB, T ) + nB

dW (nB)

dnB

− W (nB), (35)

where εgas(nB, T ) and Pgas(nB, T ) are the energy density
and pressure of relativistic hadronic gas, respectively, which
depend on baryon density nB and temperature T. The only
difference from the ideal gas is that baryons are affected by a
mean field U (nB), i.e., the energy of the a-baryon of mass Ma

with momentum p is εa = (p2 + M2
a )1/2 + baU (nB), where ba

is the baryon number of the a particle, and the potential U (nB)
is parametrized as follows:

U (nB) = mN

[
−2b

(
nB

n0

)
+ c(γ + 2)

(
nB

n0

)γ+1
]

. (36)

It depends only on the density nB . The self-consistent potential
contribution to the energy density, W (nB), is

W (nB) =
∫ nB

0
U (n) dn. (37)

Parameters b, c, and γ are determined from the condition
that the cold nuclear matter saturates at n0 = 0.15 fm−3 and
ε(n0, T = 0)/n0 − mN = −16 MeV, and incompressibility of
this nuclear matter is K = 210 MeV. Parametrization Eq. (36)
results in superluminal sound velocity at densities nB/n0 > 8.
To preserve causality at high nB , the following form of the
energy density

ε(nB, T =0) = n0mN

[
A

(
nB

n0

)2

+ C + B

(
n0

nB

)]
(38)

is used at nB/n0 > 6. Parameters A,B, and C are determined
on the condition that ε(nB, T = 0) and its two first derivatives
are continuous at nB/n0 = 6. As seen from Fig. 1, the
pressure of this hadronic EOS is within the constraint given
by Danielewicz et al. extracted from the analysis of flow of
nuclear matter [47] at the AGS incident energies.

B. Summary of parameters: Friction, freeze-out, etc.

For the sake of complete account, in this section we
summarize the parameters used in the present simulations.
The specific reasons for choosing these parameters will be
discussed in subsequent sections.

(i) The key quantity is the EOS, which was taken in the
simple form of purely hadronic EOS, see Sec.III A. In
this EOS, 48 different hadronic species are taken into
account. Each hadronic species includes all the relevant
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FIG. 1. (Color online) Baryon-density dependence of the pressure
at T = 0. Shaded region is the constraint [47] derived from experi-
mental data. Solid and dashed lines present the pressure P (nB, T = 0)
and that for the ideal hadronic gas, Pgas(nB, T = 0) [cf. Eq. (35)],
respectively.

isospin states, e.g., the nucleon species includes proton
and neutron.

(ii) The friction between baryon-rich fluids was fitted to re-
produce the stopping power observed in proton rapidity
distributions, see Sec. III C. For this purpose the original
friction, parametrized through experimental inclusive
proton-proton cross sections [29], was enhanced by
means of the tuning factor ξh

ξ 2
h (s) = γh + 2βh[ln(s/(2mN )2)1/2]1/4 (39)

with γh = 1 and βh = 0.75, see Fig. 2. The ξq factor is
not applicable here because of the pure hadronic nature
of the EOS.

(iii) The parameter of freeze-out energy density was fitted to
reproduce transverse-mass proton spectra, see Sec. III D,
and multiplicities of produced pions at comparatively
low incident energies Elab <∼ 20A GeV, see Sec. III E.
It has been taken εfrz � 0.2 GeV/fm3 at all incident
energies with the only exception: εfrz � 0.1 GeV/fm3

FIG. 2. (Color online) Fitted friction enhancement for the purely
hadronic EOS [46] used in simulations, see Eq. (21).
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at Elab � s 2A GeV. These εfrz values are presented
as approximate quantities because of the numerical
realization of the freeze-out procedure (cf. Appendix A).

(iv) The formation time of the fireball fluid was also fitted
to reproduce the pion yield at higher incident energies
Elab >∼ 30A GeV, see Sec. III E. It has been taken
τ = 2 fm/c. Note that τ is the formation time of a
fluid element, consisting of a number of particles, which
are generally not thermalized. This implies that the
formation time of a separate particle is certainly shorter
than τ .

(v) The contributions of strong decays of hadronic reso-
nances (R) into spectra of stable hadrons is taken into
account, as it is described in Appendix B. In the present
calculation all spectral functions were taken without
width

AR(s) = δ
(
s − m2

R

)
, (40)

where mR is the mass of the R resonance.
(vi) For the reproduction of stable hadron multiplicities it is

also important to take into account contributions of weak
decays with small values of cτw, where τw is the inverse
width of the decay. Feed back from weak decays of
hadrons with cτw < few c.m., i.e., K0

short,�,�, �̄, and
�̄ [108] have been taken into account in yields of stable
particles. In particular, this is important for reproduction
of the pion multiplicities (Secs. III E and III H and the
proper normalization of proton spectra (Secs. III C and
III D). However, weakly decaying hadrons with cτw of
the order of few meters, i.e., K0

long,K
+ and K−, were

treated as stable particles.
(vii) Light fragment formation (deutrons, tritons, 3He, and

4He) is taken into account in terms of the coalescence
model, which is similar to that in Appendix E of
Ref. [16]. In Ref. [16], the coalescence coefficients were
fitted at the incident energy 0.8A GeV. To accommodate
this formulation to different incident energies, we change
only overall scale of the coalescence (the coefficient
Ccoal), which either enhances (Ccoal > 1) or reduces
(Ccoal < 1) its strength, keeping ratios of yields of
various fragments the same as in Ref. [16], see Table I.
At Elab > 9A GeV we do not apply any coalescence
to calculations of nucleon observables, because the
respective correction is negligible.

To compare with available experimental data, impact
parameters used in calculations were taken either from
experimental works, if they were evaluated there, or estimated
based on the experimentally declared percentage of the total
reaction cross section, corresponding to a particular event
selection.

TABLE I. Coalescence parameters Ccoal used for simulations of
Au+Au and Pb+Pb collisions at various incident energies Elab.

Elab, A GeV 1 2 4 6 8 >9
Ccoal 1.5 1.2 0.8 0.4 0.1 0

C. Proton rapidity distributions: Observable stopping power

The nucleon rapidity distribution basically reflects the
stopping power achieved in a nuclear collision. It is defined as

dNN

dy
=

∫
d2pT

(
E

dNN

d3p
+

∑
R

E
d3N

(R→N+X)
N

d3p

)
(41)

in terms of frozen-out spectra of nucleons EdNN/d3p, see
Eq. (33), and baryonic resonances. The second term under the
integral takes into account the contribution of these resonance
decays, cf. Eq. (B5), Appendix B, the sum runs over all
baryonic resonances R. Integration runs over the transverse
(with respect to the beam) momentum pT .

Either identified protons or difference between positive
and negative hadrons are experimentally measured. The latter
is associated with the proton-antiproton difference, (p − p̄).
Because particles are not isotopically distinguished in our
model, we estimate the proton distribution simply as

dNp

dy
= Z

A

dNN

dy
, (42)

where Z and A are the proton and mass numbers, respectively,
in the colliding (identical) nuclei. This estimate is quite
reasonable at comparatively low incident energies. At higher
energies, when abundant particle production starts, this recipe
somewhat underestimates the proton number. The reason is
that newly produced particles tend to restore the isotopic
symmetry in the system and hence increase the number
of protons as compared with its initial value. The (p − p̄)
quantity is much less sensitive to the effect of newly produced
particles, because their contribution is essentially canceled
in the difference (p − p̄). Therefore, the Z/A scaling of the
nucleon-antinucleon difference is a reasonable approximation
for the (p − p̄) quantity even at high incident energies. As
mentioned above, our aim is to reproduce these distributions
in a wide range of incident energies from 1A to about
160A GeV.

In general, nucleon observables are more robust to varia-
tions of physical parameters than other probes, because they
are essentially confined by the baryon number conservation.
Our first observation is that the nucleon and, in particular,
proton rapidity distributions are only weakly sensitive to
variation of the freeze-out energy density εfrz and the formation
time of the fireball fluid τ . As for εfrz, there is a certain
compensation between effects of collective motion and internal
excitation. Both these effects produce similar consequences in
nucleon spectra. For instance, if we allow the system to evolve
longer (the lower εfrz), the collective motion of the matter
becomes more developed while its internal excitation drops
down (i.e., the matter cools down). This counteraction results
only in slight changes in nucleon rapidity distributions. As
for the formation time, the density of the produced fireball
fluid is not high enough even at the highest considered energy.
Therefore, its interaction with baryon-rich fluids only slightly
affects the baryon subsystem [23]. This weak dependence on
εfrz and τ allows us to use nucleon rapidity distributions to fit
the observable stopping power, to which nucleon observables
are indeed sensitive.
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The second main conclusion is that the original friction
between baryon-rich fluids, estimated in Ref. [29] proceeding
from free proton-proton cross sections, is evidently insufficient
to reproduce observable stopping of nuclear matter. Therefore,
this friction is fitted to reproduce this stopping power observed
in proton rapidity distributions. For this purpose the original
friction was enhanced by means of the tuning factor ξh, cf.
Eq. (39). Thus, the friction enhancement is the larger, the
higher incident energy is. At the lowest considered energy
of 1A GeV, the friction turns out to be approximately 2
times enhanced. This is similar to earlier results of the
two-fluid model with mean mesonic fields [16]. There it
was found out that for the proper reproduction of data
on heavy-ion collisions in the energy range from 0.4 to
0.8A GeV the enhancement factor of 3 was required.

Figure 3 illustrates the overall quality of reproduction
of experimental data by our hydrodynamic calculations as
well as by other transport simulations for two basic incident
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FIG. 3. (Color online) Rapidity spectra of protons (upper panel)
and (p − p̄) (lower panel) from central heavy-ion collisions. Bold
solid lines and bold dashed line (upper panel) correspond to three-fluid
hydrodynamic calculations at different impact parameters. Thin
dashed-dotted and short-dashed lines are the appropriate UrQMD and
HSD model results [48], respectively. Full symbols display measured
experimental points, whereas the open ones are those reflected with
respect to the midrapidity point. Experimental data are taken by
Collaborations E802 [49], E877 [50], E917 [51], and NA49 [52–54].
The percentage shows the fraction of the total reaction cross section,
corresponding to experimental selection of central events.

energies of 10A and 160A GeV. The three-fluid simulations
were performed at impact parameters that correspond to the
experimentally declared fraction of the total reaction cross
section, accumulated in the experimentally selected central
events, assuming sharp cutoff in impact parameters. The side
bumps of the HSD calculations correspond to spectator parts
of colliding nuclei. In our model, these spectator parts were
cut off, based on simple criterion: the energy per baryon
is less than the nucleon mass, which is the case when a
nucleon is at least loosely bound in the matter. As seen,
experimental data from different experiments somewhat differ,
and therefore one should not expect their reproduction in the
model calculations within better than ∼10%. Uncertainties
in the impact parameter at the level of about 0.5 fm do not
noticeably affect hydrodynamic rapidity spectra. In general,
there is a reasonable agreement between hydrodynamic and
kinetic calculations.

Comparison with experimental data for identified protons
is presented in Fig. 4 for the SIS-AGS energy range, where
various selections of noncentral nuclear collisions are also
considered. Here and below, impact parameters for each
set of noncentral interactions were chosen accordingly the
experimentally declared fractions of the total reaction cross
section, accumulated in the set of experimentally selected
events, assuming sharp cutoff in impact parameters.

At the beam energies Elab of the order of 1A GeV, a large
fraction of nucleons is produced with low relative velocities.
Therefore, they may coalesce forming light fragments. The
coalescence formulation accepted here is similar to that in
Appendix E of Ref. [16]. Only light fragments (deutrons,
tritons, 3He, and 4He) are taken into account. To fit this
formulation to different incident energies, we change only
overall scale of the coalescence (the coefficient Ccoal) that
either enhances (Ccoal > 1) or reduces (Ccoal < 1) its strength,
keeping ratios of yields of various fragments the same as in
Ref. [16], see Table I.

At the SIS energy we describe reasonably well both proton
and deuteron rapidity spectra. The fact that the experimental
distribution is somewhat wider than the calculated one can be
explained by that the set of experimentally selected events in
fact contains a certain admixture of semicentral and peripheral
events, whereas the calculation was performed for the single
central impact parameter. Indeed, at comparatively low ener-
gies the reliable selection of central events is problematic [16].
This noncentral admixture makes the distributions wider as
compared to what it would be for the perfect central selection.
At this energy the stopping power is rather high. This is seen
from both the Gaussian-like shape of the rapidity distributions
and also from the fact that the three-fluid results are quite close
to those of the conventional one-fluid calculations (see Fig. 4.
A separate code was used for these one-fluid calculations. With
the increase of the incident energy, the spectrum shape starts
to differ from the Gaussian one, getting more and more flat at
the midrapidity. The three-fluid model reasonably reproduces
the dependence of the spectra on both the incident energy
Elab and the impact parameter b. Note that no extra tuning of
normalization of the spectra was done. The values of impact
parameters were taken from the experimental estimate of
centrality of nuclear interactions [51]. Though there are some
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FIG. 4. (Color online) Proton rapidity spectra at SIS and AGS energies for various impact parameters. Solid lines correspond to three-fluid
calculations. The dashed line is that for deuteron production. For comparison the one-fluid result is shown by the dotted-dashed line at
Elab = 1.06A GeV. Experimental points at different energies are taken from [55] at Elab = 1.06A GeV, [56] at 2A and 4A GeV, and [51] at 6A,
8A, and 10.5A GeV. The percentage indicates the fraction of the total reaction cross section, corresponding to experimentally selected events.

uncertainties in this estimate, we applied no special tuning to
values of these impact parameters.

The (p − p̄) rapidity spectra at the SPS energies are
shown in Fig. 5. A minimum of hydrodynamic distributions
dN/dy in the midrapidity region complies with experimental
observations at Elab = 158A GeV. It survives at lower incident
energies, up to Elab = 40A GeV. This is in contrast to simu-
lations based on kinetic transport codes [48], which predict
flat or even peacked distributions in the midrapidity region at
Elab = 40A and 80A GeV. Available experimental points here
do not allow us to verify these different predictions. Note that
experimental points at Elab = 40A and 80A GeV correspond
to identified protons, whereas all presented calculations are
related to (p − p̄).

D. Proton transverse mass distributions
Once the friction has been already fitted to reproduce proton

rapidity distributions, we can vary only the freeze-out energy
density εfrz and the formation time of the fireball fluid τ . In
contrast to rapidity distributions, the proton transverse-mass
distributions turn out to be more sensitive to εfrz, because
their slopes reflect the effective temperature of the frozen-out
distributions. This is because the internal excitation certainly
dominates in the transverse direction as compared to the
collective motion. At the same time, these distributions are
rather insensitive to τ , as well as all other baryonic (however,
not antibaryonic) quantities. Therefore, to reproduce them, we
choose εfrz � 0.2 GeV/fm3 at all incident energies with the
only exception: εfrz � 0.1 GeV/fm3 at Elab � 2A GeV. As for
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FIG. 5. (Color online) (p − p̄) rapidity distribution from central
Pb+Pb collisions at SPS energies. Solid lines are three-fluid calcula-
tions, whereas dashed-dotted and dashed lines are the corresponding
predictions of the HSD and UrQMD models [48], respectively. NA49
experimental data are from Ref. [54] for Elab = 40A and 80A GeV and
from Refs. [52–54] for Elab = 158A GeV. The percentage indicates
the fraction of the total reaction cross section, corresponding to
experimentally selected events.

low energies, Elab � 2A GeV, we had to reduce εfrz, because
otherwise the freeze-out would occur at the very early stage of
the collision. The approximate nature of the εfrz values results
from the numerical realization of the freeze-out procedure
(cf. Appendix A).

Proton transverse-mass spectra at the AGS energies are
exemplified in Fig. 6. They exhibit a typical exponential
falloff. As seen, the three-fluid model well reproduces both
the normalization and the slopes of this falloff, as well as
their rapidity dependence. The right panel of Fig. 6 shows
the dependence of the transverse mass distributions at the
midrapidity on the impact parameter b. As before, the values of
impact parameters were taken from the experimental estimate
of centrality of nuclear interaction [51]. The impact-parameter

dependence is reasonably reproduced by the model as well
even at relatively large impact parameters.

The beam-energy dependence of the proton transverse-
mass distributions is presented in Fig. 7 for central Pb+Pb
collisions at the SPS energies. Overall, these distributions are
in agreement with experimental data. However, the three-fluid
model does not exhibit deviation from the exponential falloff
at (mT − m) <∼ 0.2 GeV, observed in experiment, most clearly
at Elab = 158A GeV. The same feature of the hydrodynamic
calculation was earlier reported in Ref. [22]. As it was shown
[22], a post-hydro kinetic evolution is required to produce
the observable two-slope structure of the mT spectra. In our
model such a post-hydro evolution is absent. It is worthwhile
to note that the above problem is not an inalienable feature
of any hydrodynamic calculation. For instance, the deviation
from the exponential fall-off was reproduced in calculations
by Kolb et al. [21].

E. Pion rapidity distributions

Production of new particles is closely related to the amount
of entropy accumulated in the system. At the late stage of the
collision, the system expansion is isoentropic, i.e., the total
entropy is conserved. This is indeed so in our simulations, as
we have checked it. This fact implies that at high incident
energies Elab >∼ 40A GeV the total number of produced
pions is approximately conserved during this expansion stage,
because thermal pions are the dominant component among
the produced particles. From the practical point of view, it
means that the pion number is approximately independent of
the freeze-out energy density εfrz. This is indeed observed
in actual simulations. However, at high incident energies the
pion number depends on the formation time of fireball fluid τ ,
because 20÷30% of the pions are produced in the fireball fluid.
The shorter τ is, the earlier the fireball fluid starts to interact
with baryonic subsystem, and hence the fewer pions survive
in this fluid. This implies that the formation time effectively
tunes the strength of the fireball-projectile (target) friction,
which was only roughly estimated (cf. Sec. II C ).

At the first glance, the above speculation contradicts to the
pion absorption mechanism (cf. in Sec. II C), which assumes
that pions are simply captured by the baryon-rich fluids without
loosing their number. However, the pion number is not a
conserved quantity. In the baryon-rich fluids the energy of
the captured pions is thermally redistributed (accordingly
to thermal chemical equilibrium) between kinetic energy of
(mainly) baryons and thermally produced (mainly) pions.
Therefore, their number is effectively reduced, because in
the baryon-free fireball fluid the same energy was mainly
accumulated in thermal pions.

At lower incident energies Elab <∼ 20A GeV, the thermal
pion production is not already so dominant but pions are
rather produced through decays of resonances. Therefore, their
number starts to depend on εfrz. The later freeze-out occurs, the
fewer pions are produced. At the same time, the contribution
of the produced fireball fluid becomes less important, and
hence the τ dependence of the pion multiplicity becomes
weak. At intermediate energies 20 <∼ Elab <∼ 40A GeV, there
is a moderate dependence of the pion multiplicity on both εfrz
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FIG. 6. (Color online) Transverse mass distributions of protons from Au(8A GeV)+Au collisions at b = 2 fm and different rapidities in
the c.m. system (left panel) and at the midrapidity and different impact parameters (right panel), cf. the right panel of Fig. 4. For clarity of
representation, every next data set and the corresponding curve (from top to bottom) is multiplied by the additional factor 0.1. Experimental
data are from Ref. [51].

and τ . Note that these parameters, εfrz and τ , mostly affect
the overall normalization of pion rapidity spectra, whereas the
shape of these spectra mainly depend on the stopping power,
which is kept fixed here.

As both the friction and εfrz have been already fixed
above, the pion rapidity distributions at low incident energies
Elab <∼ 20A GeV can be considered as predictions of the model.

FIG. 7. (Color online) Transverse mass distributions of protons
at the midrapidity from central Pb+Pb collisions at incident energies
Elab = 158A, 80A, and 40A GeV and impact parameter b = 2.5 fm,
cf. Fig. 5. NA49 experimental data are taken from [52] (squares), [57]
(open circles), and [57] (full circles).

To reproduce the pion yield at high incident energies Elab <∼
30A GeV, the formation time of the fireball fluid has been taken
τ = 2 fm/c. Note that τ is the formation time of a fluid element,
consisting of a number of particles [cf. Eq. (14) and discussion
above it]. This implies that the formation time of a separate
particle (pion) at rest is certainly shorter than τ . Assuming
that the temperature scale of the fireball fluid is approximately

FIG. 8. (Color online) Pion rapidity spectra from central
Au(10.5A GeV)+Au collisions. Bold solid and dashed lines represent
three-fluid calculations at b = 2.5 and 2.0 fm, respectively. Thin
dashed-dotted and short-dashed lines correspond π+ spectra from
kinetic simulations within HSD and UrQMD models [48]. The π− (full
squares and triangles) and π+ (full circles) data are measured by
E895 [56] and E877 [50] Collaborations. The percentage indicates
the fraction of the total reaction cross section, corresponding to
experimentally selected events. Open symbols are obtained by
reflecting the full ones with respect to the midrapidity.
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100 MeV, we estimate that the formation time of a separate
pion at rest approximately equals 1 fm/c. This is in good
agreement with the estimate of the string-formation time.
However, one should keep in mind that the latter value refers to
a separate string in vacuum, i.e., without any effects of string
interactions ( junctions and color-rope formation). At the same
time, our τ has an in-medium sense with all these multiparticle
effects included. Therefore, their coincidence should be taken
with caution. Note that with τ = 0 the multiplicity of pions (as
well as other newly produced particles) would be 10%–15%
underestimated at high incident energies (>30A GeV). All
other observables would remain approximately the same.

Because particles are not isotopically distinguished in our
model, we assume that numbers of pions of each charge
are equal, i.e., Nπ+ = Nπ− = Nπ0 = Nπ/3, where Nπ is the
calculated total number of pions. Of course, this is a rough
estimate of π+ and π− yields, because Nπ− always exceeds

Nπ+ because of the initial isotopic asymmetry of colliding
nuclei. Therefore, only if our calculation of Nπ/3 complies
with experimental (Nπ+ + Nπ− )/2, we refer to this as “a good
agreement.”

Figure 8 represents pion rapidity distributions in central
Au+Au collisions at the incident energy Elab = 10.5A GeV.
Sensitivity of this distribution to the variation of the impact
parameter is also demonstrated. As seen, the hydrodynamic
results indeed fall in between the π+ and π− data, hence they
comply with these data. In contrast, the π+ rapidity spectra,
calculated in two transport models, HSD and UrQMD models
[48] also displayed in Fig. 8, closely follow experimental
points but for negative pions. The overestimate of the pion yield
by the kinetic models can be attributed to a lack of collective
interaction in the EOSs corresponding to those models.

All above said is in fact true for the whole energy
range under consideration, as it is demonstrated in Fig. 9.
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FIG. 9. (Color online) Pion rapidity spectra from central collisions at the AGS (left panel) and SPS (right panel) energies. Experimental
points are taken from [56] (AGS energies) and [58] (SPS energies). Notation is the same as in Fig. 8.
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The three-fluid model reasonably reproduces the pion dis-
tributions, whereas the HSD and UrQMD models certainly
overestimate them.

F. Rare particle production

Now all the parameters of the model are fixed. Therefore,
all further calculations can be treated as predictions of the
three-fluid model.

As an example of the hydrodynamic description of rare
channels, the rapidity spectra of � and �̄ hyperons are
presented in Fig. 10. Contributions from decays of higher
resonances are taken into account. Both shape and absolute
value of hyperon and antihyperon spectra are reproduced

surprisingly well. The � hyperons originate mainly from
baryon-rich fluids and shapes of their spectra closely follow
those of the protons. Although the experimental data are
preliminary, one may note that agreement with experiment
becomes certainly worse at the incident energy Elab =
40A GeV. Unfortunately, the only measured point in proton
rapidity distribution (see Fig. 5) does not allow us to conclude
on either similarity or difference of the � and p distributions
at this energy. In contrast, �̄ antihyperons are dominantly
created in the baryon-free fireball and have typical single-bump
thermal spectra.

At the same time the experimental data on antiproton
production [60] are certainly overestimated in the our model,
as illustrated in Fig. 11. Because particles are not isotopically
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FIG. 10. (Color online) Rapidity spectra of � + �0 hyperons (left panel) and �̄ + �̄0 antihyperons (right panel) from central (b =
2.5 fm) Pb+Pb collisions. Solid lines represent results of the three-fluid model. Contributions from the fireball fluid are shown by dashed lines.
Preliminary experimental data are taken from Ref. [59]. The percentage indicates the fraction of the total reaction cross section, corresponding
to experimentally selected events.
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FIG. 11. (Color online) Antiproton rapidity spectrum from cen-
tral Pb(158A GeV)+Pb collisions. Notation is the same as in Fig. 10.
Experimental data are taken from Ref. [60].

distinguished in our model, we have estimated the antiproton
yield as half of that of antinucleon: Np̄ = 1

2NN̄ , assuming
that pp̄ and nn̄ pairs are produced with approximately equal
probability. The contributions of weak-decay channels �̄ →
N̄ + π and �̄ → N̄ + π are excluded.

G. Flow

Flow quantities of different types quantify space-
momentum correlations of collective motion of the strongly
interacting matter. This collective motion is essentially caused
by the pressure gradients arising during the evolution of the
collision and hence is intimately related to the EOS and, in
particular, to a possible phase transitions. A spectacular loss of
correlation between the observed particle transverse momenta
and the reaction plane, which gives rise to dramatic reduction
of the directed flow, has been predicted by Rischke et al. [61]
in the conventional hydrodynamic model with the bag-model
EOS. The subsequent studies showed that the observed signal
essentially depends not only on the EOS but also on the
collision dynamics [12,15].

The conventional transverse-momentum flow of an a
species is defined as [62], cf. Eq. (41),〈

p(a)
x

〉
(y)

=
∫

d2pT px

(
EdNa/d

3p + ∑
R Ed3N (R→a+X)

a

/
d3p

)∫
d2pT

(
EdNa/d3p + ∑

R Ed3N
(R→a+X)
a

/
d3p

) ,

(43)

where px is the transverse momentum of a particle in
the reaction plane, and integration runs over the transverse
momentum pT . The second term in square brackets takes into
account the contribution of resonance decays, resulting in a
production, cf. Appendix B, the sum runs over all relevant
resonances R.
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FIG. 12. (Color online) Transverse-momentum flow of nucleons
and protons as a function of rapidity for semicentral Au+Au collisions
at Elab = 10.5A GeV. The three-fluid calculations are presented for
b = 4 fm (solid line) and b = 6 fm (dashed line). The data for protons
(circles) and all baryons (triangles) are taken from Ref. [63]. Full
symbols correspond to measured data, open ones are those reflected
with respect to the midrapidity point.

As seen in Fig. 12, the three-fluid model reasonably
reproduces a general trend of the baryonic 〈px〉(y) distribution
at Elab = 10.5A GeV, exhibiting two clear peaks near the
target and projectile rapidities. In fact, we compute 〈px〉(y)
of so-called primordial nucleons, which later may coalesce,
forming light fragments. In view of this, it is not surprising that
agreement with the nucleon 〈px〉(y) data, which indeed take
into account contribution of light nuclear fragments, seems to
be better than that with identified-proton data.

At high energies the azimuthal asymmetry is usually
characterized by the first and second coefficients of Fourier
expansion of the azimuthal-angle dependence of the single-
particle distribution function, i.e., by the directed flow v1 =
〈cos φ〉 and elliptic flow v2 = 〈cos 2φ〉:
v

(a)
1 (y)

=
∫
d2pT (px/pT )

(
EdNa/d

3p +∑
R Ed3N (R→a+X)

a

/
d3p

)∫
d2pT

(
EdNa/d3p + ∑

R Ed3N
(R→a+X)
a

/
d3p

) ,

(44)

v
(a)
2 (y)

=
∫
d2pT

[(
p2

x −p2
y

)/
p2

T

](
EdNa/d

3p+ ∑
REd3N (R→a+X)

a

/
d3p

)∫
d2pT

(
EdNa/d3p + ∑

R Ed3N
(R→a+X)
a

/
d3p

) .

(45)

Examples of the v1 and v2 flow for protons and pions at
Elab = 40A and 158A GeV are presented in Figs. 13 and 14.
The declared experimental percentage of the total reaction
cross section, related to the experimental event selection,
allows us to estimate the corresponding impact parameter
as b = 5.6 fm. In view of uncertainty of this estimate and
to reveal the model dependence on the impact parameter,
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FIG. 13. (Color online) Directed flows of protons (upper panels) and charged pions (lower panels) in semicentral Pb+Pb collisions at
Elab = 158A (right panels) and 40A (left panels) GeV as functions of rapidity. The three-fluid calculations are presented for b = 5.6 fm (solid
line) and b = 4 fm (dashed line). The dot-dashed lines show contributions of the fireball fluid. Experimental data are taken from Ref. [64]. These
data were obtained by two different experimental procedures: the standard one [v1,2(st)] and the method of n-particle correlations [v1,2(n)].
Full symbols correspond to measured data, whereas the open symbols are those reflected with respect to the mid rapidity. Updated data of the
NA49 Collaboration [65][v1,2(st) − 98] with acceptance 0.05 < pT < 0.35 GeV/c for pions and 0.6 < pT < 2.0 Gev/c for protons, are also
shown.

we also show calculations with b = 4 fm. Flows of the
fireball fluid calculated at b = 4 and 5.6 fm are hardly
distinguishable. Several sets of data, which noticeably differ
from each other, are shown in these figures. The “standard”
method [62,66] for evaluating the flow coefficients requires
an event-by-event estimate of the reaction plane with which
outgoing hadrons correlate. However, this method does not
discriminate other sources of correlations, like those because
of global momentum conservation, resonance decays, etc.
Recently a new method of n-particle correlations has been
proposed, that affords getting rid of these nonflow correlations
in extracting v1 and v2 from genuine azimuthal correlations
[67]. Note that only statistical errors are indicated in these
figures. The systematic error for protons is 0.005 for v2 and
0.01 for v1 at 158A GeV, they can be by 50% larger at
40A GeV [64].

At these energies the three-fluid v1 flow significantly differs
from the data. Overall, the three-fluid model predicts an
essentially stronger directed flow than that experimentally
observed. This disagreement cannot be caused by either un-
certainties in the impact parameters or application of different
methods for measuring the directed flow [64]. Moreover, the

calculated pion directed flow closely follows the pattern of
the proton one, whereas the pion v1 data reveal anticorrelation
with proton flow. Note that the v1 flow in the fireball fluid is
very weak. Therefore, it is not surprising that pion and proton
v1 are correlated in the three-fluid model, because they reflect
the same collective motion of the baryon-rich fluids.

The reasons for this poor reproduction of v1 can be
twofold. Certainly the first reason consists in disregarding
the fact that a part of frozen-out particles is “shadowed”
by still hydrodynamically evolving matter (cf. discussion in
Sec. II D). This shadowing means that frozen-out particles
cannot freely propagate through the region still occupied by
the hydrodynamically evolved matter but rather get reabsorbed
into the hydrodynamic phase [109]. Apparently, the baryon
directed flow is less affected by this shadowing. The reason
is that the baryon directed flow reveals the collective flow
of matter, which is mainly built of baryons as the most
abundant and heavy component of the system. This collective
flow is mainly formed at the early stage of the reaction.
Baryon rescatterings within this earlier-formed collective flow
at later (freeze-out) stages do not essentially alter the collective
transverse momentum of the matter. At the same time, the

044904-18



RELATIVISTIC HEAVY-ION COLLISIONS WITHIN . . . PHYSICAL REVIEW C 73, 044904 (2006)

FIG. 14. (Color online) The same as in Fig. 13 but for the elliptic flow.

pions can be much stronger affected by this shadowing, since
they are screened by the predominantly baryonic matter, where
pions may be essentially decelerated or even absorbed. This
can drastically change the pion v1.

The second possible reason is very probable from our point
of view. It could happen that the hadron EOS used in these
simulations is too hard, i.e., results in too strong bounce-off of
matter. A softer EOS, in particular because of possible phase
transition [15,61], would reduce the strength of the proton di-
rected flow in favor of its better reproduction. Then the problem
of correlation/anticorrelation with the pion flow would be more
delicate, because the shadowing effect could easily change
the sign of the pion flow. An additional argument in favor of
a softer EOS is the success of microscopic RQMD [68] and
UrQMD [69] models, which correspond to essentially softer
EOS, because it is closer to that of the gas. These models
qualitatively reproduced early measurements of v1(y) and
v2(y) for both protons and pions at Elab = 158A GeV. Recently
a good microscopic description of the differential flow at
40A GeV was also obtained [70].

The calculated elliptic flow of protons (see Fig. 14) is pos-
itive (“in plane”) and somewhat overestimates experimental
points at both incident energies, 40A and 158A GeV. Though
data at 40A GeV are still controversial, this overestimate
again indicates that the used hadronic EOS is too hard. At
the same time, the hydrodynamic pion elliptic flow is in
surprisingly good agreement with experimental data of the
NA49 Collaboration both in magnitude and shape, exhibiting

a shallow minimum at the midrapidity. The elliptic flow
v2 results from the initial spatial asymmetry of noncentral
nucleus-nucleus collisions. The overlap lens-shaped geometry
of two nearly thermalized nuclei is reproduced correctly in
the three-fluid model. As this lens-shaped matter expands, it
produces the elliptic flow. Note that mesons emitted from the
fireball fluid have negative (“out of plane”) v2 flow.

The earlier pion v2 data of the NA49 Collaboration, taken
at smaller acceptance at the top SPS energy [65], have been
already analyzed within hydrodynamic approaches. In the
expansion model [71] the Bjorken scaling solution [72] was
assumed for longitudinal evolution and 2D hydro was solved
numerically for transverse one. In this way, the elliptic flow
could be estimated only at the midrapidity point. The full 3D
expansion model with postulated initial conditions was applied
to the meson elliptic flow by Hirano [73]. In a qualitative
agreement with Ref. [71], it was found that ρ-meson decays
result in almost vanishing azimuthal anisotropy of pions near
the midrapidity. Let us remind that decays of all relevant
resonances are taken into account in our model.

Recently, collective flows in heavy-ion collisions from AGS
to SPS energies were systematically studied in a transport
model with various assumptions on the nuclear mean field
[74]. It was found that momentum dependence in the nuclear
mean field is of prime importance for the reproduction of the
v1 and v2 flows. It turned out that generally our results are
rather close to those of Ref. [74], if the mean-field momentum
dependence is absent. This is precisely the case in our EOS.
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FIG. 15. (Color online) Multiplicities for central Au+Au (at AGS energies) and Pb+Pb (at SPS energies) collisions as functions of the
incident energy. Open triangles connected by solid lines represent the three-fluid results. The experimental data (full circles) are taken from
Refs. [58,75–85] for SPS energies and from Refs. [86–90] for AGS energies.

It is of interest to note that similarly to our results but in
contrast with the experiment, the pion directed flow at Elab =
158A GeV correlates with the proton v1 independently of the
version chosen for the mean field [74].

H. Multiplicities

Though the quality of reproduction of particle multiplic-
ities was already clear from the above-presented rapidity
distributions, we summarize them in this section, as well as
present those for hadrons not mentioned above. In Fig. 15,
particle multiplicities for central Au+Au (at AGS energies)
and Pb+Pb (at SPS energies) collisions as functions of
the incident energy are presented and confronted with the
experimental data. The experimental data are taken from
Refs. [58,75–85] for SPS energies and from Refs. [86–90]
for AGS energies. These data are presented as they were
summarized in Ref. [91], where they were scaled to the
same 5% experimental trigger. Because of this reduction to
the same 5% trigger, all the simulations were performed at the
same central impact parameters corresponding to this trigger:
b = 2 fm for Au+Au and b = 2.5 fm for Pb+Pb. Corrections
for feeddown from weak decays (mostly �−, �0 and their
antiparticles) were not applied in the original published data.
They were, however, estimated to be 6% for � and 12% for
�̄ [76]. Based on this estimate the � and �̄ yields given in
Ref. [91] were reduced by 6 and 12%, respectively. This also
complies with conditions of our simulations.

We compare our calculated pion multiplicities with the
experimental results for half-sum of those for π+ and π−,
because the model does not distinguish the isospin of particles.
Note that the pion multiplicities were fitted by means of the
freeze-out parameter and the formation time of the fireball
fluid, whereas all other multiplicities are already predictions
of the model. As seen, the model reasonably reproduces the
energy dependence of various multiplicities, except that for
K−. The latter is strange, especially in view of that even
the rare-channel particles, such as φ and �̄, are reasonably
reproduced without any additional tuning. Probably, a kind
of post-hydro kinetic evolution, similar to that performed in
Ref. [22], is required for a proper reproduction of the K−
multiplicity. Indeed, cross sections of the reactions K̄N →
π� and K̄N → π� are very high at low relative momenta [2].
The first reaction transforms a part of K− into �. The resulting
� enrichment would not contradict to data, becasue the NA57
data for the � production [92] are certainly above the NA49
data presented in Fig. 15. The second reaction results in a loss
of strangeness because of the weak decay �± → Nπ . In fact,
this is the dominant channel for the K̄ absorption on nucleons
at low energies. In our model such a post-hydro evolution is
absent. It is worthwhile to note that the statistical-model fit
of the data also overestimate K− multiplicities at the SPS
energies [93].

At comparatively low incident energies Elab < 10A GeV,
the grand canonical treatment of the strangeness production,
used in the three-fluid model, becomes poorly applicable.
Therefore, we do not present the three-fluid predictions at
these energies. At energies Elab = (30–40)A GeV the observed
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FIG. 16. (Color online) The same as in
Fig. 15 but for multiplicities of multistrange
hyperons. The experimental data are taken from
Refs. [80,94,95]: full circles for hyperons and
full squares for antihyperons.

multiplicities of K+ and � are certainly above the smooth
curve predicted by the three-fluid model. This correlates
with already above observed fact (see Figs. 10 and 14) that
agreement with data in this energy region is certainly worse
than at other energies.

The excitation functions for production of multistrange
hyperons, � and �, and the corresponding antihyperons are
presented in Fig. 16. In Ref. [80], �− and �+ were not
separated at Elab = 40A GeV. Because of that their total yield
is plotted as �−, because the yield of �+ antihyperons is much
lower than that of �−. It is seen that calculated multiplicities
of multistrange hyperons are also in a reasonable agreement
with the available data. Note that these yields are strongly
underpredicted in the UrQMD model [80].

IV. GLOBAL EVOLUTION OF NUCLEAR COLLISIONS

In the preceding section, it was shown that the three-fluid
hydrodynamic model with the simplest, purely hadronic EOS
is able to reasonably reproduce a great body of experimental
data on relativistic heavyion collisions. The considered ob-
servables characterize a state of the colliding system at the
freeze-out stage. With thus fixed parameters of the model, it is
possible to address the question of global evolution of nuclear
collisions, e.g., the values of baryon and energy densities
achieved in the course of them. An important question also is
how long and in which volume these achieved values survive.
Dynamics of heavy-ion collisions at different bombarding
energies are illustrated in Fig. 17. The shown baryon and
energy densities are averaged over the whole space occupied
by fluids

〈nB〉 =
∫

d3xnBW (x)

/ ∫
d3xW (x), (46)

〈ε〉 =
∫

d3xεW (x)

/ ∫
d3xW (x), (47)

where ε and nB are the proper (i.e., in the local rest frame) den-
sities, and the weight function is taken equal to the local proper
baryon density W (x) = nB(x). This weight function was
chosen because we are primarily interested here in evolution of
dense baryonic matter. The three-fluid nonequilibrium is quite
strong at the initial stage of the collision. The mean values of ε

and nB are calculated by means of averaging these quantities
corresponding to either separate fluids (if their mutual stopping

has not occurred) or the unified fluid (if the full stopping has
happened). To characterize the degree of stopping, we used
the auxiliary function introduced in Eq. (23), which reveals
quite a sharp transition between transparency (ϑ � 1) and
full stopping (ϑ � 0). This convention has been chosen to
map the nonequilibrium configuration in terms of equilibrium
quantities, avoiding unphysical contributions of the Lorentz
contraction and collective motion into quantities 〈ε〉 and 〈nB〉.
However, these results at early stages of collisions should be

FIG. 17. (Color online) Temporal evolution of average baryon
(upper panel) and energy (lower panel) densities for central Pb+Pb
collisions within three-fluid model. The time is counted in the c.m.
frame of the colliding nuclei.
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FIG. 18. (Color online) Time evolution of the entropy per baryon
number in Pb+Pb central (b = 2.5 fm) collisions at various incident
energies Elab. The total entropy is displayed by solid lines, while the
entropy of baryon-rich subsystem—by dashed lines.

taken with some caution because of certain ambiguities of this
mapping convention.

As seen from Fig. 17, the average baryon density 〈nB〉
increases quickly reaching a maximum, and then the expansion
stage comes. The maximal compression of baryonic matter
correlates with maximal overlap of colliding nuclei. Evolution
of the average energy density 〈ε〉 proceeds in a similar way.
Maximal values of baryon and energy densities are high
enough, exceeding hypothetic threshold for deconfinement
phase transition ε ∼ 1 GeV/fm3 even at Elab ∼ 10A GeV.
However, these values are slightly lower than those reported
in Ref. [1], because here averaging over the whole volume
of colliding system is carried out rather than over some fixed
central region. Note that local peak values may exceed these
average values by a factor of about 2.

To understand the extent of thermalization achieved in the
collision process, in Fig. 18 we show the time evolution of the
entropy per baryon number (the latter is conserved quantity) in
central collisions. These calculations were performed without
freeze-out to keep account of the total entropy. We have
taken into account the entropy of only formed fireball fluid,
because for the unformed part even its definition is ambiguous.
Therefore, we deal with an open system, when not all the
fireball matter is formed. At the early stage of the collision
(until the time instant of complete overlap of nuclei) the
entropy quickly rises, which is the evidence of nonequilibrium
in the system. After that the total entropy either flatten (at
Elab < 40A GeV) or even slightly drops down (at Elab >

40A GeV). This entropy flattening naturally means thermal-
ization. The temporal dropping down of the entropy is related
to still-continuing production of unformed fireball matter. It
starts to form only later, when the entropy starts to rise after
the temporal fall. Therefore, at the early stage of the reaction
we deal with an open system. The entropy production in the
baryon-rich fluids is proportional to the term

R = (uput )(DP − DE) − (DP + DE),

if the fireball fluid is still unformed, cf. Eqs. (6), (7), and
(16). This result follows from the standard derivation [96] of
hydrodynamic equation for the entropy flow. Therefore, the fall

FIG. 19. (Color online) Dynamical trajectories in the (T , µB )
plane for central Pb+Pb collisions (b = 2.5 fm) at various incident
energies. Numbers near the dynamical trajectories indicate the
evolution time instants in the c.m. frame of the colliding nuclei.
Bold parts of trajectories are related to approximately thermalized
baryon-rich subsystem, whereas the thin ones—to yet nonequilibrium
evolution. The light gray shaded region corresponds to the boundary
of the phase transition from the hadronic phase to the QGP, as it was
estimated in Ref. [97]. Dotted line is the “experimental” freeze-out
curve fitted to observed multiplicities in the approximation of the
ideal gas model [98] under condition that the energy per hadron is
1 GeV. The star symbol is the critical end point calculated in Ref. [6].

or rise of the entropy of the baryon-rich fluids depend on the
sign of this R. If R > 0, the entropy rises. This occurs either at
DE = 0, because (uput ) � 1, or when (uput ) � 1, as it is the
case at the initial interpenetration stage. In the region, where
the entropy drops down, DE is still nonzero and (uput ) is not
high enough, therefore R < 0. In physical terms, the entropy
drops down, when the energy-momentum radiation into the
fireball fluid ∝ −[(uput ) + 1]DE dominates over the internal
heating ∝ [(uput ) − 1]DP of the baryon-rich subsystem.

As seen from Fig. 18, at Elab < 40A GeV the entropy is
approximately conserved already after the colliding nuclei
overlap. These overlaps correspond to peak values in Fig. 17
and turning points of the trajectories in Fig. 19. This fact
suggests that thermalization in these collisions occurs com-
paratively early. At higher incident energies, Elab > 40A GeV,
the complete thermalization happens at the comparatively late
stage (t >∼ 4 fm/c), when the fireball fluid gets formed and
the entropy approaches the plateau. However, the entropy of
the baryon-rich fluids, displayed by dashed lines in Fig. 18,
slowly changes already after the complete overlap of nuclei.
It remains constant within 10%. This baryon-rich subsystem
can be considered as an approximately thermalized fluid still
interacting with a “bath” of the fireball matter. Therefore,
this overlap time can be approximately taken as a time of
equilibration in the baryon-rich subsystem at all considered
here incident energies.

Based on the EOS used in simulations, the nB and ε

densities can be recalculated in the temperature-chemical-
potential (T ,µB ) representation and displayed in the
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conventional way as dynamic trajectories in the (T ,µB ) plane,
see Fig. 19. In view of the above discussion, we display
approximately equilibrium (for the baryon-rich subsystem)
parts of the trajectories by bold lines, whereas those yet
nonequilibrium–by thin lines, just to keep track of the system
evolution. As seen, the compression stage is rather short. For
example, at Elab = 158A GeV the maximal values of 〈T 〉
and 〈µB〉 are reached during the time of about 1 fm/c. After
that a comparatively fast expansion, accompanied by rather
slow cooling, starts. At the incident energy of ≈30A GeV,
the dynamical trajectory passes near the critical endpoint [6],
where the order of the deconfinement phase transition is
changed. In fact, the trajectories in the (T ,µB) plane strongly
depend on the used EOS, even if they originate from the same
(nB, ε) initial state. Therefore, this should be taken only as
a rough estimate of the relevant incident energy, because the
EOS of the hydro simulations has not involved any QGP phase
transition at all. The boundary of the phase transition from the
hadronic phase to the QGP, estimated in Ref. [97] (light-gray
shaded region Fig. 19), is displayed just to remind one what
may happen in this thermodynamic domain, if a EOS involves
the phase transition. However, this trajectory representation
is not quite informative because of the following reason. In
addition to the uncertainties of mapping of nonequilibrium
on equilibrium above discussed, the displayed time instants
correspond to the c.m. frame of colliding nuclei and hence are
noninvariant. Therefore, Fig. 19 does not tell us (in invariant
way) how long the dense matter survives and in which volume.

The way to overcome the above difficulties was proposed in
Ref. [1]. It consists in calculation of an invariant four-volume
V4 in which a quantity q exceeds a given value Q

V4(Q) =
∫

d4x � (q − Q). (48)

This quantity provides a Lorentz invariant measure of the
space-time region, where the quantity q keeps high value
q � Q. In Fig. 20 this four-volume is shown for two cases:
q = n

(eq.)
B and q = n

(noneq.)
B . The first case corresponds to the

four-volume summed only over those regions, where full
stopping [i.e., ϑ � 0 in terms of Eq. (23)] has occurred
and thermalized nB exceeds certain value, whereas in the
second case the four-volume is summed over all regions
[i.e., similarly to that in Eq. (46)], including those where
stopping has not occurred. As seen, for production of the
matter with comparatively high densities (nB > 4n0), there are
certain preferable incident energies, that facilitate attainment
of the largest four-volume. In particular, incident energies
(10–40)A GeV, planned at the new GSI facility, are favorable
for production of equilibrated matter with baryon densities
higher than 6n0. This conjecture is heavily based on the
hadronic EOS used. However, we expect that it is not too
far from the truth, because we fairly well reproduced the
observed stopping power, which is of prime relevance to the
achieved compression. To get an impression of the scale of
the corresponding four-volume, we draw a short-dashed line
presenting the four-volume �t × πR2 × 2R/γc.m. composed
of Lorentz-contracted cylindrical space volume of radius
R = 4 fm and time interval �t = 3 fm/c, here γc.m. is the
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FIG. 20. (Color online) Invariant four-volume corresponding to
conditions on n

(noneq.)
B (solid lines) and on n

(eq.)
B (long-dashed

lines) for central Pb+Pb collisions as function of the incident
energy. The dotted line on the lower panel is the four-volume
�t × πR2 × 2R/γc.m. with R = 4 fm, �t = 3 fm/c (see the text).

γ factor of colliding nuclei in their c.m. frame. It is of interest
that the fall-off of the invariant V4 is defined by this γ factor.

V. DISCUSSION AND CONCLUSIONS

In this article we have presented an extension of the three-
fluid model for simulating heavy-ion collisions in the range
of incident energies between few and about 200A GeV. In
addition to two baryon-rich fluids, which constitute the two-
fluid model, the baryon-free fireball fluid of newly produced
particles with delayed evolution is incorporated. This delay is
governed by a formation time, during which the fireball fluid
neither thermalizes nor interacts with the baryon-rich fluids.
After the formation, it thermalizes and comes into interaction
with the baryon-rich fluids. This interaction is estimated from
elementary pion-nucleon cross sections.

The hydrodynamic treatment of heavy-ion collisions is an
alternative to kinetic simulations. The hydrodynamic approach
has certain advantages and disadvantages. Lacking the micro-
scopic feature of kinetic simulations, it overcomes their basic
assumption, i.e., the assumption of binary collisions, which
is quite unrealistic in dense matter. It directly addresses the
nuclear EOS that is of prime interest in heavy-ion research.
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Naturally, we have to pay for these pleasant features of hy-
drodynamics: The treatment assumes that the nonequilibrium
stage of the collision can be described by the three-fluid
approximation.

Taking advantage of the modern computers, substantial
work has been also done on improvement of numerics of the
model. In particular, it was found that the numerical diffusion
of the computation scheme should be as much as possible
avoided to get reliable results in hydro simulations. To avoid
the numerical diffusion the parameters of the scheme should
be carefully optimized, as it is described in Appendix A.

The main unknowns of the present simulations can be
briefly summarized as follows: the equation of state and “cross
sections.” The EOS is an external input to the calculation and
thus can be varied. Our goal is to find an EOS that in the best
way reproduces the largest body of available observables. The
“cross sections” are equally important. They determine friction
forces between fluids and hence the nuclear stopping power.
At present we have at our disposal only a rough estimate of
the friction forces (cf. Ref. [29] for the friction of baryon-rich
fluids and Sec.II C for the friction with the fireball). Therefore,
we have to fit the friction forces to the stopping power observed
in proton rapidity distributions.

In this article we use a purely hadronic scenario in our
simulations. This means a very simple EOS [46], constructed
under the requirement that it reproduces saturation of the cold
nuclear matter. This EOS is a natural reference point for any
other more elaborate EOS. We have found out that the original
friction between baryon-rich fluids, incorporated in the model
accordingly to estimate of Ref. [29], is evidently insufficient
to reproduce observable stopping of nuclear matter. Therefore,
the original friction was enhanced by means of the tuning
factor ξh, cf. Eq. (39), which is plotted in Fig. 2. As seen,
the enhancement factor turned out to be unexpectedly large.
However, it complies with earlier results of the two-fluid model
with mean mesonic fields [16]. There it was found out that for
the proper reproduction of the data on heavy-ion collisions
in the energy range from 0.4A to 0.8A GeV, where the purely
hadronic scenario is certainly applicable, the enhancement by a
factor of 3 was required. From this large enhancement we infer
that the rough estimate of the friction [24] is really too rough
and that further more elaborate microscopic calculations of the
friction are required. In doing this at lower energies, we have to
rely on pure hadronic effects, e.g., on the concept of the hadron
liquid [99] rather than hadron gas. At higher incident energies
the friction enhancement could be associated with an indirect
manifestation of the onset of the phase transition, although the
used EOS does not involve it directly. In Refs. [100–102] it was
argued that just above the critical temperature, the quark-gluon
system is still a strongly interacting matter rather than a gas
of perturbative partons. This strong interaction anomalously
enhances interaction cross sections in this phase.

With this simple hadronic EOS we have succeeded in
reasonably reproducing a great body of experimental data
in the incident energy range Elab � (1–160)A GeV. The
list includes proton and pion rapidity distributions, proton
transverse-mass spectra, rapidity distributions of � and �̄

hyperons and antiprotons, elliptic flow of protons and pions
(with the exception of proton v2 at 40A GeV), multiplicities of
pions, � and �̄ hyperons, K+ mesons and φ mesons, �∓ and
�∓ multistrange hyperons. However, we have also found out
certain problems. The calculated yield of K− is approximately
a factor of 1.5 higher than that in the experiment. We have
also failed to describe directed transverse flow of protons and
pion at Elab � 40A GeV. This especially concerns pions, v1

of which experimentally anticorrelate with that of protons,
while it correlates in our calculations. This failure apparently
indicates that the used EOS is too hard and thereby leaves room
for a phase transition, which always makes the EOS softer.

The used hadronic EOS allows modifications relating to
different incompressibilities (K) of the nuclear matter. We
performed simulations with soft (K = 210 and 235 MeV)
and hard (K = 380 MeV) EOSs. We have found out that the
data certainly prefer soft EOS. All the calculations presented
in this article correspond to K = 210 MeV.

The analysis of the global evolution of central Pb+Pb
collisions with present hadronic scenario shows in particular
that incident energies (10–40)A GeV, planned at the new
GSI facility, are favorable for production of equilibrated
matter with baryon densities 6 times higher than the normal
nuclear density. This conclusion is heavily based on the
simple hadronic EOS used in our calculations. However, we
expect that it is not too far from the truth, because we fairly
well reproduced the observed stopping power, which is of
prime relevance to the achieved compression. Moreover, in
this energy range dynamical (T ,µB ) trajectories of nuclear
collisions pass in the vicinity of the critical end point, as it is
estimated in Ref. [6]. Note that the presently used EOS does
not involve any phase transition. In view of the latter, it is
intriguing that discrepancies of the present hadronic scenario
with the data (i.e., in the form of the � rapidity distribution,
proton and pion v1 and v2, and strangeness production) are
most clearly seen at incident energies about 40A GeV.

Our present experience shows that to conclude on the
relevance of a particular EOS the whole available set of
data should be analyzed in a wide incident energy range
with the same fixed parameters of the model. This is one of
the main conclusions of our article. Indeed, any particular
piece of data can be apparently fitted by means of fine
tuning of these parameters, whereas to fit the whole set of
them, one needs a really good EOS. In the present article
we analyzed various data only fragmentarily, just to fit the
parameters and to give an overview of the resulting predictions,
because the framework of a single article does not allow us
to do more. Our preliminary conclusion is that the considered
hadronic EOS is not perfect at higher incident energies Elab >∼
20A GeV because of the above-mentioned problems. Detailed
analysis of particular pieces of available data will be reported in
forthcoming articles. We are also going to extend our analysis
to other EOSs involving phase transition to the QGP. The
source code of the three-fluid model is publically available on
the Web page http://theory.gsi.de/∼mfd/. Free downloads of
the code are available from there. Brief instructions on how to
run this code are also given on this page.
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APPENDIX A: NUMERICS

The relativistic 3D code for the above described three-fluid
model was constructed by means of modifying the existing
two-fluid 3D code of Refs. [10,11]. The numeric scheme of
the code is based on the modified particle-in-cell method [42,
43], which is an extension of the scheme first applied in Los
Alamos [44]. Taking advantage of modern computers, we have
comprehensively tested this numeric scheme to find optimal
parameters of the calculation.

In the particle-in-cell method the matter is represented by
an ensemble of Lagrangian test particles. They are used for
calculation of the drift transfer of the baryonic charge, energy,
and momentum. In the present scheme the test particle has
a size of the cell. Therefore, when a single test particle is
moved on the grid, it changes quantities in eight cells, with
which it overlaps. These spatially extended particles make the
scheme smoother and hence more stable. The transfer because
of pressure gradients, friction between fluids and production of
the fireball fluid, is computed on the fixed grid (so called Euler
step of the scheme). Simulation is performed in the frame of
equal velocities of colliding nuclei. In view of this combined
nature of the numerical scheme there are parameters of the test
particles and the grid, which are summarized in the Table II.

The basic scale of the numerical scheme is chosen along
the x direction (the transverse direction in the reaction plane).
According to the preset number of cells in the x direction,
Lx , the maximal impact parameter bmax, which is foreseen for
the simulation, and number cells free of the matter, reserved

TABLE II. Basic parameters of the numeric scheme used for
simulations of Au+Au and Pb+Pb collisions at various incident
energies Elab.

Elab, A GeV 1 ÷ 10 20 ÷ 158∗ 158∗∗

Lx 150 320 320
Ly 60 130 130
Lz 240 820 820
Lfree

x 5 43 43
�x/�t 3.5 3.5 4
�x/�z 1 1 1.2
Nbar

tot 2 × 106 15 × 106 15 × 106

Nf 2 2 2
Nfire

tot 3 × 106 25 × 106 25 × 106

for transverse expansion, Lfree
x , the �x step of the grid is

determined as follows

�x = max{2Rt ; Rp + Rt + bmax}
/(

Lx − Lfree
x

)
,

where Rp and Rt are radii of the projectile and target nuclei,
respectively [110]. Another transverse step �y (in the out-of-
reaction-plane direction) is taken equal to �x: �y = �x. �z

and �t are determined by means of preset ratios �x/�t and
�x/�z. The preset numbers of cells in the y and z directions
(Ly and Lz) are used to finally define the size of the grid. The
simulation takes place only in the semispace y > 0 because of
the symmetry of the system with respect to the reaction plane.
The number of baryon-rich test particles (Nbar

tot = Nbar
projectile +

Nbar
target) is specified at the initialization step of the simulation.

As for produced baryon-free fluid, the actual total number of
corresponding test particles depends on the incident energy,
the size of the cell and the number of produced fireball test
particles per cell and per time step (Nf ) and is determined
only on the completion of the simulation. The maximal total
number of baryon-free test particles Nfire

tot should be larger than
the actual total number. Nfire

tot is used to reserve memory for
baryon-free test particles.

To get reasonable accuracy in the simulation, the following
basic requirements should be met:

(i) The grid should be extended enough to prevent escaping
the matter beyond this region before it gets frozen out.

(ii) The grid in the beam (z) direction should be fine enough
for a reasonable description of the matter of initially
Lorentz-contracted nuclei. From the practical point of
view, it is desirable to have more than 30 cells on the
Lorentz-contracted nuclear diameter.

(iii) The well-known Courant-Friedrichs-Lewy criterion
states that the ratios of the space-grid steps to the time step
(e.g., �x/�t) should be larger than 1 to have a consistent
and stable algorithm for solving hyperbolic partial-
differential equations. To avoid numerical diffusion, this
ratios should be taken optimal. As it was found in one-
dimensional simulations of exactly solvable problems
[43], the optimal range of these ratios is 2.5 < �x/

�t < 6 with the preferable �x/�t � 3.5, minimizing
the numerical diffusion. This fact dictates the choice
of equal-step grid in all directions (�x : �y : �z =
1 : 1 : 1), in spite of Lorentz-contraction of incident
nuclei, which is quite strong at high energies. This choice
makes the scheme isotropic with respect to the numerical
diffusion. However, in view of (i) and (ii) requirements
it makes the grid too fine in the transverse directions
and thus results in high memory consumption. The need
of the equal-step grid in all directions for relativistic
hydrodynamic computations within conventional one-
fluid model was pointed out in Ref. [45]. As it was
demontrated there, the matter transport becomes even
acausal if this condition is strongly violated.

(iv) The number of test particles per cell should be high
enough to avoid large numerical fluctuations in drift
transfer. In practice, this means that this number should be
not less than 3 during the whole evolution of expanding
matter, till its complete freeze-out.
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The final check of these requirements is possible only
upon completion of the simulation. The Table II presents the
optimized set of parameters for calculations of Au+Au and
Pb+Pb collisions at various incident energies. This set was
determined by multiple test runs of the code. The reaction
Pb+Pb at Elab = 158A GeV is the most memory and time
consuming case considered in simulations. To completely
fulfill the requirement (iii) in this calculation we need 8 GB
of memory for the central collision (see column 20 ÷ 158∗ in
Table II). To comply with memory restrictions, we still had to
take slightly unequal steps in different directions: �x : �y :
�z = 1.2 : 1.2 : 1,�x/�t = �y/�t = 4 and �z/�t = 3.3
(see column 158∗∗ in Table II), for noncentral Pb+Pb collisions
at Elab = 158A GeV.

The freeze-out criterion [Eq. (30)] is checked at the
Lagrangian step of the scheme. It is checked in the cells,
which overlap with the considered test particle. As mentioned
above, the test particle has a volume of the cell. Therefore,
each test particle overlap with eight cells. If the freeze-out
criterion is met in all these cells, this test particle is frozen
out and removed from further hydrodynamic evolution. Thus,
the frozen-out test particles are those droplets mentioned in
Eq. (33) for the spectrum of observable hadrons. Precisely
because of this extended checking in eight cells, the actual
freeze-out energy density [111] εfrz participating in the freeze-
out criterion (30) differs from that used in the code εcode

frz .
According to our estimate, the actual freeze-out energy density
εfrz is approximately twice as lower than εcode

frz . This estimate
was checked numerically. The reason behind this extended
checking in eight cells is as follows. Had we checked the
criterion only in a single cell, where the test particle is located,
we would prevent any hydrodynamic expansion of the system.
Indeed, if the matter, during its expansion, starts to fill in a
cell, which was empty before that, it occupies less than 1/3
of this cell during the single time step, because the time step
should be less than the space step (cf. �x/�t = 3.5) for this
numerical scheme. Then, all the densities in this newly filled-in
cell are quite low at this time step. Therefore, the freeze-out
criterion is certainly fulfilled in this cell. Had we confined
ourselves to checking only this cell, we would immediately
freeze the matter in this cell out, thus preventing hydrodynamic
expansion of the matter.

To avoid formation of bubbles of frozen out matter inside
the dense environment, we introduced additional criterion of
the freeze-out: at least one of the above discussed cells should
be empty, i.e., contain no test particles [112]. This additional
criterion means that the analyzed test particle is located near
the surface of the system, provided, of course, that the number
of test particles per cell is large enough [cf. condition (iv)],
which excludes origination of such empty cells because of
fluctuations.

APPENDIX B: RESONANCE DECAYS

1. General consideration

Contribution of resonance decays into stable particle
spectra has been studied long ago [103] and later analyzed
in more detail [104]. To make the article self-contained, we

briefly present here formulas for these decays, which in fact
are the same as those in Refs. [103,104] but differ from those
in presentation, which, from our point of view, is advantageous
for numerical realizations.

Consider a hadronic resonance R with degeneracy factor gR

and a spectral function AR(s), where s is the resonance mass
squared, which decays into n particles

R → 1 + 2 + · · · + n

of masses m1,m2, . . . , mn, through a Jth channel of its decay
with a branching ratio bJ . Then the distribution of the “1”
particle, resulting from this decay, is as follows(

E1
d3N

(R→1+2+···+n)
1

d3p1

)
J

= bJ

∫ ∞

(
∑n

i=1 mi)2
dsAR(s)

∫
d3pR

ER

[
ER

d3NR(s, pR)

d3pR

]

×
[
E1

d3�
(R→1+2+···+n)
1 (s, pR, p1)

d3p1

]
. (B1)

Here, the distribution of the R resonance, produced by the
hydrodynamic computation, is

ER

d3NR(s, pR)

d3pR

= gRV

(2π )3

upR

exp[β(upR − µR)] ± 1
, (B2)

where V is a small proper (i.e., in the rest frame) volume of
the fluid element, gR is degeneracy of the R resonance, u is
the hydrodynamic four-velocity, β is the inverse temperature,
µR is the chemical potential, pR is the four-momentum of
the R resonance, s = p2

R , the upper (lower) sign in this
expression corresponds to baryonic (mesonic) resonances. The
distribution of the “1” particle, resulting from decay of a single
R resonance, is expressed as follows:

E1
d3�

(R→1+2+···+n)
1 (s, pR, p1)

d3p1

= 1

2Rn(s)

∫ (
n∏

i=2

d3pi

2Ei

)
δ4

(
pR −

n∑
i=1

pi

)
(B3)

under assumption that the matrix element of the decay is
constant all over the available n-particle phase-space volume
[105], which, in its turn, reads

Rn(s) =
∫ (

n∏
i=1

d3pi

2Ei

)
δ4

(
pR −

n∑
i=1

pi

)
. (B4)

To obtain the total contribution of the R decay into “1” particle
spectrum, we should sum over all J branches of the R decay,
in which the “1” particle appears, and take into account that
particles identical to “1” can also be among residue particles
2, 3, . . . , n

E1
d3N

(R→1+X)
1

d3p1
=

∑
J

NJ
1

(
E1

d3N
(R→1+2+···+n)
1

d3p1

)
J

. (B5)

Here NJ
1 is the multiplicity of “1” particles in the Jth channel

of the R decay. Here and below, ER = (s + p2
R)1/2 and Ei =

(m2
i + p2

i )1/2.
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Fortunately, the the major part of integrations involved
in Eqs. (B1) and (B3) can be performed analytically. We
explicitly present results only for two-particle and three-
particle decays, which are dominant for resonances under
consideration.

2. Two-particle decays

The result for a two-particle decay of a R resonance is as
follows:(

E1
d3N

(R→1+2)
1

d3p1

)
J

= bJ

gRV

(4π )2

1[
(up1)2 − m2

1

]1/2

×
∫ ∞

(m1+m2)2
ds

AR(s)

R2(s)

∞∑
n=1

(∓1)n−1

×
{

nβER + 1

(nβ)2
exp[−nβ(ER − µR)]

}E−
R

E+
R

, (B6)

where the upper (lower) sign in this expression corresponds to
baryonic (mesonic) resonances,

R2(s) = π

2s
λ1/2

(
s,m2

1,m
2
2

)
(B7)

is the two-particle phase-space volume and

E±
R = 1

2m2
1

{(
s + m2

1 − m2
2

)
(up1)

± λ1/2
(
s,m2

1,m
2
2

)[
(up1)2 − m2

1

]1/2}
. (B8)

Here and below

λ(x, y, z) = (x − y − z)2 − 4yz (B9)

is the standard kinematic function [105]. To arrive to this result,
the following expansion

1

exp[β(upR−µR)] ± 1
=

∞∑
n=1

(∓1)n−1 exp{−nβ(upR−µR)}

(B10)

was used, the advantage of which is that it is rapidly con-
vergent, when upR > µR . The opposite limit, i.e., upR < µR ,
corresponds to low temperatures and hence hardly contributes
to the resonance production. The n = 1 term in this expansion,

as well in Eq. (B6), corresponds to the classical Jüttner
distribution.

3. Three-particle decays

The result for a three-particle decay of a R resonance is as
follows:(

E1
d3N

(R→1+2+3)
1

d3p1

)
J

= bJ

gRV

32π

1[
(up1)2 − m2

1

]1/2

×
∫ ∞

(m1+m2+m3)2
ds

AR(s)

R3(s)

∫ ∞
√

s

dERθ (X+/X−)

× θ

[(
m2

2 − m2
3

)2 − (
m2

2 + m2
3

)
X+ + ∣∣m2

2 − m2
3

∣∣√λ+(
m2

2 − m2
3

)2 − (
m2

2 + m2
3

)
X− + ∣∣m2

2 − m2
3

∣∣√λ−

]

× θ

[
−(

m2
2 + m2

3

) + X+ + √
λ+

−(
m2

2 + m2
3

) + X− + √
λ−

]

×
[

(
√

λ+ −
√

λ−) + ∣∣m2
2 − m2

3

∣∣ ln
X+

X− − ∣∣m2
2 − m2

3

∣∣
× ln

(
m2

2 − m2
3

)2 − (
m2

2 + m2
3

)
X+ + ∣∣m2

2 − m2
3

∣∣√λ+(
m2

2 − m2
3

)2 − (
m2

2 + m2
3

)
X− + ∣∣m2

2 − m2
3

∣∣√λ−

− (
m2

2 + m2
3

)
ln

−(
m2

2 + m2
3

) + X+ + √
λ+

−(
m2

2 + m2
3

) + X− + √
λ−

]

× ER

exp[β(ER − µR)] ± 1
(B11)

where the upper (lower) sign in this expression again corre-
sponds to baryonic (mesonic) resonances,

X+ = min
(
X̃+, Xmax

)
, X− = max

(
X̃−, Xmin

)
, (B12)

Xmax = (
s1/2 − m1

)2
, Xmin = (m2 + m3)2 , (B13)

X̃± = s + m2
1−2ER (up1) ± 2

(
E2

R−s
)1/2 [

(up1)2−m2
1

]1/2
,

(B14)

λ± = λ
(
X±,m2

2,m
2
3

)
, (B15)

R3(s) =
(π

2

)2 1

s

∫ Xmax

Xmin

dX

X
λ1/2

(
s,X,m2

1

)
λ1/2

(
X,m2

2,m
2
3

)
,

(B16)

θ (λ+), θ (λ−), etc., are step functions that define the accessible
kinematic region.
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H. Stöcker, and W. Greiner, Heavy Ion Phys. 5, 357 (1997);
M. Reiter, A. Dumitru, J. Brachmann, J. A. Maruhn,
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H. Stöcker, and W. Greiner, Z. Phys. C 54, 459 (1992).
[46] V. M. Galitsky and I. N. Mishustin, Sov. J. Nucl. Phys. 29,

181 (1979).
[47] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298,

1592 (2002); P. Danielewicz, nucl-th/0512009.
[48] H. Weber, E. L. Bratkovskaya, W. Cassing, and H. Stöcker,
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[52] H. Appelshäuser et al. (NA49 Collaboration), Phys. Rev. Lett.

82, 2471 (1999).
[53] G. E. Cooper (for the NA49 Collaboration) Nucl. Phys. A661,

362c (1999).

044904-28



RELATIVISTIC HEAVY-ION COLLISIONS WITHIN . . . PHYSICAL REVIEW C 73, 044904 (2006)

[54] T. Anticic et al. (NA49 Collaboration), Phys. Rev. C 69,
024902 (2004).

[55] N. Herrmann, Nucl. Phys. A610, 49c (1996).
[56] J. L. Klay et al. (E895 Collaboration), Phys. Rev. C 68,

054905 (2003).
[57] M. van Leeuwenet et al. (NA49 Collaboration), Nucl. Phys.

A715, 161c (1999).
[58] S. V. Afanasiev et al. (NA49 Collaboration), Phys. Rev. C 66,

054902 (2002).
[59] T. Anticic et al. (NA49 Collaboration), Phys. Rev. Lett. 93,

022302 (2004).
[60] G. I. Veres et al. (NA49 Collaboration), Nucl. Phys. A661,

383 (1999).
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