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Coulomb breakup in a transformed harmonic oscillator basis
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1Departamento de Fı́sica Atómica, Molecular y Nuclear, Facultad de Fı́sica, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
2Departamento de Fı́sica Aplicada, Universidad de Huelva, E-21071 Huelva, Spain

(Received 31 January 2006; published 28 April 2006)

The problem of Coulomb breakup in the scattering of a two-body loosely bound projectile by a heavy target is
addressed. A basis of transformed harmonic oscillator (THO) wave functions is used to discretize the projectile
continuum and to diagonalize the Hamiltonian of the two-body system. Results for the reaction 8B+58Ni at
sub-Coulomb energies are presented. Comparison of different observables with those obtained with the standard
continuum discretized coupled-channels (CDCC) method shows good agreement between both approaches.
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I. INTRODUCTION

The collision of a weakly bound system with a target
represents a challenging and interesting problem in quantum
physics, including atomic, molecular and nuclear physics. A
proper understanding of the process requires an appropriate
treatment of the unbound part of the spectrum of the loosely
bound system. In nuclear collisions, the problem was first
addressed in the context of deuteron scattering. One of the
first successful approaches to this problem was the continuum
discretized coupled-channels (CDCC) method, firstly intro-
duced by Rawitscher [1], and later developed and employed
by other groups [2–4]. Within the CDCC method, the reaction
process of a loosely two-body projectile and a heavy structure-
less target is treated within a three-body picture. The idea of
the method is to represent the continuum part of the two-body
projectile spectrum by a finite set of square integrable states.
To this end, the continuum is divided into a finite set of
energy intervals. For each interval, or bin, a representative
function is constructed by superposition of true scattering
wave functions within that interval. By construction, the set of
functions obtained in this way are normalizable and mutually
orthogonal. By projecting the Schrödinger equation onto the
bound and bin wave functions, a set of coupled equations
is obtained. The method has been extremely successful and
is a reliable reference for any other alternative method. In
spite of this, it has been criticized by some authors due to
the apparent arbitrariness in the definition of the continuum
bins [5]. Furthermore, the generalization of the method to
treat the three-body continuum is not obvious.

As an alternative to the binning procedure, other methods
have been used to represent the continuum spectrum of a two-
body system by a discrete and finite set of square integrable, or
L2, states such as Laguerre [6,7] or Gaussian [8,9] functions.
A family of these states, usually called pseudostates, is
used to diagonalize the Hamiltonian of the two-body system.
The resulting eigenstates are then used within the CDCC
calculation in exactly the same way as the continuum bins. In
this context, a new basis suitable for continuum discretization
has been proposed and applied to the scattering of two-body
composite systems in a series of recent works [10–15]. The
method generates a discrete representation of the continuum

spectrum starting from the ground state wave function, which
is the only needed input. A local scale point transformation
(LST) [16,17] that transforms this function into the harmonic
oscillator ground state wave function is defined. Once the
LST is obtained, the inverse transformation produces from
the harmonic oscillator states the wave functions that represent
the continuum (and other bound states if they exist) of the two-
body system. The corresponding pseudostate set is known as
the transformed harmonic oscillator (THO) basis. The method
was first developed in Ref. [10] for simple one dimensional
problems and later extended in order to check its applicability
and limitations [11–15]. In particular, in Ref. [15] it was shown
that the combination of the THO discretization method with
the coupled channels technique, named CDCC–THO, can be
useful to describe continuum effects in nuclear collisions. In
Ref. [15], several restrictions were imposed for the sake of
simplicity: the deuteron was taken to be a pure s-state, the
effect of Coulomb breakup was neglected, and the nuclear
interaction of the proton and the neutron with the target was
accepted to induce the coupling just to s-wave breakup states.
Moreover, the deuteron ground state was represented by an
analytical wave function. Within this simplified scenario, it
was shown that the method was in excellent agreement with
the standard CDCC method.

In this work we apply the CDCC–THO method to the
reaction 8B+58Ni at 25.8 MeV, in which the 8B projectile is
modelled as a weakly bound two-body system, proton+7Be.
This reaction has been extensively analyzed within the stan-
dard CDCC formalism [18,19] as well as within the CDCC
method with a Gaussian basis [20]. The motivations of this
work are the following. First we would like to show that the
method can be equally implemented in the usual situation in
which the ground state of the system is not known analytically
but is calculated numerically. Second, we aim to show that
the method can be generalized in a straightforward way to
describe the continuum part of the spectrum for arbitrary
partial waves. Since the 8B ground state corresponds mainly to
a p-wave configuration, the THO method provides a discrete
representation for the � = 1 continuum. We will show below,
however, that it can be easily extended to generate also a
representation for the � = 0 continuum. Finally, we will show
that, despite the finite extension and exponential asymptotic
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behavior of the THO basis, these states are suitable to describe
situations dominated by long range interactions, such as the
dipole Coulomb couplings arising in collisions of a loosely
bound projectile by heavy ions.

For that purpose, we first present in Sec. II a brief review
of the basic formulation of the THO method and describe
how it can be extended to different continuum configurations.
Then, in Sec. III we present calculations, in which the THO
wave functions are used for a coupled channels calculation
(CDCC–THO), to show the convergence of the method
for several magnitudes related to the 8B+58Ni reaction at
25.8 MeV. We use the standard CDCC calculations as a
reference to compare with. Finally, in Sec. IV we summarize
the main results of this work.

II. THE THO METHOD

The standpoint of the THO method is the ground state wave
function of the two-body system, here denoted as φb,�0 (r).
The subscript �0 represents the intercluster relative angular
momentum. To simplify the notation, we do not consider
the intrinsic spins of the fragments. By use of a local scale
transformation (LST) [16,17], this wave function is converted
into a harmonic oscillator (HO) wave function. Thus, the
function s(r) defining the LST is given by

φb,�0 (r) =
√

ds

dr
φHO

0,�0
(s(r)). (1)

Where φHO
0,�0

(s) is the radial part of the HO wave function
for the orbital angular momentum �0. Once the s(r) function
has been obtained, the THO basis is generated by applying
the same LST calculated for the ground state to the rest of
HO wave functions. Due to the simple analytical structure of
the harmonic oscillator wave functions, this is equivalent to
multiply the ground state function by the appropriate Laguerre
polynomials L

�+1/2
n (s2) [15]

φTHO
n,� (r) = [s(r)]�−�0L�+1/2

n (s(r)2)φb,�0 (r). (2)

Notice that, by construction, the family of functions
φTHO

n,� (r) are orthogonal and constitute a complete set. More-
over, they decay exponentially at large distances, thus ensuring
the correct asymptotic behavior for the bound wave functions.
However, in general, these functions are not eigenstates of
the internal Hamiltonian. Then, the following step is to
diagonalize the Hamiltonian using a truncated THO basis.
As a result of the diagonalization a new set of functions,
denoted {φN

j,�(r); j = 0, . . . , N}, with eigenvalues ε0, . . . ,εN

are obtained. Here, N+1 is the number of functions retained
in the THO basis, (j = 0) standing for the ground state.
Thus φN

0,�0
(r) = φTHO

0,�0
(r) = φb,�0 (r) and so ε0 = εb, while the

rest of eigenstates constitute our representation of the bound
and unbound energy spectrum. Those eigenstates at negative
energy will represent bound states of the system. In particular,
for � < �0, the diagonalization generates negative energy
states, which correspond to occupied states. These states
are Pauli forbidden states, that should be excluded from the
calculations.

In Ref. [15], the transformation given by Eq. (2) was defined
only for continuum states with the same angular momentum
� as the ground state. In the present work, we generalize this
procedure by applying the same transformation to obtain THO
states for � �= �0. In particular, in the next section we will apply
the method to describe the � = 0 and � = 1 continuum states
of the p+7Be system.

III. APPLICATION TO THE 8B+58Ni REACTION

In this section, we apply the THO method to describe the
two-body continuum of the proton–7Be system in the 8B+58Ni
reaction at 25.8 MeV. To simplify the calculations, we neglect
the 7Be and valence proton spins. Therefore, the 8B ground
state is given by a � = 1, J = 1 configuration. Using Eq. (2)
we generate the THO basis for the � = 0 and � = 1 states.
Then, we retain a finite number of states and diagonalize the 8B
Hamiltonian in this truncated space. The resulting eigenvalues
and their associated wave functions constitute a discrete and
finite representation of the continuum for the p+7Be system.

The bound and continuum states are used to generate the
diagonal and nondiagonal coupling potentials that enter the
system of coupled equations. In both the standard CDCC and
CDCC–THO methods, these coupling potentials are defined
as

Uα,α′ (R) = 〈
φN

n,�

∣∣U[p−Ni] + U[7Be−Ni]

∣∣φN
n′,�′

〉
, (3)

with α = {n, �}, α′ = {n′, �′}. The internal wave functions
φN

n,�(r) are represented by either continuum bins or the THO
basis, depending on the discretization method. The proton–7Be
nuclear interaction was represented by a simple Woods-Saxon
form with the potential parameters of Esbensen and Bertsch
[21]. This interaction is used to generate the ground state wave
function for the 8B system as well as for the diagonalization
of the 8B Hamiltonian in the THO basis. The proton–58Ni
interaction was taken from the parametrization of Becchetti
and Greenlees [22]. For the 7Be–58Ni system, we used the
interaction of Moroz et al. [23] following the choice of
other authors [19,20]. All possible couplings (s − s, s − p and
p − p) were included in the calculations for multipolarities
λ = 0, 1 and 2. In the standard CDCC calculation, the
continuum spectrum was discretized into energy bins of equal
momentum width and up to a maximum excitation energy of
εmax = 10 MeV. In particular, we used N = 16 bins for � = 1
and N = 32 for � = 0. The bin wave functions were calculated
up to 100 fm. For a meaningful comparison, we take the same
potential parameters as in the CDCC–THO calculation. The
coupled equations were solved for projectile-target orbital
angular momenta up to Lmax = 500 and integrated up to a
radius Rmax = 500 fm.

In Fig. 1 we represent the eigenvalues obtained upon
diagonalization of the 8B Hamiltonian in a THO basis
with N = 20 states. The vertical axis corresponds to the
linear momentum ki = √

2µεi/h̄, where µ is the proton–7Be
reduced mass. It should be noticed that these eigenvalues
tend to concentrate close to zero energy. As the excitation
energy increases, the energy distribution becomes more
sparse. It is interesting to note that a deeply bound state
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FIG. 1. (Color online) Eigenvalues obtained upon diagonalization
of the internal Hamiltonian in a THO basis with N = 20 states for s
and p-waves. The vertical axis corresponds to the proton–7Be linear
momentum. The p-state at negative energy corresponds to the ground
state.

(ε ≈ −15 MeV) appears for � = 0 (not shown in Fig. 1).
This state corresponds to the 1s level of the 8B nucleus.
Since this state is occupied it is removed from our model
space. We note also that some eigenvalues may lie at very
high energies. In principle, one could include these states in
the system of the coupled equations. In practice, however,
states at very high energies are very weakly coupled to the
ground state and, hence, do not influence the dynamics of
the reaction. Besides, the inclusion of these states makes the
calculation computationally more intensive and may even lead
to convergence problems. For these reasons, in our calculations
those states above a certain excitation energy are completely
removed from the coupled equations. This maximum energy
will depend, indeed, on the particular reaction. In this case,
we found that states above 10 MeV have no effect whatsoever
on the reaction observables we are studying and, therefore,
only those states with excitation energies below this value are
retained in our calculations. Notice that states above 10 MeV
have been also omitted from Fig. 1.

In Fig. 2 we plot the modulus of some components of
the breakup S matrix for a total angular momentum J =
150 which, assuming a classical trajectory, corresponds to
a scattering angle of 10◦. As noted in Ref. [20] at these
angles breakup is mostly due to the Coulomb interaction.
In the standard CDCC, the breakup S matrix is obtained
by dividing the discrete S matrix to the continuum bins by
the square root of the bin width, �ki . In the CDCC–THO
method, one could apply a similar procedure by assigning a
width to each pseudostate. In Ref. [15] we used this approach
to calculate the differential breakup cross section from the
cross section to individual pseudostates. In particular, we
assumed that the width of the ith pseudostate is approximately
given by �i = (εi+1 − εi−1)/2. In this work, we adopt a more
sophisticated approach, previously proposed in Ref. [24] in the
context of the Gaussian expansion pseudostate method. In this
method, the breakup S matrix elements Sα′:α(k), which depend
on the continuous variable k, as well as on the initial and final
angular momenta, are obtained by an appropriate superposition
of the discrete S matrix elements Ŝα′:α(ki) resulting from the
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FIG. 2. Breakup S matrix elements for the total angular mo-
mentum J = 150 as a function of the asymptotic p+7Be relative
momentum.

solution of the coupled-channels equations, as [24]

Sα′:α(k) ≈
N∑

j=1

〈
φ

(s)
k,�

∣∣φN
j,�

〉
Ŝα′:α(kj ), (4)

where φ
(s)
k,�(r) is the true scattering wave function for the partial

wave � and energy ε = h̄2k2/2µ. The sum runs over the set
pseudostates included in the coupled-channels calculation. The
indexes α and α′ denote the initial and final channels, that is,
α = {g.s.; L0, �0, J } and α′ = {i; L, �, J }, where L0 (L) is the
initial (final) projectile-target orbital angular momentum.

The histograms represented in Fig. 2 correspond to the
standard CDCC calculations, and the lines to the CDCC–THO
results calculated with a THO basis with Np = Ns = 20
states. We verified that increasing the number of basis states
does not change the calculated S-matrices, thus indicating the
convergence of the THO method with respect to the basis size.
Furthermore, the THO calculation with a Np = Ns = 10 states
gives already a result very close to that presented in Fig. 2. The
fast convergence of the THO in this case can be attributed to
the fact that the Coulomb interaction tends to populate mainly
states in the continuum at low excitation energies, where the
density of THO states is higher.

In Fig. 3 we represent the elastic (upper panel) and
breakup (lower panel) angular distributions. The standard
CDCC calculation is represented in both panels by a thick
solid line. The thick dashed lines represent the CDCC–THO
calculation with N = 40 states which, as can be seen, is
almost identical to the standard CDCC calculation. The dotted
line in the upper panel corresponds to the elastic calculation
omitting the coupling to the continuum. Since both the CDCC
and CDCC–THO use the same ground state wave function
and interactions, this calculation is identical in both methods.
The thin lines in the bottom panel are the calculated breakup
angular distributions including only nuclear breakup.

Next, we study the breakup differential energy cross
section, dσ/dE. In the standard CDCC method, a natural way
to approximate this quantity is to divide the cross section for
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FIG. 3. (Color online) Elastic (upper) and breakup (bottom)
angular distribution for the 8B+58Ni reaction at 25.8 MeV in
a model space including s- and p-wave states for the p+7Be
continuum. In both plots, the thick solid line represents the converged
CDCC calculation while the thick dashed line corresponds to the
CDCC−THO calculation. The same potential parameters and partial
waves are used for both calculations. The dotted line in the upper
panel is the pure cluster folding calculation without continuum. The
thin lines in the bottom panel are the calculations including only
nuclear breakup.

each final state by the bin width [2,19]. In the THO method,
we could proceed in a similar way, by defining a width for each
pseudostate. Alternatively, one can calculate the breakup cross
section from the continuous breakup S-matrices evaluated by
means of Eq. (4). Both methods are compared below.

In Fig. 4, we depict the differential energy cross section
to � = 1 continuum states obtained within the CDCC–THO
method with several basis sizes, as indicated by the labels.
The lines were obtained using the continuous S matrices
given by Eq. (4) for different basis dimensions. The circles
represent the calculation with Ns = Np = 60 states in which
dσ/dE is approximated by dividing the cross section of the
ith pseudostate by the width �i = (εi+1 − εi−1)/2. We see that
both procedures to obtain dσ/dE give similar results. From
this figure we can also infer that the calculation converges as
the number of basis states is increased. We notice that, at low
excitation energies, the method converges even with a small
basis. From this result we can conclude that the method is very
suitable to describe Coulomb breakup reactions. Convergence
of the breakup cross section for excitation energies above
1 MeV requires a relatively large THO basis. This slower
convergence rate is due to the fact that the density of THO
states diminishes as the excitation energy increases, and more
states are required to describe the excitation into this region. As
the number of basis states increases, the solution of the coupled
equations becomes slower. However, we note that the actual
number of states included in the coupled equations is reduced
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FIG. 4. (Color online) Breakup cross section to p states as a
function of the 8B internal excitation energy and integrated from 0◦

to 180◦. The lines correspond to the CDCC–THO calculations with
different basis dimensions, evaluated from continuous S matrices
according to Eq. (4). The solid circles represent the THO calculation
with Ns = Np = 60 states, in which the cross section to each
pseudostate is divided by the estimated energy width (see text).

with respect to the initial basis dimension. As explained above,
after the diagonalization only those states with excitation
energy below 10 MeV are included in the coupled-channels
calculation. In addition, the number of basis states is further
reduced by removing those states with excitation energy below
∼0.1 MeV. Once these two restrictions are applied, the number
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FIG. 5. (Color online) Breakup cross section as a function of
the 8B internal excitation energy for the 8B+58Ni reaction at
25.8 MeV integrated from 0◦ to 180◦. The squares correspond
to the standard CDCC calculations, whereas the solid lines represent
the CDCC–THO calculation with a basis with Ns = Np = 60 states.
The separated contribution of s (upper panel) and p (lower panel)
waves is displayed.
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of continuum states actually included in the coupled-channels
calculations for the case N = 60 is Ncoup = 27 for both the s
and p waves. We studied also the convergence of the method for
the breakup to s-states. We found that, in this case, convergence
is achieved with a smaller number of states, compared to the
p-wave breakup.

Finally, in Fig. 5 we compare the CDCC (squares) and
CDCC–THO (solid lines) breakup energy distributions. The
latter corresponds to a basis with Ns = Np = 60 states for
which, as we have shown above, good convergence of the THO
method is achieved. We present separately the contribution of
the � = 0 (upper panel) and � = 1 (bottom panel) continuum
states. We see that both energy distributions are in good
agreement with the CDCC calculation.

IV. SUMMARY AND CONCLUSIONS

In conclusion, in this work we have presented an extension
of the THO method, formerly applied to describe the � = 0
deuteron continuum, to generate a discrete representation of
the continuum of a two-body system for any partial wave. As in
the original formulation, the only a priori prerequisite for the
application of the method is the knowledge of the ground state
wave function of the system, either analytically or numerically.
A local scale transformation, s(r), is then defined such that it

converts the ground state wave function of the system into
the harmonic oscillator ground state. Then, the THO basis is
obtained by multiplying the ground state wave function by a set
of Laguerre polynomials expressed in the variable s(r). This
THO basis constitutes a discrete and finite representation of
the continuum part of the spectrum with the same intercluster
angular momentum as the ground state. For other partial waves,
the method is generalized in a straightforward way by simply
applying the same scaling transformation. The method has
been applied to the reaction 8B+58Ni at subcoulomb energies,
showing a fast convergence with the respect to the number of
basis states. Our results agree very well with those obtained
with the standard CDCC method. In a recent work, we have
successfully extended the method to describe the continuum
of a three-body system [25] and the application of the method
to describe the collision of a three-body loosely bound system
by a target is underway.
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[6] J. Röder, H. Ehrhardt, C. Pan, A. F. Starace, I. Bray, and D. V.

Fursa, Phys. Rev. Lett. 79, 1666 (1997).
[7] I. Bray, Comput. Phys. Commun. 114, 356 (1998).
[8] A. Macı́as, F. Martı́n, A. Riera, and M. Yáñez, Phys. Rev. A 36,
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[10] F. Pérez-Bernal, I. Martel, J. M. Arias, and J. Gómez-Camacho,
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