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New manifestation of the dispersion relation: Breakup threshold anomaly
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It is pointed out that the usual threshold anomaly, found operative in the energy behavior of the imaginary
and real parts of the optical potential representing the elastic scattering of tightly bound nuclei at near- and
below-barrier energies, suffers a drastic qualitative change in the case of the elastic scattering of weakly bound
nuclei. Owing to the strong coupling to the breakup channel even at sub-barrier energies, the imaginary potential
strength seems to increase as the energy is lowered to below the natural barrier threshold; this is accompanied
by a decrease in the real potential strength. This feature is consistent with the dispersion relation. The system
6Li+208Pb is analyzed to illustrate this new phenomenon.
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I. INTRODUCTION

The, by now, well-known threshold anomaly, seen in
the behavior of the real and imaginary parts of the optical
potential as a function of decreasing energy in the elastic
scattering of tightly bound nuclei at near-barrier energies, has
been discussed and reviewed by several authors [1–3]. The
phenomenon is a direct consequence of the dispersion relation,
which quantifies the concept of causality in scattering: No
scattered wave emerges before the incident wave reaches the
target. Recently, the TA has been looked for in elastic scattering
of weakly bound stable and radioactive nuclei [4–10]. Careful
analyses of the data show that what happens in these systems
is a new manifestation of the dispersion relation that is
unique for the breakup coupling of the dynamic polarization
potential. Because the coupling to the breakup in these systems
continues to be important even at energies below the barrier, the
“threshold” ceases to be the barrier itself. Thus, the imaginary
part of the potential could increase at lower energies and, as
the dispersion relation dictates, the real part of the dynamic
potential would show a decrease, implying an overall decrease
in the real part of the optical potential that fits the elastic
scattering. This is indeed what is found [4–10]. The purpose
of this paper is to give an account of this phenomenon, which
we coin as the breakup threshold anomaly (BTA).

II. THEORETICAL FRAMEWORK

We analyze a system involving the 6Li weakly bound
nucleus: 6Li+208Pb. We have reanalyzed the elastic scattering
angular distribution data [6] using the São Paulo (SP) optical
potential. This potential was chosen because it has been
successfully used in the study of several systems [11]. The
conclusions obtained here, however, do not depend on this
particular choice of potential. The SP interaction [11–15] is
based on the double-folding potential, which accounts for
exchange through an effective energy dependence,

VSP(R,E) = (1 + i 0.78)F (R,E), (1)

where F (R,E) is the double-folding potential whose energy
dependence results from the local equivalence of the otherwise

nonlocal interaction [15,16]. This energy dependence is not
dispersive. The F (R,E) term is given by

F (R,E) = VF (R) e−4v2/c2
, (2)

where c is the speed of light and v is the local relative velocity
between the two nuclei,

v2(R,E) = 2

µ
[E − VC(R) − VN (R,E)], (3)

where VN is the real part of the nuclear interaction and VC is
the Coulomb potential. The folding potential depends on the
matter densities of the nuclei involved in the collision:

VF (R) =
∫

ρ1(�r1) ρ2(�r2) V0 δ( �R − �r1 + �r2) d �r1, (4)

with V0 = −456 MeV fm3. The use of the matter densities
and delta function in Eq. (4) corresponds to the zero-range
approach for the folding potential, which is equivalent [14]
to the more usual procedure of using the M3Y effective
nucleon-nucleon interaction with the nucleon densities of
the nuclei (instead of the matter densities). With the aim of
providing a parameter-free description of the interaction, we
proposed [14] an extensive systematics of nuclear densities.
For this purpose, we adopted the two-parameter Fermi (2pF)
distribution to describe the densities. The radii of the 2pF
distributions are well represented by

R0 = 1.31A1/3 − 0.84 fm, (5)

where A is the number of nucleons of the nucleus. The values
obtained for the matter diffuseness of the distributions are
very similar throughout the periodic table and present small
deviations around the average value a = 0.56 fm. In this work,
we use the SP Paulo potential in the context of this systematics
by assuming the average diffuseness value and Eq. (5) to
determine the radii of the density distributions.

In the present analysis, we have assumed for the optical
potential a normalized version of the SP potential:

VSP(R,E) = [NR(E) + iNI (E)]F (R,E). (6)

The coefficients NR(E) and NI (E) are energy-dependent
normalization factors that take into account the effects of the
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dynamic polarization potentials (DPPs) arising from direct
channel couplings. It is worth mentioning here that all DPPs are
dispersive, with their real and imaginary parts being connected
through a dispersion relation. One important exception to this
is the elastic transfer DPP [17].

From the properties of the Green function, which enters
in the definition of the DPP, one can immediately derive the
dispersion relation between NR(E) and NI (E), represented by

NR(E) = NR0 + �NR(E), (7)

�NR(E) = P

π

∫
NI (E′)
E′ − E

dE′ (8)

and its subtracted form

�NR(E) = �NR(Es) + (E − Es)

× P

π

∫
NI (E′)

(E′ − Es)(E′ − E)
dE′, (9)

where Es is some high enough energy at which information
about both NI and �NR are known [2]. These equations
are the analog of the Kramer-Kronig dispersion relation in
optics, from the general principle of causality, as already
mentioned.

III. BREAKUP THRESHOLD ANOMALY

The dashed lines in Fig. 1 represent predictions, for the
elastic scattering of 6Li+208Pb, obtained with the energy-
independent standard values NR = 1 and NI = 0.78; the solid
lines correspond to the results obtained with the best-fit NR

and NI values. A comparison between these dashed and solid
lines shows that the data fit is quite sensitive to the NR and NI

values.
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FIG. 1. Elastic scattering angular distributions for the 6Li+208Pb
system (data from [6]). The solid lines represent the optical model
results obtained by considering the best-fit NR and NI parameters.
The dashed lines correspond to the SP potential with the standard
NR = 1 and NI = 0.78 values.

Just to illustrate the dispersion relation, we have assumed a
schematic description for NI :

NI = 0 for E � E1, (10)

NI = a(E − E1) for E1 � E � E2, (11)

NI = a(E2 − E1) + b(E − E2) for E2 � E � E3, (12)

NI = a(E2 − E1) + b(E3 − E2) = NI∞ for E � E3. (13)

Within this assumption, and owing to the constancy of NI at
E > E3, the subtracted dispersion relation, Eq. (9), gives the
same result as the nonsubtracted one, Eq. (8). Using Eq. (8)
and Eqs. (10)–(13), one obtains an analytical expression for
�NR [2,3]:

�NR(E) = a(E2 − E1)[ε1ln|ε1| − ε2ln|ε2|]
+ [b(E3 − E2) − a(E2 − E1)]

× [ε′
2ln|ε′

2| − ε′
3ln|ε′

3|], (14)

with εi = (E − Ei)/(E2 − E1) and ε′
i = (E − Ei)/(E3 −

E2). By using Eqs. (7) and (14), one can find NR(E) in an
way independent of the reference energy ES .

In Fig. 2 we present the best-fit NR(E) and NI (E) values.
The uncertainties of these quantities have been obtained by
considering the range where NR(E) and NI (E) could vary,
which would result in an increase of the chi-square value by
unity relative to the corresponding minimum value. The lines
in Fig. 2 represent possible behaviors of NR and NI that are
compatible with the dispersion relation. A striking difference
in the energy dependence of these normalization coefficients
from the usual energy dependence of tightly bound systems is
clearly seen. As the energy is lowered below the barrier, NR(E)
decreases, whereas NI (E) increases. This implies an effective
reduction of the nuclear attraction, leading to an increase in
the barrier height.

Further evidence of the consistency of our analyses is
provided by the values obtained for NR0 and NI∞. Because
the SP potential, Eq. (1), has been successful in describing the
elastic scattering for a large number of different systems at
energies above the barrier [11], one should expect both NR0

and NI∞ to be close to unity. Of course, the values for NR0 and
NI∞ found in the present work are not identical to the standard
(from high energies) NR = 1 and NI = 0.78. However, these
standard values in fact represent mean values obtained from
data analyses of several systems [11] and one can expect
variations around the average values for particular systems.
Indeed, structure effects on the nuclear densities involved in the
folding calculations may affect NR whereas different degrees
of absorption from particular reaction channels could affect
NI . An inspection of Fig. 2 shows that NR0 ≈ 1 and NI∞ ≈ 1
have been found in the present work.

As already noted, the solid lines in Fig. 2 represent
behaviors of NR and NI compatibles with the dispersion
relation. In fact, different behaviors that also could follow the
“data” can be found. Therefore, clearly our findings are mainly
based on the NR and NI “data” themselves. The detected
difference between the normal and weakly bound systems is
mostly based on the results from the corresponding lowest
energies (see Fig. 2). Even so, we consider that significant
evidence for the proposed BTA has been obtained, because
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FIG. 2. Energy dependence of the normalization factors NR and
NI of the SP potential for the 6Li+208Pb system. The lines represent
possible behaviors of NR and NI that are compatible with the
dispersion relation.

the data fits for these low energies are quite sensitive to NR

and NI , as illustrated by the dashed and solid lines in Fig. 1.
We mention that similar increasing behavior of the imaginary
potential as the energy decreases toward the barrier has already
been observed earlier for the same system [9] using different
data analysis procedures and also for the following other
systems: 9Be+209Bi [4,5], 6Li+28 Si, 58Ni, 122Sn, 138Ba [7,9],
and 9Be+64Zn [10], although in these previous works there is
no attempt to explain the behavior of the energy dependence
of the real and imaginary parts of the optical potential as the
BTA phenomenon.

Traditionally, the threshold anomaly is formally displayed
in terms of complex renormalization factors of the double-
folding potential, as we have done in the present work.
This assumption, which corresponds to assuming that the

radial dependence of the optical potential is the same as
the bare one, is well established for normal tightly bound
stable nucleus systems. The situation is more complicated
in the case of weakly bound nuclei, where the effect of the
couplings gives rise to a polarization potential with different
radial shape. In particular, an important role is played by the
tail of the polarization, which is much longer than that of the
folding potential [18]. Nevertheless, our simple approach of
considering renormalization factors has provided good fits for
all angular distributions analyzed in the present work.

IV. CONCLUSION

In conclusion, we have found some evidence of differences
in the energy dependence of the optical potential for tightly
and weakly bound nuclei. The breakup threshold anomaly
implies an increase of the imaginary part and a decrease
of the real part of the optical potential that fits the elastic
scattering at low energies. Our findings have mostly been based
on the results obtained from elastic scattering data analyses
for the lowest energies of one system, and also on earlier
data analyses for other similar systems [4–10]. Clearly more
work is required to further improve our understanding of the
BTA.
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