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Reduced neutron spectroscopic factors when using potential geometries constrained by
Hartree-Fock calculations
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We carry out a systematic analysis of angular distribution measurements for selected ground-state to ground-
state (d, p) and (p, d) neutron transfer reactions, including the calcium isotopes. We propose a consistent
three-body model reaction methodology in which we constrain the transferred-neutron bound state and nucleon-
target optical potential geometries using modern Hartree-Fock calculations. Our deduced neutron spectroscopic
factors are found to be suppressed by ∼30% relative to independent-particle shell-model values, from 40Ca
through 49Ca. The other nuclei studied, ranging from B to Ti, show similar average suppressions with respect to
large-basis shell-model expectations. Our results are consistent with deduced spectroscopic strengths for neutrons
and protons from intermediate-energy nucleon knockout reactions and for protons from (e, e′p) reactions on
well-bound nuclei.
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I. INTRODUCTION

The shell model of atomic nuclei was proposed more
than half a century ago by Mayer and Jensen [1], for which
they shared the 1963 Nobel Prize for Physics. This simple
independent-particle picture, which requires each nucleon to
occupy a single-particle eigenstate (orbital) in the nuclear
mean-field potential, has been immensely robust and suc-
cessful in describing both systematic and specific features
of nuclear structures. Modern shell-model calculations also
include the effects of residual interactions between these
single-nucleon degrees of freedom by the use of microscopic
interactions or of effective forces fitted to empirical nuclear
masses, charge radii, and low-lying excited state spectra
(e.g., Ref. [2]). Quantifying the ordering, spacing, and the
resulting distribution of single particle strength among these
nucleon states is essential for assessing the evolution of nuclear
structures in regions of neutron- and proton-rich nuclei.

These single-particle degrees of freedom are studied quan-
titatively using direct nuclear reactions, such as single-nucleon
transfer, nucleon knockout and elastic breakup reactions.
When experiments are well chosen, they can interrogate the
dominant strength associated with the state of a single nucleon.
More precisely, they are sensitive to the single-nucleon overlap
functions, the norms of which are the spectroscopic factors
(SFs) of the measured transitions (see, e.g., Ref. [3]). Extensive
attempts have been made to deduce nucleon SFs using direct
reactions induced by both hadronic and electronic probes. Such
analyses are still not fully understood, often revealing model
dependence and raising concerns of the capability to determine
SFs in an absolute sense. Transfer reactions continue to be
an important technique to populate and to help elucidate the
structure of rare nuclei, in particular those produced as low
energy secondary beams. Thus it is important to clarify the
techniques for SF determinations using single-nucleon transfer
reactions and reduce their uncertainties.

A significant body of (e, e′p) reaction analyses suggests
that proton SF values deduced from nuclei near closed shells,
including 40Ca, are suppressed by about 30–40% compared
to independent particle model (IPM) expectations [4]. This
suppression has been attributed, in different proportions, to
short- and medium-range (tensor) nucleon-nucleon correlation
effects and to longer range correlations arising from couplings,
by nucleons near the Fermi surface, to collective degrees of
freedom. More recently, quantitatively similar suppressions
have been required to reconcile measurements of both single-
proton and single-neutron knockout reactions from a range of
nuclei, both stable [5] and unstable [5,6], with reaction theory
predictions.

Historically, conventional distorted wave Born approxima-
tion (DWBA) transfer reaction analyses have shown little need
for such a systematic suppression of single-particle strength
[7,8]. Marked differences in proton SFs extracted from the
(e, e′p) and (d,3He) proton transfer reaction analyses were
reconciled by a reanalysis of the (d,3He) data [4], requiring
significant changes to the (DWBA) (d,3He) calculations used
there. These included fine-tuning of the root mean squared
(rms) radii of the active proton single-particle orbitals to be
consistent with the (e, e′p) data analysis. In this paper we
assess related effects in (d, p) and (p, d) neutron transfer
reactions by constraining the geometry of the nucleon optical
interactions with the target and the active (transferred) neutron
orbital rms radii using modern Hartree-Fock (HF) calculations
[9]. In this way we not only reduce long-standing parameter
ambiguities but also introduce into the transfer reaction
description the excellent systematic behavior manifested by
the HF calculations across extended mass regions [10–12].
This agreement between the systematics of the HF predictions
and a range of nuclear size parameters suggests that the theory
should also provide a good description of the spatial extent of
individual single-particle states.
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II. METHODOLOGY

We thus propose the following consistent three-body anal-
ysis of ground-state-to-ground-state neutron transfer reaction
data, taking HF theoretical input. We calculate the transfer
reaction amplitudes using the Johnson-Soper (JS) adiabatic
approximation to the neutron, proton, and target three-body
system [13]. By this means we include the effects of the
breakup of the deuteron in the field of the target and of the
transfer of the neutron into (or out of) the breakup continuum.
Formulating the reactions from this three-body perspective
has the enormous advantage that one needs to specify only
(the far better understood) nucleon-target optical interactions.
Additionally, we avoid the ambiguity in optical potentials
obtained from individual best fits to elastic scattering data,
by using global nucleon optical potential descriptions that can
be applied consistently at all the required incident energies
and for all target nuclei. These optical potentials are derived
from the nuclear matter effective nucleon-nucleon interaction
of Jeukenne, Lejeune, and Mahaux (JLM) [14].

The resulting energy- and density-dependent effective
interactions are folded with the target one-body densities,
using the mid-point local density prescription [15]. These
required densities are taken from HF calculations based on
a Skyrme parametrization that offers quantitative agreement
with experimental nuclear size parameters. Specifically, we use
the recent SkX parameter set [9], determined from a large set of
data on spherical nuclei, including nuclei far from stability. The
parameter set accounts for the binding energy differences of
mirror nuclei [10], interaction cross sections [11], and nuclear
charge distributions [12]. The computed neutron and proton
HF densities were used individually in evaluating the isovector
contribution to the JLM optical potentials. We adopt the
conventional scale factors for the computed real and imaginary
parts of the JLM nucleon optical potentials, λV = 1.0 and
λW = 0.8, found to be consistent with an analysis of data on
several systems [15].

The remaining critical ingredients to the reaction calcu-
lations are the geometries of the potentials used to generate
the neutron overlap functions. For comparison purposes,
in the following we will use two different local potential
prescriptions. Potential Set I is just a conventional Woods-
Saxon potential of fixed radius and diffuseness parameters,
r0 = 1.25 fm and a0 = 0.65 fm. This geometry has been
used extensively throughout the literature on single-nucleon
transfer. The aforementioned agreement of the systematics of
the Skyrme SkX HF predictions with nuclear size parameters
suggests that this theory will also give a good description of
individual single-particle states. So, for potential Set II we
continue to fix the diffuseness parameter at a0 = 0.65 fm, to
which the calculations are rather insensitive, but then adjust
the radius parameter r0 for each reaction to reproduce the
rms radius of the relevant transferred neutron orbital, as given
by the HF calculation. More precisely, r0 is adjusted so that
the mean squared radius of the transferred neutron orbital is
〈r2〉 = [A/(A − 1)]〈r2〉HF, where 〈r2〉HF is the HF calculation
value. This adjustment is carried out using the HF separation
energy. This small mass correction factor corrects the fixed
potential center assumption used in the HF approach.

This theoretical guidance on the spatial extension of the
neutron bound-state wave function is critical in our analysis.
The sensitivity of the calculated cross sections, and hence the
deduced SFs, to this wave function is primarily to its rms
radius. As a typical case, we consider the 40Ca(d, p) reaction
at 20 MeV. Based on calculations using a range of binding
potentials, with 1.2 � r0 � 1.3 fm, 0.6 � a0 � 0.7 fm, and spin-
orbit potential strengths 0 � Vso � 6 MeV, which generate 1f7/2

states with rms radii in the range 3.8–4.1 fm, the changes in
the computed SFs are reproduced to better than 1.5% by the
following finite-difference formula:

δ(SF)

SF
= −7.658

δ(rms)

rms
− 0.717

δ(a0)

a0
. (1)

There is negligible (explicit) dependence on r0 and Vso beyond
their effects on the rms radius. Thus, changes of 7.7% in a0

[δ(a0) ∼ 0.05 fm] and 2.5% in the rms radius [δ(rms) ∼ 0.1 fm]
translate into δ(SF)/SF of 5% and 19%, respectively, for this
transition.

For the 40–45,47–49Ca isotopes the deduced r0 values
decrease monotonically with increasing A and are 1.343,
1.282, 1.276, 1.270, 1.265, 1.259, 1.250, 1.245, and 1.134 fm,
respectively. The most significant and rapid changes are at the
start of a new sub-shell, 1f7/2 (N = 21) and 2p3/2 (N = 29).
Using these values and the JLM optical potentials, we place
constraints on the spatial extension of the (structural) overlap
function and on the (dynamical) nucleon optical potentials.
In doing so, we expect to determine more consistently and
precisely that part of the neutron overlap function that is
sampled within the transfer reaction transition amplitude. We
have also constrained all significant bound-state and optical
potential parameters theoretically.

These define the key inputs to the reaction. For both binding
potential choices the depths of the central potential wells are
adjusted to reproduce the experimental separation energies to
ensure the correct asymptotic form of the overlap functions.
A spin-orbit potential of strength 6 MeV, with the same
(central) geometry parameters, r0 and a0, was included in
potential Set II. All calculations treated finite-range effects
using the local energy approximation (LEA) [16] with the
transfer strength (D2

0 = 15 006.25 MeV2 fm3) and range
(β = 0.7457 fm) parameters of the Reid soft-core 3S1 − 3D1

neutron-proton interaction [17]. Nonlocality corrections, with
range parameters of 0.85 and 0.54 fm [18], were included in
the proton and deuteron channels, respectively. The transfer
reaction calculations were carried out using a version of
the code TWOFNR [19]. The neutron SF was extracted by
fitting the theoretical calculations to the first maximum in the
measured angular distributions. The errors on the deduced SF
are assigned as discussed in Ref. [20].

III. RESULTS

Before we examine a broader range of targets, we first focus
on available data for the 40–45,47–49Ca isotopes. Since 40Ca is
doubly magic, with closed proton and neutron sd shells, the
additional neutrons in 41–48Ca fill the f7/2 orbit. These valence
neutron wave functions in the Ca isotopes are expected to be
good single-particle orbitals. Indeed, the predicted SF values
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FIG. 1. (Color online) Ratios of the experimentally deduced
spectroscopic factors to those of the independent particle shell-model
SF(IPM) for the calcium isotopic chain. The open symbols, from
SF(Conv), result from the use of conventional, three-body adiabatic
model calculations using the Chapel Hill global nucleon optical
potentials and a fixed neutron bound-state geometry (Set I) [8]. The
solid symbols, from SF(HF), are the results of constrained three-
body model calculations, where both the nucleon optical potentials
(the JLM microscopic optical model) and the neutron bound-state
potential geometry (Set II) are determined by the Skyrme (SkX) HF
calculations of Ref. [9].

from large-basis shell-model (LB-SM) calculations, which
include configuration mixing, and the IPM, which neglects
such effects, are essentially equal in the calcium isotopes. As
most of the (e, e′p) SF analyses are compared to the IPM, we
also compare our deduced SFs for the calcium isotopes with
those of the IPM. For n valence nucleons, each of total angular
momentum j, the IPM predictions are [21]

SF(IPM) =
{

n, (n even),

1 − n−1
2j+1 , (n odd).

(2)

For 40–49Ca, these SFs are 4, 1, 2, 3/4, 4, 1/2, 6, 1/4, 8, and 1,
respectively; the odd/even effects arise from pairing. Figure 1
shows the ratios of the extracted SFs to these SF(IPM) as a
function of mass number A.

The solid stars in Fig. 1 represent the ratios SF(HF)/
SF(IPM) for the calcium isotopes. These SF(HF) are the new
results of our constrained analysis, using the HF-inspired neu-
tron binding potential geometries, Set II, and the JLM nucleon
optical potentials obtained using the HF densities of the targets.
We observe an overall reduction in the SF(HF) compared to
the IPM values of about 25%–30%. The additional data point
for A = 40 (open circle) is the proton SF value, 0.645(50),
as deduced from the (e, e′p) analysis of Ref. [4]. Within the
assigned experimental uncertainties, the neutron SF(HF) and
the proton SF(e, e′p) for 40Ca agree.

For comparison, we also extract SF values from a con-
ventional adiabatic three-body model reaction analysis, now
using the Chapel Hill (CH89) global phenomenological

nucleon-target interactions [22] and the standard binding
potential geometry (Set I). The open stars in Fig. 1 show the
corresponding SF ratios, SF(Conv)/SF(IPM). The ratios for
these latter calculations are close to unity within experimental
uncertainties, although three odd-A isotopes, 43Ca, 45Ca, and
49Ca, are somewhat suppressed. The suppression for 49Ca
may be traced to a sharp increase in the rms radius of
the 2p3/2 orbit in 49Ca (4.59 fm), compared to that of the
1f7/2 orbit (3.99 fm) in neighboring 48Ca, when using the
standard geometry. However, this explanation cannot address
the reduction in the SFs for the 43Ca and 45Ca nuclei.

The deduced SF(HF) are consistently reduced compared
to the SF(Conv). The reduction of the SF(HF) values comes
from both the changes of optical potential and the use of
more realistic (larger) neutron bound-state wave functions.
On average, the use of the JLM potential instead of the
CH89 global potential results in reduction of the SF values
by 15%. Similar effects were observed in Ref. [23]. The
rms radii of the neutron bound-state wave functions from
Set II, based on the Skyrme SkX HF predictions, are also,
on average, about 2% larger than the rms radii from Set I,
the conventional Woods-Saxon potential of fixed radius and
diffuseness parameters. This results in further reduction of the
SF values by about 15%, as was discussed earlier in connection
with Eq. (1). The observed suppression is thus a manifestation
of both effects. As was stated earlier, we believe that these
changes, constrained by the same (HF) theoretical systematics,
will better determine the all-important overlap of the distorted
waves and bound-state wave functions at the nuclear surface.

The Ca isotope SF(Conv) values are a subset of a recent
large-scale survey of 80 nuclei, studied via (p, d) and (d, p)
transfer reactions [8,20]. In the survey, it was shown that within
experimental and theoretical uncertainties, most extracted
SF(Conv) values, like those for the Ca isotopes, agreed with
the predictions of the LB-SM. To examine whether or not the
reductions in the deduced SF(HF) are limited to the calcium
isotopes, we have applied the same HF-constrained analysis
to a selection of the 80 nuclei studied in Refs. [8,20]. As the
HF is less appropriate for the description of single-particle
configurations of very light systems, we limit the analysis
to A > 11. Additionally, beyond the calcium isotopes, the
IPM does not take proper account of configuration mixing
effects, so we now compare the extracted SF(HF) to large-basis
shell-model SF(LB-SM) predictions, which are calculated
with the code OXBASH [24]. These ratios are listed in Table I
and shown in Fig. 2 as a function of the difference between the
neutron and proton separation energies in the nuclei concerned
�S (�S = Sn − Sp for neutron SF and �S = Sp − Sn for
proton SF). Here, �S is the difference of the neutron and
proton Fermi surfaces. For clarity, only those points with
an overall uncertainty of less than 25% are included. Data
with uncertainties much larger than 20% (the random error
assigned to each measurement) have quality-control problems
in the evaluation. In such cases, there is either (a) no second
measurement to corroborate the validity of a data set or (b)
the standard deviations of the measurements used to extract
the SF values are larger than 25%. For the (statistically most
significant) cases presented, we note once again an overall
SF(HF) reduction of order 30% compared to the SF(Conv) of
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TABLE I. List of isotopes plotted in Fig. 2. jπ is the angular momentum and parity of the transferred nucleon. For the
(p, d), (d, p) [8,20], and (e, e′p) [4,25] reactions, only ground-state SFs are extracted. The theoretical SF values are obtained
from the LB-SM code OXBASH [5,20,24]. For the neutron and proton knockout reactions [26–30], the deduced quantities are
the cross-section reduction factors Rs , which are equivalent to SF(expt)/SF(LB-SM).

(p, d) (p, d) jπ Sn − Sp SF (expt) SF (LB-SM) SF(expt)/SF(LB-SM)

12B 1/2− −10.72 0.40 ± 0.06 0.83 0.48 ± 0.07
12C 3/2− 2.75 2.16 ± 0.25 2.85 0.76 ± 0.09
13C 1/2− −12.58 0.54 ± 0.07 0.61 0.88 ± 0.12
14C 1/2− −12.65 1.07 ± 0.22 1.73 0.62 ± 0.12
14N 1/2− 3.00 0.48 ± 0.08 0.69 0.69 ± 0.11
15N 1/2− 0.62 0.93 ± 0.15 1.46 0.64 ± 0.10
16O 1/2− 3.53 1.48 ± 0.16 2.00 0.74 ± 0.08
17O 5/2+ −9.64 0.75 ± 0.10 1.00 0.75 ± 0.10
18O 5/2+ −7.90 1.46 ± 0.17 1.58 0.92 ± 0.11
19O 5/2+ −13.12 0.35 ± 0.05 0.69 0.51 ± 0.07
25Mg 5/2+ −4.73 0.21 ± 0.02 0.34 0.61 ± 0.07
26Mg 5/2+ −3.06 1.83 ± 0.38 2.51 0.73 ± 0.15
27Al 5/2+ 4.79 0.93 ± 0.13 1.10 0.84 ± 0.12
28Al 1/2+ −1.82 0.57 ± 0.08 0.60 0.95 ± 0.14
30Si 1/2+ −2.90 0.55 ± 0.07 0.82 0.67 ± 0.08
31Si 3/2+ −7.78 0.42 ± 0.07 0.58 0.72 ± 0.11
32P 1/2+ −0.71 0.39 ± 0.07 0.60 0.65 ± 0.11
34S 3/2+ 0.54 1.11 ± 0.27 1.83 0.61 ± 0.15
37Ar 3/2+ 0.08 0.27 ± 0.04 0.36 0.74 ± 0.10
40Ca 3/2+ 7.31 3.20 ± 0.46 4.00 0.80 ± 0.11
41Ca 7/2− −0.53 0.73 ± 0.04 1.00 0.73 ± 0.04
42Ca 7/2− 1.20 1.31 ± 0.12 1.81 0.72 ± 0.06
43Ca 7/2− −2.75 0.44 ± 0.05 0.75 0.59 ± 0.07
45Ca 7/2− −4.88 0.26 ± 0.04 0.50 0.52 ± 0.07
47Ca 7/2− −6.93 0.19 ± 0.03 0.26 0.74 ± 0.10
48Ca 7/2− −5.86 5.41 ± 1.05 7.38 0.73 ± 0.14
49Ca 3/2− −11.30 0.74 ± 0.08 0.92 0.81 ± 0.08
46Ti 7/2− 2.85 1.61 ± 0.23 2.58 0.62 ± 0.09

(e, e′p) jπ Sp − Sn SF (expt) SF (LB-SM) SF (expt)/SF(LB-SM)

7Li 3/2− 2.73 0.42 ± 0.04 0.67 0.63 ± 0.06
12C 3/2− −2.75 1.72 ± 0.11 2.85 0.60 ± 0.04
16O 1/2− −3.53 1.27 ± 0.13 2.00 0.64 ± 0.07
30Si 5/2+ 2.90 2.21 ± 0.20 3.80 0.58 ± 0.05
31P 0+ −5.01 0.40 ± 0.03 0.58 0.68 ± 0.04
40Ca 3/2+ −7.3 2.58 ± 0.19 4.00 0.65 ± 0.05
48Ca 1/2+ 5.86 1.07 ± 0.07 1.98 0.54 ± 0.04
51V 7/2− −2.99 0.37 ± 0.03 0.75 0.49 ± 0.04
90Zr 1/2− −3.62 0.72 ± 0.07 1.28 0.56 ± 0.05
208Pb 1/2+ 0.63 0.98 ± 0.09 2.00 0.49 ± 0.05

n knockout jπ Sn − Sp SF (expt) SF (LB-SM) Rs

12C incl 3.07 — 0.49 ± 0.02
15C 1/2+ −19.86 0.98 0.96 ± 0.04
16O incl 7.64 — 0.56 ± 0.03
22O 5/2+ −16.39 5.22 0.70 ± 0.06
32Ar 5/2+ 19.20 4.12 0.25 ± 0.03
34Ar incl 13.94 — 0.41 ± 0.07
46Ar 7/2− −10.63 5.41 0.85 ± 0.12

p knockout jπ Sp − Sn SF (expt) SF (LB-SM) Rs

8B incl −12.82 — 0.86 ± 0.07
9C 3/2− −12.96 0.94 0.82 ± 0.06

12C incl −2.43 — 0.53 ± 0.02
16O incl 0.68 — 0.68 ± 0.04
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FIG. 2. (Color online) Ratios of experimentally deduced SF to
those of the large-basis shell-model calculations SF(LB-SM) for
nuclei with A = 12–49 as a function of the difference of neutron and
proton separation energies, �S (see text). The solid circles and stars
are the present results from transfer reactions. The solid stars represent
the Ca isotopes, as in Fig. 1. The open circles are ground-state proton
SF from (e, e′p) analysis and the triangles are the results from proton
knockout reactions (with inverted triangles for neutron knockout).
The data points are listed in Table I and are referenced in the text.

Ref. [8,20], but with significant residual fluctuations between
the values for different nuclei. For the nuclei investigated here,
there is no evident dependence of the observed reduction
factors on �S. Limiting the observations to the calcium
isotopes (the solid stars in Fig. 2), which span neutron-proton
separation energy differences from –11.3 MeV (49Ca) to
7.3 MeV (40Ca), one draws the same conclusion.

The open circles in Fig. 2 are the corresponding ratios
of the proton ground state SF for 7Li, 12C, 16O, 30Si, 31P,
40Ca, 48Ca, 51V, 90Zr, and 208Pb (as listed in Table I), studied
with the (e, e′p) reaction [4,25]. Similarly, the solid triangles
show the ratios of the deduced SF to SF(LB-SM) values from
both exclusive and inclusive studies of intermediate-energy
nucleon knockout reactions. Neutron (proton) knockout values
are shown as inverted (upright) triangles (and listed in Table I).
These include, at the extremes of the |Sn−Sp| scale, 15C [26],
22O [27], 34Ar [28], and 32Ar [27], whereas the values for 8B,

9C [30], 46Ar [29], 12C, and 16O [5] overlap the �S values
of both the transfer and the (e, e′p) analyses. In the case of
the inclusive knockout reaction analysis of Ref. [5], effective
neutron and proton removal energies, obtained by weighting
the physical separation energies to each final state by the
corresponding cross-sections, were used. The suppression with
respect to the SF(LB-SM) is similar for the three different
reactions within the �S region in which they overlap. A
dependence of the suppression on �S is indicated by the
nucleon-knockout data that extend the data set into regions
of significant neutron and proton asymmetry.

IV. SUMMARY

In summary, we have presented a consistent analysis of
ground-state-to-ground-state single-neutron transfer reaction
data using a three-body reaction model that constrains the
nucleon bound-state and nucleon-target optical potential
geometries using modern Hartree-Fock calculations. The
methodology removes significant, long-standing potential
parameter ambiguities from the reaction analysis through the
use of theoretical densities and single-particle orbital rms
radii. In so doing, we believe that we have defined more
precisely that fraction of the neutron overlap function that
is sampled in the transfer reaction amplitudes. The deduced
spectroscopic factors SF(HF) for the calcium isotopes, and
more generally for other systems, show a reduction of ∼30%
compared to both shell-model values and the SF(Conv)
deduced using a global optical potential and a conventional,
fixed bound-state potential geometry. There is no evidence that
the reduction factor is correlated with the nucleon separation
energy difference �S over the range of values available to
this (ground-state) transfer analysis. This observation and
the observed suppression factor of about 70% are consistent
with deduced spectroscopic strengths for neutrons and protons
from intermediate-energy nucleon knockout reactions and for
protons from (e, e′p) reactions on well-bound nuclei.
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