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Dynamical aspects of isoscaling
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The origin and dynamical evolution of isoscaling was studied using classical molecular dynamics simulations
of 40Ca+40Ca, 48Ca+48Ca, and 52Ca+52Ca at beam energies ranging from 20 to 85 MeV/nucleon. The analysis
included a study of the time evolution of this effect. Isoscaling was observed to exist at all energies in these
reactions from the early primary isotope distributions (produced by systems not yet in thermal equilibrium) all
the way to 5000 fm/c.
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I. INTRODUCTION

Experimental advances, that now permit the study of nu-
clear reactions involving radioactive isotopes, have propelled
the isotopic degree of freedom to the forefront [1–5]. It is
expected, for instance, that this new variable of control could
shed light on charge equilibration in heavy-ion reactions and
on the role played by the isotope asymmetry terms of the
equation of state of nuclear matter [4].

The main tool for inspection of this new observable is
based on the isotope yields of central collisions of similar,
but isotopically different, reactions [1,5]. The ratio of isotope
yields from reactions 1 and 2, R21(N,Z), has been found to
depend exponentially on the isotope neutron number N and
proton number Z:

R21(N,Z) = Y2(N,Z)

Y1(N,Z)
≈ eαN+βZ, (1)

where α and β are fitting parameters. Equations of the form of
Eq. (1) can be linked, under some approximations, to primary
isotope yields produced by disassembling equilibrated systems
in microcanonical and grand canonical ensembles [4], as well
as to breakups in canonical [6] ensembles.

Little reflection is needed to understand that R21 could be
affected by many reaction variables. Its direct dependence
on the experimentally measured yields, Y1 and Y2, makes
R21 vulnerable to anything that can modify the isotopic
content of the initial fragment yield, be this out-of-equilibrium
breakup, secondary fission of primordial fragments, light
particle emission, and the like. As these effects have varying
lifetimes, it is very likely that the experimentally captured
yield contains an integral of all of these effects on the primary
distribution. This casts a shadow of doubt on the isoscaling-
related conclusions obtained by the use of microcanonical,
canonical, and grand canonical breakup scenarios and calls for
the use of an unconstrained model to ratify the main findings
of equilibrium models.

This article aims at elucidating the origin and dynamical
evolution of isoscaling using a model not restricted by assump-
tions such as the existence of freeze-out stages, thermal and
chemical equilibration, or unrealistic volume constraints [7].
In the next section, the molecular dynamics (MD) model used
is introduced along with the fragment recognition algorithm

selected for this study. The fitting procedure used to extract
the isoscaling exponential law [Eq. (1)] from the simulations
is presented in Sec. III followed by results consisting of
the observation of isoscaling at long times, its dependence
on the reaction energy, the time evolution of such a law
during the reaction, and its connection to thermodynamical
observables. The manuscript closes with a summary of the
main conclusions.

II. MOLECULAR DYNAMICS

To study the origin of isoscaling, a model capable of
reproducing both the out-of-equilibrium and the equilibrium
parts of a collision is needed. As statistical and other
equilibrium models [8,9] lack—by construction—all relevant
collision-induced correlations, a dynamical model is thus
needed. Most such dynamical models, nevertheless, lack
higher-order correlations and have varying difficulties in
producing fragmentation [10–14]. In the present work, we
use an MD model that can describe nonequilibrium dynamics,
hydrodynamic flow, and changes of phase without adjustable
parameters. The combination of this MD code with a fragment-
recognition algorithm, has been dubbed LATINO [15], and in
recent years it has been applied successfully to study, among
other things, neck fragmentation [16], phase transitions [17],
critical phenomena [18,19], and the caloric curve [20,21] in
nuclear reactions.

The MD code uses a two-body potential composed of the
Coulomb interaction plus a nuclear part [22] that correctly
reproduces nucleon-nucleon cross sections, as well as the
correct binding energies and densities of real nuclei. The
“nuclear” part of the interaction potential is

Vnp(r) = Vr [exp(−µrr)/r − exp(−µrrc)/rc]

−Va[exp(−µar)/r − exp(−µara)/ra]

Vnn(r) = Vpp(r) = V0[exp(−µ0r)/r − exp(−µ0rc)/rc],

(2)

where the cutoff radius is rc = 5.4 fm, Vnp is the potential
between a neutron and a proton, and Vnn is that between
identical nucleons. The values of the parameters of the
Yukawa potentials [22] correspond to an equation of state
of infinite nuclear matter with an equilibrium density of
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ρ0 = 0.16 fm−3, a binding energy E(ρ0) = −16 MeV/
nucleon, and a compressibility of around 250 MeV.

To study collisions, this potential is first used along
with dissipative molecular dynamics to construct “nuclei” by
grouping “nucleons” at the binding energies and radii of real
nuclei, and stable for times longer than the reaction time. These
nuclei are then used as targets and projectiles by rotating the
relative orientation of the target-nuclei combination, boosting
the center-of-mass velocity of the projectile to a desired energy
and leaving the target initially at rest. The trajectories of motion
of individual nucleons are then calculated using the standard
Verlet algorithm with an energy conservation of O(0.01%).

The collision information, initially composed by the values
of (

−→
r ,

−→
p ) of the nucleons, is then transformed into fragment

information by means of a cluster-detection algorithm that, in
this case, is the MSE method that was introduced decades
ago [23], but was recently adapted for this field, fully
analyzed, and compared with other fragment recognition
algorithms [24]. According to this prescription, a particle
i belongs to a cluster C if there is a particle j in C to
which i is bound in the sense of p2

ij /4µ < vij , where pij

is the relative momentum, µ the reduced mass, and vij the
interparticle potential. In this cluster definition the effect of
the relative momentum between the particles that form the
cluster is taken into account in an approximate way; of course,
at some time during the reaction, MSE yields the asymptotic
cluster distribution. The resulting information contains details
about the nucleon content of the emitted fragments and, as
this is available at all times during the collision, it allows the
study of the time evolution of quantities such as the isoscaling
law.

Before we turn to a description of the analysis performed
on these collisions, a word of caution is needed to underline
the fact that the MD model here described is fully classical
and that all quantal effects, such as the exclusion principle,
Fermi motion, and isotopic content-modifying phenomena,
are excluded. [The effects of Fermi motion, although formally
absent, are somewhat included by the internal motion of the
“nucleons” that provides “nuclei” with the proper binding
energy and radius to mimic real nuclei.] Therefore, if any
of the excluded effects is responsible for isoscaling, this study
should not reproduce this effect. On the contrary, if isoscaling
is well predicted by this classical model, this will imply that
isoscaling can be explained qualitatively without assuming
quantum effects.

III. ISOSCALING

The collisions 40Ca+40Ca, 48Ca+48Ca, and 52Ca+52Ca,
were studied at beam energies of 20, 25, 35, 45, 65, and
85 MeV/nucleon with 2000 collisions performed at each
energy. Data from these collisions were used to construct the
corresponding yield matrices Yi(N,Z), where i stands for the
reaction, and N and Z for the neutron and proton numbers,
respectively. These matrices were then used to calculate the
ratio R21(N,Z) = Y2(N,Z)/Y1(N,Z) for the combinations
of reactions 40Ca with 48Ca, 40Ca with 52Ca, and 48Ca with
52Ca at each of the energy values. These ratios were calculated

at different reaction times starting at impact (t = 0) and ending
at 5000 fm/c. Fits to the isoscaling exponential law [Eq. (1)]
were obtained using a standard least-squares method for all
points corresponding to each reaction and energy, a procedure
that yielded values of the parameters α and β for each of the
calculated times. Next, studies of the energy dependence of
isoscaling at long times and its behavior during the dense part
of the reaction are presented.

A. Isoscaling at long times

Experimental results always correspond to asymptotic
values, taking into account that, at the energies listed below, the
time needed for an unobstructed projectile to cross the length
of the target is of the order of a few fm/c, it is safe to consider
times of, say, 1000 fm/c close to the asymptotic values; in this
study, nevertheless, the calculation was extended to 5 times
this value.

Figure 1 shows the obtained values of R21(N,Z) and the
corresponding fit to the isoscaling exponential law (1) for the
case 40Ca-48Ca at 35 MeV/nucleon at 1250 fm/c. The fact
that LATINO reproduces the reactions sufficiently well as to
produce isoscaling at long times is obvious from this figure.
Other reactions (i.e., with other masses and energies) yield
similar results.

Upon applying the fitting procedures described in Sec. III
for each of the three ratios of reactions, values of α and β

were obtained for each of the energies. Figure 2 shows the
values of these fitting parameters at times of 5000 fm/c as
a function of beam energy per nucleon for the ratios of the
reactions 40Ca-48Ca, 40Ca-52Ca, and 48Ca-52Ca. The smooth
trends of α and β are in the range of values obtained by other
investigators [4,5,14,25,26].

It is instructive to compare these results to those recently
obtained using quantal molecular dynamics simulations with
the AMD-V model [14]. In that work, collisions between
40Ca+40Ca, 48Ca+48Ca, and 60Ca+60Ca at 35 MeV/nucleon
were performed, and an isoscaling-looking behavior was
observed for their R21. The power-law fit obtained for the ratio
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FIG. 1. (Color online) Long time behavior of isoscaling. Typical
fit to R21(N, Z) for the case 40Ca-48Ca at 35 MeV/nucleon at
1250 fm/c.
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FIG. 2. (Color online) Energy dependence of fitting parameters
α and β for three reactions 40Ca+40Ca, 48Ca+48Ca, and 52Ca+52Ca,
at beam energies ranging from 20 to 85 MeV/nucleon and at t =
5000 fm/c.

of 48Ca +48 Ca to of 40Ca +40 Ca yielded an α = 1.03 and
β = 1.22. These values agree with the results here obtained
for a similar case: α = 1.07 and β = 1.22 (cf. Fig. 2);
other AMD-V results are also in line with our classical MD
simulations.

As stated before, because this study is based on a classical
MD model, the fact that isoscaling is well reproduced by it
implies that it can be explained qualitatively without assuming
quantum effects that could modify the isotopic content of the
fragments. To gain a deeper insight into the origin of isoscaling,
we now turn to a study to its time evolution during the
reaction.

B. Evolution of isoscaling

As the nucleon information is available throughout the
reaction, the yields and, thus, the ratio R21 can be calculated
at any time during the collision. Figure 3 shows early (at
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FIG. 3. (Color online) Early behavior of isoscaling. Typical fit to
R21(N, Z) for the case 40Ca-48Ca at 35 MeV/nucleon at 125 fm/c.
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FIG. 4. (Color online) Time evolution of α and β for the case
40Ca-48Ca at 35 MeV/nucleon.

125 fm/c) values of R21(N,Z) and the corresponding fit to
the isoscaling exponential law [Eq. (1)], for the case 40Ca-48Ca
at 35 MeV/nucleon. The observed goodness of the isoscaling
exponential law appears to be as good in early times as at long
times. Other reactions yield similar results.

Repeating the fitting procedure described in Sec. III, it is
possible to obtain values of α and β at different times. Figure 4
shows the time evolution of α and β obtained from the ratio
of yields of 40Ca-48Ca at 35 MeV/nucleon as a function of
reaction time.

As attested by Fig. 3 and with varying values of α and β

(cf. Fig. 4), isoscaling appears to be present in the reaction
from early times. This, in agreement with the findings of [4],
rules out long-time effects, such as secondary decays, as the
cause of isoscaling. Thus, our search for the origin of this
effect should now be directed to earlier times of the reaction,
those in which the system is still rather dense and highly
interacting.

C. Isoscaling and dynamics

As outlined in Ref. [1], the parameters α and β of the power
law [Eq. (1)], can be linked to the differences between the
neutron and proton separation energies for the two reactions.
Assuming that the reactions populate a grand canonical
ensemble, and that the secondary decays have little impact on
the resulting R21, it can be shown that α = (µn2 − µn1)/T and
β = (µp2 − µp1)/T , where µni and µpi are the neutron and
proton chemical potentials of reaction i and T is the equilibrium
temperature of the reaction, assumed to be the same for both
reactions of the isoscaling comparison.

The main assumption of the preceding arguments, namely
the existence of thermodynamic equilibrium, is questionable in
systems that are finite, expanding, and disassembling. Added
to this concern, of course, is the assumption of a common
temperature in both reactions, as well as unique separation
energies throughout the disassembling systems. Although
these assumptions are difficult to verify, in this section we
make an attempt to better understand these premises.
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1. Thermal equilibrium

As the temperature of a fragmenting system is not well
defined, we first focus only on the dynamical properties of
the largest fragment; to have an approximate view of the
thermalization process, in the spirit of Ref. [27], we define
two effective temperatures. Using cylindrical coordinates and
decomposing the system in the beam axis (z) and in the reaction
plane (xy), it is possible to calculate the collective expansion
velocity by

vbeam(t) =
〈

1

NBF

NBF∑
i=1

v(i)(t) · z(i)(t)

|z(i)(t)|

〉
e

, (3)

in the beam axis direction and

vperp(t) =
〈

1

NBF

NBF∑
i=1

v(i)(t) · r̂ (i)(t)

〉
e

, (4)

in the reaction (perpendicular) plane. Here NBF is the number
of particles in the biggest source and 〈 〉e denotes an ensemble
average. All quantities are calculated in the center of mass of
the biggest emitting source.

With these velocities, effective temperatures can be defined
in terms of the velocity fluctuations:

T beam
loc =

〈
2

NBF

NBF∑
i=1

m

2

[
v(i)

z (t) − vbeam(t)
]2

〉
e

(5)

and

T
perp

loc =
〈

1

NBF

NBF∑
i=1

m

2

[
v(i)

r (t) − vperp(t)
]2

〉
e

, (6)

where the subscript loc as been added to emphasize that these
temperatures represent local, rather than global, measures. For
the ease of comparison, Fig. 5 shows the time evolution of the
two effective temperatures together with the time evolution of
the (scaled) collective velocities and the (scaled) average size
of the biggest source; see caption for details.

In this figure t = 0 corresponds to the time at which the two
nuclei start interacting via the nuclear short-range interaction.
At this time the collective expansion in the reaction plane
starts to grow, reaching a maximum at t = 35 fm/c and finally
vanishing at about t = 185 fm/c. However the collective
motion in the beam axis first shows a compression stage,
followed by an expansion, which ends at about t = 45 fm/c.

Regarding the effective temperatures, they both attain the
same value at about t = 45 fm/c, time at which equilibration
in the three spatial degrees of freedom can be assumed. As it
will be shown in Fig. 6, the same effect occurs for 52Ca + 52Ca
at 35 MeV/nucleon but not until 90 fm/c.

It is worthwhile noticing that this behavior of the effective
temperatures takes place while the mass of the biggest
fragment is quite close to the sum of projectile and target.
Afterwards, the system cools down while emitting fragments.
A second observation is that the maximum temperatures
observed (around 4 MeV) are consistent with those derived
from alternative analyses [28]; studies of other reactions at
different energies also yielded similar results.
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FIG. 5. (Color online) Time evolution of the effective tempera-
tures for the reaction 40Ca + 40Ca at 35 MeV/nucleon. The behavior of
T beam

loc is shown with dots, T perp
loc with squares, the collective velocities

(in units of c/40) in the beam axis is shown with the dashed line,
and in the reaction plane with a dot-dashed line. Also shown with a
continuous line is the average size of the biggest source, scaled by a
factor 1/20.

2. Thermal symmetry of isotopic reactions

An equally important point is that of the similarity of the
temperatures in the two reactions included in the ratio R21. To
study this point we further focus on the dynamical properties
of the largest fragments produced on the two collisions.
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FIG. 6. (Color online) Comparison of temperatures (top panel)
and sizes of largest fragments (bottom panel) obtained in the reactions
40Ca+40Ca (continuous lines) and 52Ca+52Ca (dashed lines) both at
35 MeV/nucleon. The top panel shows the time distribution of the
T beam

loc (higher curves) and of the T
perp

loc (lower curves). The vertical
dashed line indicates the time when both reactions are in thermal
equilibrium and are under conditions of thermal symmetry.
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Figure 6 shows a comparison of temperatures (top panel)
and sizes of largest fragments (bottom panel) obtained in the
reactions 40Ca + 40Ca (solid lines) and 52Ca + 52Ca both at
35 MeV/nucleon. The top panel shows the time distribution
of the temperatures T beam

loc (higher curves) and T
perp

loc (lower
curves).

Figure 6 indicates that the time evolutions of the dynamical
observables of both reactions are, on average, very similar
except at early times. In the beginning of the reaction, while
isoscaling sets in, the largest fragments of both reactions suffer
similar compressions and expansions but at different times
and with very different average temperatures. The two T beam

loc ,
for instance, peak at times differing by about 15 fm/c and
with magnitudes different by a factor of the order of 30%.
Any isoscaling observed before the convergence of all the
four temperatures would be produced by systems not yet in
states of thermal symmetry, which for the case of 52Ca + 52Ca
compared to 40Ca + 40Ca at 35 MeV/nucleon does not take
place until 90 fm/c.

Even though this difference in temperature vanishes for
later times, its importance cannot be underestimated as it
occurs precisely when the n to p ratios and, thus, R21 are
being established. [The first values of α and β of Fig. 4, for
instance, show that isoscaling already existed at a time of
75 fm/c.] The existence of isoscaling while the systems have
not yet achieved thermal equilibrium individually nor while
the corresponding temperatures of the two reactions converge
with each other suggests the possibility of achieving isoscaling
under conditions other than those of thermal equilibrium.

[This, in turn would cast serious doubts about the proposed
relationship between α and β and the neutron and proton chem-
ical potentials and would, indeed, lead to relationships of the
type α = (µn2/T2 − µn1/T1) and β = (µp2/T2 − µp1/T1).
Although the existence of different source temperatures could
possibly be handled [25], the dependence of µ on T [µ(T ) −
µ(0) ∝ T 2 [29]] combined with the rapid cooling in early
times, makes it difficult to argue for the existence of well-
defined separation energies that could apply throughout the
reaction. The same can be said about macroscopic constructs
such as the symmetry energy of the medium, an important
factor in the isospin dynamics in mean-field models such as
QMD and IQMD. The observed variation of the temperature
in turn implies a varying symmetry energy strength that,
if extracted experimentally from data, would yield only an
average of all the values convoluted throughout the evolution
of the reaction. Put in terms of fragments and isoscaling, at
best, what exists at, say, 125 fm/c is the sum of fragments
emitted at earlier times that might have undergone subsequent
decay, the final yield ratio R21 can only be said to be a
product of the time integral of decays that occurred under
different values of the chemical potentials or symmetry energy
strengths.]

In addition to ruling out the chemical potential as the
decisive factor in establishing isoscaling, the previous results
introduce the need to consider the addition of decays and
other nucleon-rearranging processes that take place at different
times during the reaction. The importance of this factor can
be quantified by inspecting the time evolution of the particle
production for different types of particles.
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FIG. 7. (Color online) Population of different mass bins as a
function of time for the reaction 40Ca on 40Ca at 35 MeV/nucleon.
Circles (3-4), squares (5-6), etc.

Figure 7 shows the average population of different mass
bins obtained at different times for the reaction 40Ca on 40Ca
at 35 MeV/nucleon. This time chart clearly illustrates that at
times smaller than 100 fm/c, the fragment mass distribution is
far from reaching its final value. Furthermore, because, as seen
in Fig. 3, isoscaling is already alive and well at 75 fm/c, i.e.,
well before the stabilization of most mass bins, the isoscaling
power law observed at early times is only a work in progress
produced by fragments emitted in previous times.

By induction, all values of α and β at a given time include
contributions of all earlier fragments and will pass their own
contribution to later values of these exponents. It does appear
as if the origin of isospin is connected more to the statistical
sampling induced by the collision, as observed by Ono
et al. [14], than to specific details of the dynamics of
the reaction; this will be explored further in a follow-up
investigation [30].

IV. CONCLUSIONS

The origin and evolution of isoscaling was studied using
classical molecular dynamics simulations combined with a
fragment-recognition algorithm. Collisions of 40Ca+40Ca,
48Ca+48Ca, and 52Ca+52Ca, at energies from 20 to
85 MeV/nucleon were used to construct the ratios R21(N,Z)
and to obtain the fitting parameters α and β for the three
possible combinations of reactions at all energies and for times
from impact to 5000 fm/c.

Isoscaling was found at long times from 1250 to 5000 fm/c,
the last calculated time. The fitting parameters of the R21 at
long times showed a smooth variation with respect to the beam
energy. Although excellent agreement was found with quantal
molecular dynamics results, these classical results indicate that
isoscaling can be explained qualitatively without assuming
quantum effects.

A power law fit of R21 was possible from early times during
the collision (cf. Fig. 4) and it was maintained, with smoothly
varying values of α and β, throughout the reaction. Examining
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the time evolution of the fragment mass distribution, isoscaling
appears to exist before this distribution reaches its final value.

Examining this period of time it was found that individual
reactions do not achieve individual thermal equilibrium before
a time ranging from 50 to about 90 fm/c and do not reach a
state of thermal symmetry before these equilibration times.
During this time the largest fragments of both reactions
undergo a compression/heating phase followed by an expan-
sion/cooling period with average temperatures that differ by up
to 30%.

In summary, we found that isoscaling exists in classical
systems, power law fits to R21 can be obtained in dense
systems out of equilibrium, it is maintained as the system
reaches equilibrium, expands, and fragments. Our results seem
to indicate that isoscaling, i.e., the possibility of fitting the
yields ratio R21 by a power law, exists before the reactions
achieve thermal equilibrium and thermal symmetry, which in
turn breaks the one-to-one correspondence believed to exist

between isoscaling and the thermodynamic conditions of the
dense part of the reactions. Furthermore, the observed time
variation of the α and β indicate that the final values of these
parameters could be related to the last part of the reaction
where the fragments finish cooling by particle evaporation.
The importance on isoscaling of factors not included in this
study, such as the role of geometry and sampling techniques,
will be considered in our following work [30].
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to A. Barrañón for facilitating the initial configurations of the
“nuclei” used in these simulations.

[1] H. S. Xu, M. B. Tsang, T. X. Liu, X. D. Liu, W. G. Lynch,
W. P. Tan, A. Vander Molen, G. Verde, A. Wagner, H. F. Xi,
C. K. Gelbke, L. Beaulieu, B. Davin, Y. Larochelle, T. Lefort,
R. T. de Souza, R. Yanez, V. E. Viola, R. J. Charity, and L. G.
Sobotka, Phys. Rev. Lett. 85, 716 (2000).

[2] H. Johnston et al., Phys. Lett. B3715, 186 (1996).
[3] R. Laforest et al., Phys. Rev. C 59, 2567 (1999).
[4] M. B. Tsang, C. K. Gelbke, X. D. Liu, W. G. Lynch, W. P. Tan,

G. Verde, H. S. Xu, W. A. Friedman, R. Donangelo, S. R. Souza,
C. B. Das, S. Das Gupta, and D. Zhabinsky, Phys. Rev. C 64,
054615 (2001).

[5] M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch,
G. Verde, and H. Xu, Phys. Rev. Lett. 86, 5023 (2001).

[6] C. B. Das, S. Das Gupta, X. D. Liu, and M. B. Tsang, Phys. Rev.
C 64, 044608 (2001).

[7] T. Furuta and A. Ono, arXiv:nucl-th/0305050 V2, (2003)
(submitted to PRC).

[8] J. P. Bondorf, A. S. Botvina, A. S. Iljinov, l. N. Mishustin, and
K. Sneppen, Phys. Rep. 257, 133 (1995).

[9] W. A. Friedman, Phys. Rev. Lett. 60, 2125 (1988); Phys. Rev. C
42, 667 (1990).

[10] G. F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988).
[11] P. Danielewicz, Nucl. Phys. A673, 375 (2000).
[12] Bao-An Li, Phys. Rev. Lett. 85, 4221 (2000).
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47-Sup. 2, 93 (2001).
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